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Abstract 

 

This paper further develops the zero-dimensional (0D) hydrodynamic coronal loop 

model “Enthalpy-based Thermal Evolution of Loops” (EBTEL) originally proposed 

by Klimchuk et al (2008), which studies the plasma response to evolving coronal 

heating.  It has typically been applied to impulsive heating events. The basis of 

EBTEL is the modelling of mass exchange between the corona and transition region 

and chromosphere in response to heating variations, with the key parameter being the 

ratio of transition region to coronal radiation. We develop new models for this 

parameter that now include gravitational stratification and a physically motivated 

approach to radiative cooling. A number of examples are presented, including 

nanoflares in short and long loops, and a small flare. It is found that while the 

evolution of the loop temperature is rather insensitive to the details of the model, 

accurate tracking of the density requires the inclusion of our new features. In 

particular, we are able to now obtain highly over-dense loops in the late cooling phase 

and decreases to the coronal density arising due to stratification. The 0D results are 

compared to a 1D hydro code (Hydrad). The agreement is acceptable, with the 

exception of the flare case where some versions of Hydrad can give significantly 

lower densities. This is attributed to the method used to model the chromosphere in a 

flare. EBTEL is suitable for general use as a tool for (a) quick-look results of loop 

evolution in response to a given heating function and (b) situations where the 
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modelling of hundreds or thousands of elemental loops is needed. A single run takes a 

few seconds on a contemporary laptop.  
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1. Introduction. 

 

Since the recognition in the 1970s that the magnetically confined solar corona is 

comprised of discrete loops, a great deal of effort has been devoted to modelling the 

temporal evolution of loop plasma. One approach is to solve numerically the one-

dimensional hydrodynamic (1D hydro) equations of mass, momentum and energy 

conservation along a magnetic field line (or strand, or loop) in response to an imposed 

time-dependent heating function representing a flare or smaller heating event (e.g. 

Peres, 2000). Of importance is the ability of such models to generate “observables” 

that can be used to interpret coronal data (e.g. Bradshaw and Cargill, 2006; Bradshaw 

and Klimchuk, 2011).  

 

1D hydro models have two difficulties.  One is the optically thick chromosphere at the 

lower boundaries. In principle this requires a full radiative-hydrodynamic treatment 

(e.g. McClymont and Canfield, 1983a,b) but one can attach a simple lower 

atmosphere that preserves the essential physics (e.g. Klimchuk et al., 1987; Antiochos 

et al., 1999). The second, and more significant, difficulty is the limitation imposed on 

the computational timestep by thermal conduction in the transition region (hereafter 

TR). In static equilibrium loops (e.g. Martens, 2010) the downward heat flux implies 

a temperature scale height (LT) of under 1 km in the TR, and even shorter in hot 

flaring loops. Resolving this requires a fine grid, but when modelling thermal 

conduction the timestep scales as the smallest value of LT
2, implying long run times.  

 

There is thus a need for simple and fast ways of modelling the coronal response to 

time-dependent heating. “Zero-dimensional” (0D) models, which average over the 

loop’s spatial dimension (Kuin and Martens, 1982, Fisher & Hawley, 1990, Kopp and 

Poletto, 1993, Cargill, 1994, Klimchuk et al., 2008, Aschwanden and Tsiklauri, 2009) 

accomplish this. In addition to providing “quick look” results, 0D models are useful if 

a loop is comprised of many hundreds or thousands of thin, thermally isolated, 

randomly heated strands (Cargill, 1994), which conventional 1D hydro modelling still 

finds a large task.  

