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ABSTRACT   

Accurate assessment of vegetation canopy optical properties plays a critical role in monitoring natural and managed 

ecosystems under environmental changes. In this context, radiative transfer (RT) models simulating vegetation canopy 

reflectance have been demonstrated to be a powerful tool for understanding and estimating spectral bio-indicators. In this 

study, two narrow band spectroradiometers were utilized to acquire observations over corn canopies for two summers. 

These in situ spectral data were then used to validate a two-layer Markov chain-based canopy reflectance model for 

simulating the Photochemical Reflectance Index (PRI), which has been widely used in recent vegetation photosynthetic 

light use efficiency (LUE) studies. The in situ PRI derived from narrow band hyperspectral reflectance exhibited clear 

responses to: 1) viewing geometry which affects the asset of light environment; and 2) seasonal variation corresponding 

to the growth stage.  The RT model (ACRM) successfully simulated the responses to the variable viewing geometry. The 

best simulations were obtained when the model was set to run in the two layer mode using the sunlit leaves as the upper 

layer and shaded leaves as the lower layer. Simulated PRI values yielded much better correlations to in situ observations 

when the cornfield was dominated by green foliage during the early growth, vegetative and reproductive stages (r = 0.78 

to 0.86) than in the later senescent stage (r = 0.65). Further sensitivity analyses were conducted to show the important 

influences of leaf area index (LAI) and the sunlit/shaded ratio on PRI observations.   
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1. INTRODUCTION  

Remotely sensed bio-indicators provide unique information in monitoring and modeling processes in time and space for 

our Earth’s ecosystems.  The exchange of carbon between the biosphere and the atmosphere has been a focus and a key 

challenge among various ecological processes in recent years [1, 2]. One of the widely used concepts to model carbon 

assimilation by plants is based on the light use efficiency (LUE) [3, 4]. The LUE model simply describes carbon 

assimilation by plants, where gross primary production (GPP) or net primary production (NPP) is the product of the 

absorbed photosynthetically active radiation (APAR) and LUE. Previous studies have shown that LUE can vary by 

vegetation type, environmental conditions, and phenology or seasonality, which highlights the importance of 

understanding its variation in large scale carbon monitoring [1, 5-7]. Efforts have been put towards development of 

various models to estimate LUE to improve carbon assimilation estimates. These methods typically utilize a look-up 

table of assumed maximum possible LUE which are down-scaled using meteorological data (e.g., air temperature and 

VPD) to derive an adjustment coefficient to account for sub-optimal environmental effects. Examples include the 

Moderate Resolution Imaging Spectroradiometer (MODIS) GPP product (MOD17) and the Vegetation Photosynthesis 

Model [8-12].  These meteorological data usually have a much larger footprint than the area of interest, and are not 

always representative of the local LUE [1].  Hence, errors can be introduced to LUE estimates due to uncertainties 

associated with these meteorological data. An alternative approach to derive LUE is based on a bio-indicator to directly 

track and provide an estimate of LUE. This remote sensing method provides us with an opportunity to derive a LUE 

estimate that is directly linked with physiological and phenological condition of the plants, without needing 

meteorological information. 
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One such spectral bio-indicator is the Photochemical Reflectance Index (PRI) which has been shown to track the 

foliages’ xanthophyll cycle [13-15], one of the photoprotective processes to dispense excessive absorbed solar radiation. 

Since this information can be used to model the down-regulation of photosynthesis [16], the PRI has been increasingly 

used and examined for its correlation with LUE across various vegetation types and scales [1, 2, 13-15, 17-22]. 

Nevertheless, studies have reported various confounding factors -- including viewing geometry, canopy structure, LAI, 

shadow faction, soil background reflectance, and pigment levels -- that affect the PRI values, as well as the relationship 

between PRI and LUE at canopy or ecosystem scales [20, 21, 23-32]. Furthermore, previous studies have shown the 

importance of taking both sunlit and shaded leaves into account to explain the behavior of PRI at canopy level [21]since 

sunlit foliage is more likely to experience higher environmental stress (e.g. higher temperature, more solar radiation) and 

has lower LUE.  Hence, taking only sunlit foliage into account might result in underestimation of actual LUE at canopy 

and ecosystem scales [20, 21]. 

