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ABSTRACT 

Optical sensors aboard Earth orbiting satellites such as the next generation Visible/Infrared Imager/Radiometer Suite 
(VIIRS) assume that the sensors’ radiometric response in the Reflective Solar Bands (RSB) is described by a 
quadratic polynomial, in relating the aperture spectral radiance to the sensor Digital Number (DN) readout. For 
VIIRS Flight Unit 1, the coefficients are to be determined before launch by an attenuation method, although the 
linear coefficient will be further determined on-orbit through observing the Solar Diffuser. In determining the 
quadratic polynomial coefficients by the attenuation method, a Maximum Likelihood approach is applied in carrying 
out the least-squares procedure. Crucial to the Maximum Likelihood least-squares procedure is the computation of 
the weight. The weight not only has a contribution from the noise of the sensor’s digital count, with an important 
contribution from digitization error, but also is affected heavily by the mathematical expression used to predict the 
value of the dependent variable, because both the independent and the dependent variables contain random noise. In 
addition, model errors have a major impact on the uncertainties of the coefficients. The Maximum Likelihood 
approach demonstrates the inadequacy of the attenuation method model with a quadratic polynomial for the 
retrieved spectral radiance. We show that using the inadequate model dramatically increases the uncertainties of the 
coefficients. We compute the coefficient values and their uncertainties, considering both measurement and model 
errors. 

Keywords: remote sensing, radiance, calibration, maximum likelihood, model inadequacy, VIIRS, MODIS, least-
squares 
 

1. INTRODUCTION 

      As the next generation remote sensing optical instrument to the MODerate Resolution Imaging 
Spectroradiometer1 (MODIS), a VIIRS instrument2 will be carried aboard each platform of the Joint Polar Satellite 
System and the National Polar-orbiting Environmental Satellite System Preparatory Project (NPP). The VIIRS 
instrument offers high quality imaging capabilities in visible and infrared bandwidths with slightly finer spatial 
resolution than the MODIS’, providing more accurate global weather and environmental data. Due to limited on-
orbit calibration means, to accurately measure the detected spectral radiance, extensive prelaunch efforts have been 
conducted to calibrate and characterize the sensors. 

      To facilitate aperture spectral radiance determination, we assume that the radiance relates a sensor’s DN count 
through a mathematical expression. In order to gain robustness and accuracy, extending the linear mathematical 
form used in the MODIS for RSB and taking the similar expression used for both the MODIS and VIIRS Thermal 
Emissive Bands3, 4, we use a quadratic polynomial for the radiance 
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where dn  is the background subtracted Digital Number. The polynomial coefficients are determined pre-launch, 
using a National Institute of Standards and Technology (NIST) traceable Spherical Integrating Source (SIS-100). 
Because the SIS-100 light source is not stable enough over time and its output radiance is not accurately known with 
a relative uncertainty of a few percent, an attenuation method is applied to determine the c-ratios: 10 / cc  and 12 / cc . 

       In the attenuation method, the sensor measures the same output radiance of SIS-100 with and without an 
attenuator . Since the time duration between reading the digital counts is short (2-3 minutes), it is reasonable to 
assume that the SIS-100 output radiance does not change much in the time duration. Because the attenuator is an 
opaque plate with small holes to allow light through, the attenuator’s transmittance is unchanged over the entire SIS-
100 output radiance levels. Consequently, the ratio of the detected spectral radiances with and without the attenuator 
may be described by 
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where indn  and outdn  denote the dn with and without the attenuator, respectively, and τ  the transmittance, a 
constant across lamp levels. The c-ratios are determined through Eq. (2). 

      The legacy approach to determine the c-ratios uses a least-squares process with equal weights, namely, each data 
point in the least-squares has the same weight. This approach can be problematic, especially when most of the 
measurement data points are poorly determined, resulting in inaccurate values for the parameters. In addition, the 
equal-weight approach does not give information on whether the model Eq. (2) is adequate.model is correct. An 
inadequate model, if forced to be used, will have a significant impact on the fitting parameters. 

     To address the problems of the legacy approach, in this study, we use a Maximum Likelihood5 approach. The 
Maximum Likelihood assigns appropriately more weight to those data points with smaller measurement 
uncertainties so that with the determined c-ratios the likelihood of observing the data is at its maximum. Unlike the 
equal-weight approach, the Maximum Likelihood approach gives us a condition to determine the validity of the 
model with a very high probability. If the model is inadequate, we shall calculate the impact on the c-ratios due to 
the inadequacy. 