 

The success of 1D and 0D models depends on handling correctly the exchange of 

matter between the corona, TR and chromosphere in response to a changing coronal 
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temperature. While the above 0D models all address this to varying degrees (see 

Cargill et al., 2011, hereafter Paper 3), we base our discussion here on the work of 

Klimchuk et al., (2008: hereafter Paper 1). In Paper 1 we developed a 0D model 

whose centrepiece was the explicit calculation of the enthalpy flux to and from the 

corona. The model, called EBTEL: “Enthalpy Based Thermal Evolution of Loops”, 

divides a loop into coronal and TR parts, the boundary being defined as where 

thermal conduction changes from a loss to a gain. Whether the enthalpy flux is into, 

or out of, the corona depends on whether the TR can radiate away the downward heat 

flux. If it cannot do this, then material is “evaporated” into the corona, whose density 

then increases (e.g. Antiochos and Sturrock, 1978). If the TR radiation cannot be 

powered by the downward heat flux, then there is a downward enthalpy flux, and the 

coronal density decreases (e.g. Cargill et al., 1995). The model was compared with 

several 1D hydro simulations of an impulsively heated loop (starting each time with 

the same initial conditions), and gave reasonable agreement.  

 

EBTEL relies on three parameters, the most important of which is the ratio of the TR 

to coronal radiative losses. They govern both the initial equilibrium and how the loop 

cools after impulsive heating. It has become apparent through use of EBTEL, and 

attempts to benchmark EBTEL results against other known solutions of loop cooling, 

that the choice of this parameter in Paper 1 may only be appropriate for a long, 

tenuous loop. Thus, this paper seeks to put the EBTEL model on a firmer foundation 

and also looks at a broader range of loop evolution. The physical principles are 

unchanged, but we have undertaken a re-evaluation of the three key parameters 

(Section 2). The result is a model that now can follow with a good degree of accuracy, 

when compared with a 1D hydro code, the evolution of loops over a wide range of 

lengths and temperatures (Section 3). In Paper 3 we will provide a comparison of 0D 

models and sources of potential discrepancy with 1D models. 

 

2. The models 

 

2.1 The governing equations of EBTEL 

 

The details of the model are discussed in Paper 1 and are restated briefly here. The 1D 

energy equation is: 
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0κ is the heat flux, Q(t) is a heating 

function that includes both steady and time-dependent components, αχTT =Λ )( is the 

radiative loss function in an optically thin plasma as defined in Paper 1, Equation (3), 

and s is a spatial coordinate along the magnetic field. We have assumed that the flow 

is always subsonic and that gravity can be neglected from the viewpoint of the 

energetics. There is also an equation of state nkTp 2= . 

 

For a corona loop of half-length L and a transition region of thickness l (<<L), we 

define the boundary between corona and TR as the location where conduction 

changes from a loss to a gain (Vesecky et al., 1979). Integrating Eq (1) from the top of 

the TR to the top of the loop and enforcing symmetry boundary conditions, we find: 
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where “overbar” denotes an averaged coronal quantity, subscript “0” denotes a 

quantity at the base of the corona (or top of the TR) and LTnRc )(2Λ= . Note that the 

heat flux and enthalpy flux play equivalent roles in providing energy to the TR.  

 

Integrating over the TR, and assuming the heat flux and flow vanish at its base, the 

pressure derivative and the heating can be eliminated since l << L, giving: 

0
1 000 =++

− trRFvp
γ
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    (3) 

where Rtr is the integrated radiative TR losses. Eq (3) can then be combined with Eq 

(2) to give an equation for the coronal evolution: 
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Note that conduction does not appear in Eq (4) emphasising its role as an energy 

redistribution mechanism as opposed to an energy loss. To calculate the density 

evolution, we adopt a similar approach to the mass equation, and in the corona find: 
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The average coronal temperature then follows from the equation of state:  

dt

nd

ndt

pd

pdt

Td

T

111 −=     (6) 

To solve the set of coronal equations (4) – (6) for the primary variables T , n and p , 

we need to define Rtr, T0 and F0 in terms of the coronal quantities. The conductive 

losses are defined in terms of the loop apex temperature (Ta): 

LTF a /)7/2( 2/7
00 κ−=  (Paper 1: Eq 20), so that there are three temperatures that 

characterise the corona: T , Ta and T0. Ta and T0 are defined in terms of the primary 

variable T as aa TTCTTC /  ,/ 032 == . Finally, we define a third parameter: 

ctr /R = RC1  which modifies Eqs (4) and (5) to: 
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Specification of C1-3 is then required to solve Eq (6), (7) and (8).  

 

2.2 Modifications to the EBTEL model 

 

The original version of EBTEL described in Paper 1 used constant values of C1-3. 