Therefore, in this study, we utilized a radiative transfer (RT) model to improve our knowledge regarding how the PRI 

values and the PRI:LUE relationships change in response to various potentially confounding effects. RT models provide 

a powerful tool to study this topic since they are designed to quantitatively examine how vegetation optical properties 

change with leaf biochemical and canopy biophysical properties [33-36]. The PRI at canopy level was previously 

examined using the PROSPECT leaf model linked with the SAILh and FLGHT canopy RT models to produce a non-

stressed version of the PRI in a crop water stress study [37]. In our current study, we linked in situ leaf optical properties 

with a two layer Markov-Chain canopy reflectance model (ACRM)[38-40] to simulate actual PRI for corn crop canopies 

through three different growth stages: young and vegetative, mature and productive, and early senescence. We also 

investigated how canopy structure and vertical distribution of sunlit and shaded leaves in the canopy affected PRI values. 

 

2. METHODS 

2.1 Study site and data collection  

During the summers of 2008 and 2010, field campaigns were conducted on corn (Zea mays L.) in the Optimizing 

Production Inputs for Economic and Environmental Enhancement (OPE3) cornfield (39.030 N, 76.845 W) maintained 

by the USDA Beltsville Agricultural Research Center (BARC) located in Maryland, U.S.A. The field is approximately 

24 km northeast of Washington DC.  The 2008 crop was planted later than usual due to a wet springtime.  Measurements 

were acquired on four dates representing different growth stages at vegetative (V9, 10), reproductive (R3, grain filling) 

and early senescent (R4) stages:   August 1
st
, 2008 (V10 = ten leaves expanded); July 1

st
, 2010 (V9); July 15

th
, 2010 

(R3); and August 9
th

, 2010 (R4). The observations were taken along a 100-m north-south direction transect in the middle 

of the cornfield to minimize disturbance to the field and to maintain representativeness of the data. Hyperspectral 

reflectance was acquired for vegetation at both leaf and canopy levels, and on bare soil using a FieldSpec 

Spectroradiometer (ASD Inc., Boudler, CO, USA) and an USB4000 Miniature Fiber Optic Spectrometer (Ocean Optics 

Inc., Dunedin, FL, USA). At leaf level, a Li-Cor 1800-12 integrating sphere (Li-Cor, Lincoln, NE, USA) was also 

utilized to determine spectral reflectance and transmittance on excised leaves. At canopy level, the reflectance was 

determined at various viewing geometries defined by view zenith angle ( v) and relative azimuth angle ( ).  Three 

different v (30 , 45 , and 60 ) were coupled with eight different  (0  to 315  relative to the sun, at 45  increments).  

Nadir measurements (i.e., v = 0 ;  = 0 ) were also included. Canopy radiances were acquired at 1.58, 1.04, 0.86 

meters, respectively, above the canopy for the three v, which made a consistent center of the field of view (FOV) at 

approximately 0.75 m from the sensor. Reflectances were calculated as the ratio of canopy radiances to those acquired 

over a Spectralon reference panel (Labsphere, North Sutton, NH, USA). Soil background reflectance was similarly 

determined for bare soil at nadir. Measurements were taken between 9am to 4pm local time, during which solar zenith 

angles ( s) varied between 16.6  and 51.2 . Leaf Area Index (LAI) was also measured for the corn canopies with a Li-

Cor LAI-2000 plant canopy analyzer (Li-Cor, Lincoln, NE, USA).  

2.2 Model description 

In this study, the ACRM canopy RT model [38-40] was utilized to simulate PRI, which was calculated as a normalized 

difference index using two narrow (~3nm) green bands centered at 531 and 570 nm,  as [R531-R570]/[R531+R570]. 

This canopy RT model implements an enhanced bidirectional gap probability function to account for canopies where 

leaves are fixed to erect stalks and/or long narrow leaves which stretch through several sub-layers of the canopy [39]. 

These features make the ACRM perfectly suitable to simulate corn canopies. The model has been used in various studies 



 

 
 

 

 

including both forward and inversion modes to validate and/or to estimate plants biochemical properties at leaf and/or 

canopy levels [33, 41, 42]. The ACRM model was set to couple with in situ leaf optical properties and soil background 

spectra and to run in its forward mode to simulate canopy reflectance at various viewing geometries. The model was also 

set to run in the two layer mode using leaf optical properties from sunlit leaves as the upper layer and shaded leaves as 

the lower layer of the canopy. PRI was then derived from the simulated reflectance spectra and validated by comparing 

with the PRI derived from in situ canopy reflectance spectra. Values of other essential input parameters for the models 

were decided based on previous studies [33, 34, 41-43] and are summarized in Table 1.  

This study extends the progress in examining and understanding how LAI affects ACRM-simulated PRI values. The 

dataset acquired on July 15, 2010 was selected as an example. First, we set various LAI values as input to examine how 

simulated PRI values changed accordingly. Second, we investigated how the distribution of LAI between the upper and 

the lower layer of the canopy affects simulated PRI values. The sensitivity analysis was done by changing the ratio of 

upper/lower layer LAI values between 80/20 and 20/80. This ratio of upper/lower canopy layer LAI is also associated 

with the ratio between sunlit/shaded leaves used in the simulations since leaf optical properties of sunlit leaves were used 

in the upper layer while lower layer was simulated using shaded leaves. 