      In the next section, we provide our theoretical description of using the Maximum Likelihood to determine the c-
ratios. We describe a method for computing c-ratio errors due to model inadequacy. In Section 3, we give an 
example of the results obtained by applying the theories developed in Section 2 to VIIRS FU1 Thermal Vacuum 
(TV) data for RSB. We use the results to determine whether the quadratic polynomial model Eq. (2) adequately 
describes our data. In Section 4, we try to gain insight for the procedure given in Section 2. Specifically, we consider 
the impact of model inadequacy on fitting parameter uncertainties. Finally, in Section 5 we summarize the results of 
this study. 

2. MAXIMUM LIKELIHOOD APPROACH 

      To use existing data regression functions, we need to write Eq. (2) into a form of ( )pxfy ;= , where all the 

fitting parameters are represented by p. Let outdnx =  and indny = , Eq. (2) can be written as 
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where ( ) 2
1210 // xccxccz ++= . The background DN is averaged over 48 consecutive Half Angle Mirror (HAM) 

angular positions (denoted as the sample positions) over the Space View port for each HAM side and each scan, and 
the Earth View DN is the average over 25 scans with repeated 3-sigma outlier rejections at each of the 120 angular 
positions (since a 3-sigma rejection changes the mean as well as its standard deviation, it is necessary to run the 3-
sigma rejection repeatedly until the final results stabilize). Due to the DN digitization, a zero standard deviation of 
the mean is possible. When a zero standard deviation occurs, we assign a quantization error as the standard deviation 
of the averaged DN. 

      Even if the model is accurate, Eq. (3) may not hold due to measurement errors in y and/or x. The errors in y 
and/or x make the Maximum Likelihood approach viable and the weight is the inverse of the variance of 

( )pxfy ;−  where ( )pxf ;  stands for the mathematical expression on the right hand side of Eq. (3) and p denotes 
the c-ratios. 

      In order to compute the Maximum Likelihood weight, we assume that the measurement errors follow Gaussian 
distributions. As a result, the probability distribution for ( )pxfy ;−  is also Gaussian.  The variance of ( )pxfy ;−  
is computed by 

( ) ( )( ) ( )( )pxfypxfy ;,covar2;varvar2 −+=σ  .                                                                                                        (4) 

Since the errors in indn  and outdn  are not correlated and ( ) out; dnpxf ×≈τ , Eq. (4) is simplified to become 
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      Eq. (4) indicates that the weight in the Maximum Likelihood approach depends on the mathematical form of the 
fitting function. 

      In order to avoid any adverse effects on the determined c-ratios from the variation of the attenuator’s 
transmittance over sample positions, we carry out our fitting procedure at each sample position. The detailed 
procedure is described in the following steps.  

(a) At each sample position, the measured data points are denoted as ( )sampleoutin , dndn , for all valid SIS-100 

radiance levels. Using a data regression procedure, we find the parameters ( )sample1210 /,/ cccc  which minimize 

( ) ( )( )[ ] ( )∑ −
=

N

n
npndnfndn

1

22
outin /; σ  , 

where N is the number of SIS-100 radiance levels. The data regression procedure we use is the Interactive Data 
Language  function MPFIT(…)6 which performs a Levenberg-Marquardt least-squares procedure with additional 
features such as allowing setting limits on the values of fitting parameters. We use repeated 4-sigma rejections until 
the rejection stabilizes. 



      
 

(b) We determine the simple means of ( )sample1210 /,/ cccc  over the sample positions with repeated 3-sigma outlier 

rejections for a set of 120 2-element vectors. At this stage, the means of  ( )sample1210 /,/ cccc  are for a single HAM 
side.  

(c) Because the c-ratios in VIIRS RSB are not HAM side dependent (assuming the mirror does not contribute to 
inter-detector cross talks), we compute the simple mean of sample1210 /,/ cccc  over HAM sides to obtain 

HAMsample,1210 /,/ cccc . 

      At the end of step (c), we must address the question of whether the quadratic model is adequate. If the model is 
adequate, we can determine the covariance matrix for the c-ratios in step (b) (from the 120 c-ratio covariance 
matrixes). If the model is inadequate, indicated by small goodness-of-fit numbers, we have three choices to improve 
our capability to determine the aperture radiance. One is to change the model. Another is to divide the fitting region 
into two or more smaller ones and carry out the fitting process separately in those regions. The third is to apply the 
inadequate quadratic polynomial for the entire region, in order not to increase algorithm complexity. 

      Using an inadequate model can generate large differences over some radiance regions between the measured and 
the fit-obtained values in τ . The large differences in τ  can be quantified by the variance of τ . This variance 
enlarges the uncertainties of ( ) HAMsample,1210 /,/ cccc . Details to compute these uncertainties are described in step 
(d). 