However, as EBTEL has become more widely used, it is clear that further analysis of 

C1-3 is required. Here we want to address three questions: (i) are the “baseline” values 

used in Paper 1 correct? (ii) how can EBTEL handle stratification due to gravity in 

long loops and (iii) how does EBTEL handle loop cooling when radiative losses 

strongly dominate? A secondary issue is how a general radiative loss function with a 

multiple power law can be included. We will show that these questions can be 

addressed by adopting a variable C1 within any given loop study, while implementing 

minor changes to C2 and C3. C1 is the most important parameter because the TR 

radiation regulates the value of the heat flux or enthalpy flux out of the corona that 

powers it, which in turn feeds into the coronal density and temperature. 

 

2.2.1 Assessment of parameters: equilibrium loops 
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Paper 1 used static equilibrium loop solutions to calculate C1-3. This is likely to be 

valid around the time of peak density when coronal radiative and conductive losses 

are comparable. Two approaches were considered. One had fixed values for all 

temperatures, namely C1 = 4, C2 = 0.87 and C3 = 0.5, and this was used to produce all 

the Figures in Paper 1. The second used a polynomial fit for C1 and C3 over the 

temperature range 1 – 10 MK based on solutions of the equilibrium energy equation 

(Tables 1 and 2 of Paper 1).  However the values of C1 and C3 quoted for short loops 

and T > 3 MK (Table 1 of Paper 1) are incorrect, and so the polynomial fit for C1 and 

C3 present in early versions of the publicly available EBTEL code should not be used. 

 

We now reassess C1-3 for static loops. First we use a simple power law radiative loss 

function and defer to Section (c) below how to include a multiple power law. We use 

the approximation Λ(Τ) =χTα = 1.95 10-18 T -2/3 as our baseline power law, modified 

to Λ(Τ) = 1.1 10-31T 2 below 105 K to avoid unrealistic losses at low temperatures. To 

calculate hydrostatic thermal equilibrium numerically, a Runge-Kutta method is used. 

Ta and L are specified, and a double iteration calculates the base pressure and 

(constant) heating such that the appropriate boundary conditions are satisfied (T = Ta 

and dT/ds = 0 at top of loop) for a given base temperature and vanishing base heat 

flux. This gives the familiar scaling laws between Ta, L, Q and p0.  

 

The derivation of C1-3 for general equilibrium loops relies on first calculating values 

for loops with no gravity and for a single power law form of Λ(Τ). The details of this 

are presented in Appendix A. There we first use the work of Martens (2010) to 

demonstrate analytically that C1 and C3 are independent of all parameters except the 

slope of the radiative loss function for the case with no low temperature correction to 

Λ(Τ). Modifying Λ(Τ) at low temperatures shows that in the absence of gravity, C1-3 

may be taken as constants over a wide range of temperature and length (and hence 

pressure and heating rate). For L = 2.5, 5 and 7.5 109 cm and Ta between 0.5 - 10 MK, 

C2 and C3 are roughly constant with values of 0.9 and 0.6 respectively. C1 varies a 

little more with Ta, but can be taken as approximately 2. We propose these as the 

“baseline” values of the constants and now discuss how they are modified to include 

other effects for equilibrium loops. 
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 (a) Gravity: Here the main effect is that, while the TR radiation is driven by the 

downward heat flux, and so for a given coronal temperature is roughly fixed, the 

coronal radiation falls due to the stratification. Thus larger values of C1 = Rtr/Rc can 

be expected for loops with significant values of the ratio λ/L, where 

( ) gmkTgc pas //2/2 ==λ  is the gravitational scale height. We have thus solved the 

hydrostatic equations using the simple power law loss function for two loop lengths: 5 

x 109 and 7.5 x 109 cm and temperatures between 5 x 105 and 4 x 106 K. In the upper 

panels of Figure 1, the stars denote C1 when gravity is absent (around 2 in all cases) 

and the circles C1 when gravity is included. [Note that static solutions for Ta = 5 x 105 

K with L = 7.5 109 cm could not be found: see also Serio et al., 1981.] C1 increases as 

the temperature and scale height decrease. Note that for the loop shown in Figure 1 of 

Paper 1 (Ta = 2-3 MK, L = 7.5 109 cm), C1 = 4 seems reasonable. 