 

     Table 1. Value ranges for parameters used as input to ACRM in this study 

Date August 1, 2008 July 1, 2010 July 15, 2010 August 9, 2010 

LAI 2.60 1.92 2.48 1.81 

Solar zenith angle ( s) 21.6  to 44.6  16.6  to 42.8  18.1  to 45.3  24.1  to 51.2  

View zenith angle ( v) 0  or 30  or 45  or 60  

Relative leaf size (sl) 0.01 

Markov parameter (clz) 1.5 

Leaf angle distribution 

parameter 
Eln = 0; Thm = 45  

(used to describe canopy structure) 

 

3. RESULTS 

3.1 In situ leaf and canopy observations 

The PRI values at leaf level were categorized into sunlit and shaded leaves and are summarized in Figure 1. The PRI for 

sunlit leaves consistently exhibited statistically significantly lower values than shaded leaves on all four field campaign 

days. Sunlit leaves are more likely to experience environmental stress (e.g., exposed to higher level of solar radiation and 

air temperature) that lead to photosynthetic down-regulation, and hence, have lower PRI values than shaded leaves. Less 

environmental moisture stress (i.e., higher PRI values) was indicated for the 2008 data set, in response to a wet spring 

(e.g., PRI was positive and reached +0.07 in shaded leaves, compared to similar growth stage in 2010 when PRI was ~ 

zero). 

At the canopy level, in situ PRI was plotted against viewing geometry ( v  and ) in Figure 2. Observed PRI values 

exhibited clear dependence on viewing geometry. The highest PRI values were obtained when  was close to 180 , the 

cold (or dark) spot in the solar principal plane which is usually dominated by shaded leaves. The lowest PRI values were 

obtained when  was close to the hot (or bright) spot on the solar principal plane (e.g., 0  or 315 ), where the canopy is 

dominated by sunlit leaves. At the R3 growth stage in 2010, the PRI exhibited slightly higher values from -0.02 to ~0.01. 

These findings are consistent with results represented in previous studies [20, 21, 25, 27]. PRI values also increased by 

>1 unit in low stress conditions (8/1/2008) but up to 1.5 PRI units in the more stressed 2010 datasets when v increased. 

This might result from less soil background contamination when measurements were taken at oblique angles, since bare 

soil usually has much lower PRI values than green vegetation, or because more shaded lower, foliage is viewed from the 

side. 
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Figure 1. In situ PRI values for sunlit and shaded leaves on the four days of field campaign: August 1st 2008, July 

1st 2010, July 15th 2010, and August 9th 2010. Values are shown as mean  S.E.  The values for 8/1/2008 and 

7/1/2010 were acquired at similar growth stages but 2008 had a wet spring that delayed planting, and 2010 was a 

drier year. 

 

3.2 ACRM-simulated PRI 

Simulated PRI values were calculated using output spectra from ACRM and were plotted alongside in situ PRI for 

validation purposes in Figure 2. The ACRM-simulated PRI successfully captured the response that in situ PRI exhibited 

to v and  (Figure 3), with the lowest values occurring when  was ~0  (the sunlit foliage sector) and higher values 

when  was ~180  (the shaded foliage sector). Moreover, the magnitude of both simulated and observed PRI values also 

increased when v increased. Simulated PRI values were plotted against observed PRI values in Figure 3.  On individual 

days, the best agreement between in situ and simulated PRI was found on 8/1/2008 (r = 0.86; RMSE = 0.004; n = 171) 

followed by 7/15/2010 (r = 0.87; RMSE = 0.005; n = 117) and 7/1/2010 (r = 0.78; RMSE = 0.005; n = 149). The least 

satisfactory result was found on 8/9/2010 (r = 0.65; RMSE = 0.010; n = 176). The corn crop was in the young and 

vegetative stage on 8/1/2008 and 7/1/2010. For both years, ACRM delivered similar performance for PRI simulations. 

On 7/15/2010, the corn crop was mature and reproductive. Similarly, ACRM was able to deliver good PRI simulations. 

When the corn crop reached the early senescence stage (8/9/2010), simulations from ACRM were satisfactory but much 

less so than at earlier stages. Therefore, it might suggest that ACRM performed the best for corn crops dominated by 

green foliage. When the crop reaches the early senescence stage, the canopy is likely to contain both green and dead 

leaves and the canopy reflectance is also more likely to be contaminated by soil background. Therefore, the performance 

of ACRM decreased because of the complexity associated with the mixed senescent conditions. Nevertheless, when all 

the data were analyzed together (Fig. 3), the ACRM-simulated PRI yielded a strong correlation to field observations (r = 

0.94; RMSE = 0.007; n = 613). 