(d) We denote the simple mean of the τ  differences over samples and HAM sides at a particular radiance level as 

radHAM,sample,τ∆  .  
radHAM,sample,τ∆  is the sum of the differences induced from random noise and model 

inadequacy, namely 

radmodel,noise,radHAM,sample,radHAM,sample, τττ ∆+∆=∆  .                                                                                         (6) 

Since radmodel,τ∆  and noise,radHAM,sample,τ∆  are statistically independent, Eq. (6) gives 
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In Eq. (7), η  is a positive number, equal to 1 if the digital counts from consecutive samples from the same scan are 
not correlated. To determine η , we can average the digital counts over the samples first and then take the scan 
average. In Eq. (8), on the left hand side, the outer <…> indicates the statistical average and 120sample =N .  

      To compute the variance in τ over the entire radiance range, we realize that the contributions to the variance 
from the random noise and the model errors depend differently on the number of radiance levels. The contribution 
from the random noise is  
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which is roughly proportionally to 1/N, indicating that as long as we have enough number of radiance levels, the 
contribution to the variance of τ  can be very small. The model error generated τ difference, however, contributes to 
the τ  variance in a mean squared fashion. Therefore, when model errors dominate, we can compute the overall τ
variance as 

( ) ( ) ( )τττ noisemodel varvarvar +=  ,                                                                                                                              (10) 

where the model error created τ  variance ( )τmodelvar  is defined as 
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In Eq. (11), the model error created variance of τ  at radiance L is  
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Fig. 1. Each data point is from a fit of Eq. (3) to measurement data at a fixed attenuator transmittance. (a) 10 / cc versus 

τ .  (b) 12 / cc versus τ . Results are for detector 1 of band M1 at (HAM side A, Fixed High Gain, Nominal temperature 

plateau, control electronics side B). 

      To use the variance of τ  to compute the uncertainties of ( )1210 /,/ cccc , we rely on the findings between the 
changes in ( 10 / cc , 12 / cc ) and the change in τ . Mathematically, the relations can be visualized through Eq. (2) 
which gives that the impact of a small change in τ  on the c-ratios obeys the following relation 
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Eq. (13) demonstrates that for a small change in τ  at a particular radiance level, the changes in the c-ratios fall on a 
straight line. Taking account all the radiance levels, in a minimum error sense, such as least-squares, we find the 
changes in the c-ratios due to a small change in τ  behave as ( ) δτδ ×∝ out10 / dncc  and ( ) out12 // dncc δτδ −∝ . 

To visually show the relation between the change in τ  and the changes in the c-ratios, we use Eq. (3) and carry out 
data regressions at a few fixed τ at sample position one for detector 1 of  band M1 (412 nm) at (HAM side A, Fixed 
High Gain, Nominal temperature plateau, control electronics side B). Figs. 1a and 1b show plots for 10 / cc  versus τ
and 12 / cc  versus τ , respectively. The figures clearly indicate linear relationship between the c-ratios and τ . As a 

result, we compute the uncertainties of the c-ratios by multiplying the square root of ( )τvar  by the absolute values 
of the slopes exhibited by the data points in Figs. 1a and 1b, respectively. Furthermore, the figures reveal that if 
model error dominates over the random measurement errors, the correlation coefficient for the c-ratios is -1. 

      That we are interested in the variances of the c-ratios is because we want to determine the relative uncertainty of 
2
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3. RESULTS 

      We carry out the steps mentioned in Section 2 and obtain the results for all detectors in RSB, at electronics gain 
settings of Fixed Low and High Gains, for temperature plateaus of Cold, Nominal and Hot, and at control electronics 
sides A and B, using VIIRS TV RC-02 data. The values of the c-ratios agree with those obtained previously with the 
equal-weight approach within the standard deviations from the equal-weight approach. 

      To determine the c-ratio variances and the correlation coefficient, after we carry out the data regression at the per 
sample stage, we compute the chi-square and the chi-square at goodness-of-fit of 0.001. The chi-squares for detector 
1 of band M1 at (Fixed High Gain, Nominal temperature plateau, control electronics side B) are about 250 for all the 
samples and HAM sides, significant larger than 145 which is about the chi-square at goodness-of-fit of 0.001, 
indicating strongly that the quadratic model is inadequate. We therefore use step (d) to compute the variances of the 
c-ratios through the variance of τ  and assign -1 to the c-ratio correlation coefficient. 