 

We now seek a parameterisation of the form C1(T, L). There is little dependence of C1 

on loop length itself, rather the key parameter is the ratio L/λ. We write: 
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where quantities labelled “g=0” are values when gravity is neglected. The lower 

panels of Figure 1 shows the ratios Rtr(g=0)/Rtr (stars) and Rc(g=0)/Rc (circles) as a 

function of Ta. The TR ratio is roughly unity which can be explained by noting that in 

static equilibrium, the energy balance in the TR is between the downward heat flux 

from the corona and the TR radiation [Eq (3)].  For given L and Ta, the heat flux is 

roughly the same irrespective of whether the corona is stratified or not, so the TR 

radiation must also be roughly the same. The coronal ratio shows the expected drop in 

radiation when gravity is included. Now the second ratio in (9) is known to be 2, so if 

we have a simple expression for the third, we can calculate C1 for different stratified 

loops. We argue that, for a given coronal temperature, 
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assuming the coronal length is the same with and without gravity and the averages are 

as defined in Paper 1, Eq (11).  
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Next assume that the coronal pressure is given by: 
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semi-circular loop where we use a scale height based on the average temperature (

aTCT 2= ) and that hydrostatic density stratification occurs only in the corona. We 

have calculated the average pressure by integrating p(s) numerically and find that this 

average value is well approximated by using the actual pressure at s/L = 0.4. So, the 
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The plus signs in the upper panels of Fig 1 show that these values of C1 work 

reasonably well for all but the lowest temperature.  

 

(b) Multiple power law radiative loss function: Next, neglecting gravity, we 

evaluate C1 for a more complicated loss function by comparing results for the EBTEL 

loss function and the single power law one: 
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where Rtr(T) and Rc(T) evaluate the loss functions at a given temperature using the full 

power law in EBTEL. The right hand plot in Figure 2 shows little difference in the TR 

losses between the two radiative loss models (stars), so we can assume the first term 

in (12) is unity. The explanation is once again that the TR losses are determined by 

the heat flux from the corona. The coronal loss (circles) does show differences 

between the models. The second term in (12) is 2. For the third term, we can use the 

average coronal temperature ( aTCTT 2== ) in Eq (12) to evaluate the radiation. The 

left hand plot of Figure 2 shows the same quantities as the lower panels of Figure 1 

for a loop of length 5 109 cm. This model for C1 is almost independent of the loop 

length.   

 

(c) Gravity and multiple power law loss function. We now combine the two 

corrections for loops with gravity and the general EBTEL loss function by replacing 

the ratio before the exponential in Eq (11) (which has no gravity and the simple loss 

function) with Eq (12) (which has no gravity and the full loss function), and using the 

fact that the TR losses are roughly the same for all cases: 
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where we now denote the “equilibrium” value of C1 as C1(eq). The first ratio will be 

taken as 2 in this paper, but is written in a general form to allow for changes to the 

coronal losses that no longer use our power law approximation. Figure 3 shows the 

results in the same format as Figure 1 for two temperature ranges and a loop length of 

5 109 cm. Other than at very low temperatures, (13) does acceptably. 

 

2.2.2 Radiative cooling phase  

 

Equilibrium conditions are a good approximation if the strand (or loop) is evolving 

slowly, but may not be if it evolves rapidly.  Consider a nanoflare event.  The strand is 

far from equilibrium during the impulsive heating and the start of the thermal 

conduction cooling phase that follows. TR radiation is energetically insignificant at 

this time, so C1 does not affect the evolution. Static equilibrium is a reasonable 

approximation during the next phase of cooling when both thermal conduction and 

radiation, and possibly also enthalpy, are important.   However, during the final phase 

of cooling when either radiation or enthalpy dominates, the equilibrium value of C1 is 

a poor approximation. 