3.3 Canopy structure and PRI simulations 

A sensitivity analysis was conducted to investigate how an important canopy structure parameter, LAI, would affect PRI 

values in the ACRM simulation scheme. Figure 4a summarized how total canopy LAI values affected simulated PRI 

values. First of all, PRI values increased when LAI increased. Secondly, the most significant changes in PRI values 

occurred when LAI increased from 0.5 to 2.48, during which PRI increased by 4 PRI units (e.g., from -0.03 to +0.01). 

PRI was little affected by increases in total LAI above 2.48.  These results suggest that when LAI initially increased, less 

soil background contaminated the simulated spectra, increasing PRI values. However, PRI values also increased when v 

increased from 30  to 60 .  And, in contrast to increasing LAI effects on PRI, v effects were consistent at all LAI levels 

(increasing one PRI unit, e.g., 0.0 to +0.01) and persisted at the higher LAI, due to inclusion of more shaded (i.e., less 

stressed) foliage at oblique views. 
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Figure 2. Observed in situ versus ACRM-simulated canopy PRI values corresponding to different combinations of 

viewing geometry ( v and ) for the four field campaign days are shown.  Three curves (▲,, ) represent v at 

30 , 45 , and 60   respectively, for the azimuthal observations (  at 0 , 45 , 90 , 135 , 180 , 225 , 270 , and 

315 ), and the nadir observation ( v = 0 ;  = 0 , □) is also included. 
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Figure 3. Correlation between observed and simulated canopy PRI values over the four field campaign days (r = 

0.94; RMSE = 0.007; n = 613). 
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Figure 4. Sensitivity analysis of (a) LAI values; (b) sunlit/shaded ratio on simulated PRI values using ACRM for 

various viewing geometry combinations. Three curves (▲,, ) represent v at 30o, 45o, and 60o  respectively, for 

the azimuthal observations (  at 0o, 45o, 90o, 135o, 180o, 225o, 270o, and 315o), and the nadir observation ( v = 0; 

 = 0, □) is also included.  Note that the PRI scales differ in (a) vs. (b). 

 

These effects related to varying amounts of sunlit and shaded foliage captured in the spectral observations can be further 

examined with the ACRM model in the two layer mode, where the upper/lower canopy layer ratio can be used to 

represent the vertical distribution of LAI within the canopy. Since sunlit leaf optical properties were utilized for the 

upper layer and shaded leaves for the lower layer, this ratio would also be associated with the sunlit/shaded ratio for the 

canopy segment of interest. In Figure 4b, we summarized how this sunlit/shaded ratio affected PRI simulations. When 

the ratio changed from 80/20 to 20/80 (in 20% increment), meaning the contribution to PRI simulations from shaded leaf 

optical properties became higher, and simulated PRI values increased by one PRI unit (e.g., -0.023 to -0.012; v = 30 ;  

= 0 ). Since shaded leaves had higher PRI values than sunlit leaves, as shown in Figure 1, this was as expected. 

Furthermore, similar to the results in Figure 4a, changes in the sunlit/shaded ratio did not change the correlations 

between PRI values and v. This showed once again the importance of taking both sunlit and shaded leaves into account 

in understanding and simulating PRI. Moreover, for most vegetation, canopy structure (e.g., total LAI) and its vertical 

distribution within the canopy changes throughout the growing season. Therefore, in the future more effort should be put 

towards investigating the relationship between PRI and canopy structure and consideration of sunlit/shaded sectors.  

 

4. SUMMARY 

In this study, we demonstrated the opportunity of simulating PRI for corn crop canopies by linking in situ leaf optical 

properties with a two layer Markov-chain canopy reflectance model (ACRM). The ACRM successfully simulated the 

PRI values and directional trends through various growth stages when we utilized sunlit leaves as the upper layer and 



 

 
 

 

 

shaded leaves as the lower layer of the canopy. Moreover, the ACRM was capable of accurately describing the impacts 

on PRI due to viewing geometry and reproducing the observations made under field conditions. This success shows the 

importance of taking both sunlit and shaded leaves into account to improve our understanding about how to interpret the 

PRI’s role in describing photosynthetic function such as LUE. Furthermore, we investigated how a canopy structure 

parameter (LAI) affects PRI values. This RT model based simulation presents a new scheme for better interpretations of 

PRI information and potentially leads to improved carbon monitoring and modeling.  
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