      In Figs. 2a and 2b, we show our results in diamonds for the c-ratios and their standard deviations for the 
detectors in band M1 at  (HAM side A, Fixed High Gain, Nominal temperature plateau, control electronics side B). 
In the figures, error bars stand for the standard deviations. The squares are for the equal-weight approach without 
considering model errors. For the Maximum Likelihood approach without considering model errors, namely without 
step (d), the standard deviations for the c-ratios are about an order of magnitude smaller than the ones from the 
equal-weight approach. After considering model errors, the standard deviations for the c-ratios increase dramatically 
as shown in the figures. 

 



      
 

 

Fig. 2. Diamonds are for HAM and sample averaged (simple average) c-ratios from the Maximum Likelihood fits of 
Eq. (3) to measurement data for all detectors in band M1 at Fixed High Gain and Nominal temperature plateau at 
control electronics side B. Bars stand for the standard deviations. Squares are for the equal-weight approach. (a) 10 / cc . 

(b) 12 / cc .  

 

Fig. 3. Relative radiance errors, in percentage, computed from Eq. (13) for band M1 detector 1, at (HAM side A, Fixed 
High Gain, Nominal temperature plateau, control electronics side B). 

      With the variances and the covariance of the c-ratios, we compute the relative radiance errors, determined by Eq. 
(14). We show the results in Fig. 3 for detector 8 in band M1 at (HAM side A, Fixed High Gain, Nominal 
temperature plateau, control electronics side B). The dashed vertical lines indicate the dn at the requirement 



      
 

specified minimum, typical, and maximum radiances. From the figure, we can see that the relative error is quite 
small (less than 0.3%) over [ ]maxmin , LL . When dn becomes smaller than 300 (<dnMin)), with decreasing dn, the 
relative error becomes larger quickly. 

4. DISCUSSION 

      To justify the Maximum Likelihood approach and the application of Eq. (10) to compute the variance of τ  in 
the case of model inadequacy, we consider fitting the model of a constant. We assume that at { }Mmxm ,,1; = , the 

measured value set is { }my . With a measurement error myδ  and a bias function ( )xb , we have the following 
equation relating the measurement value with the true value 

( ) mmm yxbCy δ++=  .                                                                                                                                              (15) 

The Maximum Likelihood approach yields that 
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We force a constant model of  
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by removing the bias function to obtain 
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Comparing Eqs. (16) and (18), we know 
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Given Eqs. (15-19), the question we need to answer is how we can use the fit-obtained C’ to predict the true
( )xbC +  with some level of certainty. 

      We can see from Eq. (19) that C and C’ differ by the weighted sum of the biases ( ) ∑∑
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Although we do not exactly know the bias function, it can be computed approximately. If model errors dominate 
measurement errors, indicated by a very small goodness-of-fit number, we can replace ( )mxb  by 'Cym −  and obtain 
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Therefore, C and C’ essentially are the same. 

     Next, we need to find the standard deviation of C’ in the presence of biases. Assuming ( ) 0;,covar =≠ jiyy ji , 

the variances of C’ from the random noise is computed by 
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indicating that the variance of C’ from measurement errors can be very small, as long as we have enough number of 
data points. Consequently, Eq. (21) can not address the effect of the biases since the biases are not random and more 
data points should not decrease the variance of C’. As a result, in the presence of biases, obtaining the variance from 
the output covariance matrix generated by data regression routines will not be correct, whether to use Maximum 
Likelihood weights or a uniform weight. With biases, the variance of C’ may be computed by 

( ) ( ) )'(var'var noise
2 CbstdC +=  .                                                                                                                              (22)    

( )bstd  is defined as that over ],[ maxmin xx , 68.2% of ( )xb  are smaller than ( )bstd . Eq. (22) may be approximated 

by 
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Since we do not exactly know the bias function, to compute the variance of C’, Eq. (23) is approximated by 
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where ( )'varmodel C  is defined by 
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      With C’ obtained by Eq. (18) and its variance given by Eq. (24), for a particular measurement at x, if the model 
is inadequate, we can state that, with about 68.2% confidence, the true value ( )xbC +  resides in the region of 

( ) ( )[ ]'var','var' CCCC +− . 



      
 

      As an example to illustrate our theoretical results developed in this section, we fit our model Eq. (17) to a 
measured data set of )1(01.0 2 Normxy +×=  in the x region of [ ]25,25− , where 201.0 x×  is the true value and 

)1(Norm  is the measurement error which is Gaussian distributed with a Gaussian width of one. We use both the 
equal-weight and the Maximum Likelihood approaches with the number of data points of 51 and 201 respectively. 