 

It is well known that for short, hot loops, there is a scaling T ~ n2 - 2.5 during radiation-

dominated cooling (Serio et al., 1991; Cargill et al., 1995; Bradshaw and Cargill, 

2005, 2010a,b), with a scaling approaching T ~ n for longer, more tenuous loops 

(Bradshaw and Cargill, 2010b). We can use the EBTEL equations adapted to radiative 

cooling to determine the appropriate value of C1. In the absence of gravity and 

neglecting thermal conduction and heating, Eq (4) and (5) are: 
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and so, on writing T ~ nδ  we can relate T and n as follows: 
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This can be solved for C1 as:  
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where T0 is now the temperature at which enthalpy changes from a loss to a gain 

(Bradshaw and Cargill, 2010a,b) and we denote C1(rad) as the value of C1 in the 

radiative phase. For δ = 2(1), and the same values of C2 and C3 as for equilibrium 

loops, we find C1 = 0.59(1.25). Bradshaw and Cargill (2010b) suggest that δ can be 

even larger for small loops, in the range 2.3 – 2.4 which gives C1(rad)= 0.5. We chose 

this as the baseline value for the radiative phase in the absence of gravity and 

α = −2/3. 

 

To include gravity and a full Λ(Τ), we adopt the same approach as in Section 2.2.1 on 

the basis of our work on radiative cooling (Cargill et al., 1995;  Bradshaw and Cargill, 

2005, 2010a,b): 
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Thus, including gravity increases C1 corresponding to the decrease in δ discussed in 

Bradshaw and Cargill (2010b).  

 

2.2.3 Overall implementation of C1 

 

We now wish to implement a formalism for C1 that takes on the equilibrium value 

when conductive and radiative losses are of the same order, and the radiative value 

when conduction is unimportant. We define the density for equilibrium conditions as 

neq, and note that conductive (radiative) cooling of an impulsively heated loop at a 

given temperature is characterized by n < (>) neq (e.g. Cargill, 1994, Cargill and 

Klimchuk, 2004). A formula of the generic form C1 = F(n/neq) is considered, and we 

require C1 = C1(eq) when n/neq = 1 and C1 = C1(rad) when  n/neq is large. We define 

an “equilibrium” loop to be one where the coronal conductive loss is twice the coronal 

radiative loss (C1 = 2).  The following form of F is considered:  

m
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)/( 10
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where m is taken to be 1 or 2. Cc0 is the “conductive” value of C1 and is adjusted to 

give C1 = C1(eq)  for n = neq. One thus gets: 
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so, for C1(eq) = 2, C1(rad) = 0.5 we get Cc0  = 3.5.   

 

The quantity neq can be obtained from the EBTEL equations in terms of the loop 

temperature and density: 

2/7

2
2

1

02

)()(7

2








Λ

=
C

T

LTeqC
neq

κ
 

One can then write  

R

c

eqn

n

τ
τ

=









2

 

where τc and τR are the instantaneous conductive and radiative cooling times, defined 
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2.2.4 The Differential Emission Measure 

 

In Paper 1 we calculated separate coronal and transition region differential emission 

measures (DEMs), the latter by two distinct methods. The DEM is defined as: 

( ) 12 /)( −∂∂= sTnTDEM . Our modifications to EBTEL do not change the way the 

coronal DEM is calculated since the coronal parameters are our primary variables. On 

the other hand, the TR DEM relies on an assumption of constant pressure in the loop, 

which the introduction of gravity will invalidate. In Paper 1 we calculate the DEM by 

solving the following quadratic equation for sT ∂∂ / : 
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While J0 is constant and determined by the mass flow to and from the corona, the 

pressure in the last term is a TR quantity. Thus, when gravity is important we need to 

modify this term to account for the fact that the TR pressure will be larger than the 

coronal one. This is done by using our coronal pressure modification in reverse, so we 

write )/)5/sin(2exp( πλπLppTR = . This feature is demonstrated in the next Section. 



13 
 

 

In Paper 1 we also provided approximate forms of the DEM for three cases of loop 

evolution: strong conduction-driven evaporation, equilibrium, and strong radiative-

driven condensation (draining). Of these, the third is unmodified, while the first two 

both involve the TR pressure, and need to be changed accordingly. 