    In Figs. 4c and 4d, we show our fitting results, along with the fitting results from the equal-weight approach 
shown in Figs. 4a and 4b. In the figures, the diamonds represent te measurement data, the dashed lines for the real 
values of the data, and the solid lines for the fitting results with the bars indicating the standard deviations of the fit-
obtained C’. Figs. 4a and 4b show that the standard deviations obtained from the equal-weight approach are 
unrealistically too small, whereas the standard deviations in Figs. 4c and 4d are about correct demonstrated by 

( )'' CstdC ±  covering slightly more than half of the real values. 

 

Fig. 4. Fits of Eq. (17) to )1(01.0 2 Normx +  over the x range of [-25, 25], using the equal-weight and Maximum 
Likelihood approaches, respectively with the number of data points of N=51 and N=201. (a-b) Equal-weight approach. 
(c-d) Maximum Likelihood approach with model error handling. 

 

     For a future study, we would like to extend our simple model Eq. (17) to more complicated ones and compute the 
effects of model errors to the coefficients in those models. It is also desirable to compute ( )bstd  more accurately. 

5. SUMMARY 



      
 

      In this proceeding, we showed a Maximum Likelihood approach to determine the c-ratios in the quadratic 
polynomial detector spectral radiance model. We gave mathematical expressions to compute the weights used in the 
approach, considering the random noises from both the dependent and independent variables. In addition, we 
developed a methodology to compute the impact of model errors on the c-ratios. We applied our Maximum 
Likelihood method to the VIIRS RSB measurement data.  Our results revealed that the obtained c-ratios are in good 
agreement with those computed with the equal-weight method even though the quadratic model is may not be 
inadequate over the radiance range specified by the requirement. Critical to the knowledge of the measured radiance 
error, our Maximum Likelihood with model error handling approach yielded much more realistic c-ratio variances 
that are much larger than those from the data regression generated covariance matrix. We pointed out that because 
the biases are not random numbers, the uncertainties of the fitting parameters can not be reduced simply by fitting 
more data points. Therefore, in the presence of significant model errors, the covariance matrix values from data 
regression routines incorrectly address the variances of the fitting parameters. The Maximum Likelihood approach 
shown in this proceeding may lead to better sensor calibration, including better understanding of sensor calibration 
uncertainty. 
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APPENDIX 

     In this appendix, in order to evaluate our results given in this proceeding, we shall carry out a computer 
simulation to generate indn  and outdn . We then  and fit the simulated data to extract the c-ratios and their 
variances, following the procedure described in Section 2. The simulation assumes that the true radiance, after 
divided by 1c , follows a cubic polynomial in dn: 
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Ltrue ×+×++=    .                                                                                                                 (A.1) 

In the simulation, we set 85.0/ 10 −=cc , 6
12 103/ −×−=cc , 9

13 106.1/ −×−=cc , and 566.0=τ . The results are 
shown in Fig. A1 and Fig. A2. From Fig. A1, we can see that the Maximum Likelihood approach fit-obtained τ  
(shown by the solid horizontal line) is much different from the true τ . Fig. A2(a) shows the results from applying 
the Maximum Likelihood method with model error handling. Fig. A2(b) shows the results from the equal-weight 
approach. The large difference between the retrieved and the true radiances is indicative of flaws in the attenuation 
method used in this study. 

      To resolve the large difference between the retrieved and the true radiances, shown in Fig. A2, we carry out fits 
with the attenuator’s transmittance fixed at its true value of 0.566. The results are shown in Figs. A3 and A4. From 
Fig. A4, we can see that in this case the retrieved radiances are much closer to the real ones, indicating that we may 
need to know the attenuator’s transmittance before using the attenuation method. 

 

Fig.A1. Results from the fits to simulated data, following the procedure in Section 2. Diamonds are calculated τ  and 
the horizontal solid line is for the fit-obtained τ  from the Maximum Likelihood approach. 
 
 
 
 
 
 
 



      
 

 

 
 
 

 
 
Fig.A2. The ratio of the retrieved radiance over the true radiance minus one.  (a)  Maximum Likelihood approach. 
(b) Equal-weight approach. 

 



      
 

 

Fig.A3. Results from the fits to simulated data, with τ fixed at 0.566. Diamonds are calculated τ  and the 
horizontal solid line is for the fit-obtained τ  from the Maximum Likelihood approach. 
 
 
 
 
 
 
 
 
 
 
 



      
 

 
 
Fig.A4. The ratio of the retrieved radiance over the true radiance minus one at 566.0=τ .  (a)  Maximum 
Likelihood approach. (b) Equal-weight approach. 
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