 

2.3 The Hydrad Code 

 

An important part of our work is a comparison of the EBTEL results with the 1-D 

Hydrad code. This code has been fully documented in Bradshaw and Mason (2003a,b) 

so that we summarise the details briefly here. Hydrad solves separate time-dependent 

electron and ion energy equations together with equations of mass and momentum 

conservation and an equation of state. For the EBTEL comparison, we introduce an 

anomalously high electron-ion collision frequency that ensures Ti = Te under all 

conditions. For radiative losses, we supress the full capability of Hydrad to track 

multiple ion species, and use the same optically thin loss function as in EBTEL.  

 

In the figures, we show Hydrad results averaged over the top 80% of the loop. With 

the exception of the long loop (Case 3 below), there is little difference in the average 

T and n when the top 10, 50 or 80% of the loop is considered. For long loops the 80% 

average gives a density 25% larger than the 10% one, which can be attributed to the 

gravitational stratification present. 

 

3  Results 

 

We present four examples of loop heating. Each case is characterised by: (i) a loop 

half-length L, (ii) a background heating function which in turn implies a pre-event 

temperature and density, and (iii) a flare or nanoflare heating function with the form 

of a triangular pulse. Both the background heating and flare/nanoflare heating are 

uniform in space. 

 

3.1 Nanoflare heating of a short loop 
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The first case is a nanoflare in a short loop. A heating pulse with a half-width of 100 

sec and peak magnitude 10-2 ergs cm-3 s-1 is released in a loop with half-length 25 

Mm. This has a total energy release of 2.5 109A ergs cm-2, where A is the loop cross-

sectional area. For a strand diameter of 200 km, we get a release of (π/2)x1024 ergs. 

The background heating is 10-5 ergs cm-3 s-1 giving an initial temperature and density 

of 0.53 MK and 1.3 108 cm-3 respectively.  

 

For clarity we show the new developments with EBTEL in two consecutive plots. The 

four panels of Figure 4 show the loop temperature and density as a function of time 

(top left and top right), the relationship between T and n (lower left) and C1 (lower 

right), for cases where neither gravitational nor radiative loss corrections are included 

in C1. The plots show: (i) the EBTEL-1 results (C1 = 4, C2 = 0.89, C3 = 0.5: dots), (ii) 

the new “fixed” constant values (C1 = 2, C2 = 0.9, C3 = 0.6: dash-dot), (iii) the Hydrad 

simulation (thick solid), (iv) the linear C1 profile (m = 1 in Eq (18), dashed) and (v) 

the quadratic C1 profile (m = 2 in Eq (18), thin solid). The small panel in the 

temperature plot shows the evolution around the maximum.  

 

We start by noting that the temperature evolution for all the methods is broadly 

similar. C1 has little influence on the peak temperature since radiation is not playing 

any significant role at that time: the peak arises from a balance between heating and 

thermal conduction. EBTEL-1 has the lowest peak temperature (3.86 MK), followed 

by Hydrad (3.95 MK) and then EBTEL-2 (4.13 MK). The various models have 

slightly different initial densities for the same background heating which will have a 

small influence on the peak temperature. It can also be seen that after the decay phase  

there is a temperature undershoot for the quadratic C1 model as it tries to recover the 

initial equilibrium.  

 

On the other hand, the density profiles do depend on the method used. EBTEL-1 has 

the lowest peak density of the EBTEL runs (1.1 109 cm-3) and peaks soonest. If we 

compare this with C1 = 2 which peaks at 1.17 109 cm-3, the larger value of C1 requires 

the corona to lose more energy both by conduction and, more precisely, reduces the 

enthalpy transfer to the corona (the transition region radiation is stronger and can 

accommodate more of the heat flux). The two non-uniform models of C1 fall between 



15 
 

the first two cases. Hydrad gives a lower peak density of 109 cm-3 and has oscillations 

due to material sloshing back and forward in the loop in response to the heating.  

  

The density in the decay phase shows more striking differences. Using a constant 

value of C1 = 2 increases the density and gives a (fortuitous, as we shall see) 

agreement with Hydrad. The linear and quadratic models increase the density further, 

with the discrepancy of the quadratic model being the more significant. The T-n 

scalings in the decay phase are also informative. To help the eye in this panel we 

include two thin solid lines showing T ~ n1/2 (equilibrium) and T ~ n2 (radiative 

cooling) scalings. C1 = 4 gives a T-n scaling corresponding to an “equilibrium” loop 

and examination of the losses from the corona due to conduction and radiation show 

that they are indeed equal after a few hundred seconds. A constant C1 = 2 does not 

give the expected T-n scaling in the radiative phase. The non-uniform C1 models give 

the T-n scalings that are closer to what is expected, with the quadratic profile giving 

the faster transition and a clearly over-dense loop. The Hydrad simulation gives a 

shallower slope in the T-n relation.  

 

However, just including a variable C1 to account for radiative cooling is not the whole 

story. In Figure 5 we explore the effect of including the corrections due to gravity and 

the multiple power law Λ(Τ). The figure has the same format as Figure 4, but we now 

show EBTEL-2 results using (i) the quadratic C1 (dotted), (ii) the correction to the 

quadratic case due to the full loss function (dash-dot), (iii) the correction due to 

gravity and the loss function for the quadratic profile (solid), linear profile (dashed) 

and the Hydrad results (thick solid). The radiative correction does not make a major 

difference, but the gravity correction does. The peak density moves slightly closer to 

the Hydrad value, but the agreement in the decay phase, where gravity becomes 

important, improves. The two models for C1 straddle the Hydrad solution, with the 

linear profile slightly low, and the quadratic one slightly high.  

 

The changes introduced by gravity can also be seen in the C1 plot. Coronal 

stratification is sufficiently important (L/λ of order 0.4 or more after 1000 sec) that in 

the radiative phase one moves back towards values of C1 more typical of equilibrium 

loops rather than the small values typical of radiative cooling in flare loops. 
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In Paper 3 we discuss more fully the fact that getting a reasonable answer for the 

density in 0D models is much harder than the temperature, the radiative phase in 

particular being awkward. We thus feel that the agreement in the density between 

EBTEL-2 and Hydrad shown here is satisfactory. This is only achieved by using a 

model for C1 that evolves in time and includes gravitational stratification. Finally, the 

fact that the linear and quadratic C1 models straddle the Hydrad result means we 

cannot yet comment on the preference of one over the other. 

 

Figure 6 shows the DEMs for some of these cases. These are computed over the 5000 

secs of the run, and so are averages over the life of the strand. On the left, the coronal 

DEM is shown for four runs: original EBTEL (dash-dot), quadratic C1 profile (dotted) 

and quadratic and linear C1 modified for gravity (solid and dashed). The thick dashed 

line shows the TR DEM for the gravitationally modified quadratic profile. In fact, for 

this case the gravitational correction to the TR DEM makes little difference. On the 

right are the total (corona + TR) DEMs for EBTEL-1 (dash-dot), EBTEL-2 with 

corrections (solid) and Hydrad (thick solid).  All the EBTEL models give reasonable 

agreement with Hydrad above 1.5 MK as would be expected from the previous 

figures. Below that temperature, the coronal value from EBTEL-1 falls significantly 

compared to the EBTEL-2 results. However, when the TR part is included, the total 

DEM for both EBTEL models compares well with Hydrad: the only feature of note is 

a small depression in the EBTEL-1 DEM compared the Hydrad and EBTEL-2 around 

1 MK.  

 

3.2 Nanoflare heating of a long loop 

 

The second case re-examines the long, tenuous loop discussed in Paper 1. The loop 

has a half-length of 7.5 109 cm and is heated by a nanoflare with amplitude 1.5 10-3 

ergs cm-3 s-1 and half-width 250 secs. There is a background heating of 5 10-6 ergs cm-

3 s-1 giving an initial temperature and density of 0.52 MK and 3 107 cm-3 respectively.  

When this example was presented in Paper 1, reasonable agreement with the 1-D 

hydro code ARGOS (Antiochos et al., 1999) was noted.  
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Figure 7 shows results in the same format as Figure 4 for: (i) EBTEL-1 (dash-dot), (ii) 

EBTEL-2 with quadratic density profile (dots), (iii) as (ii) with gravity and radiation 

correction for quadratic and linear C1 profile (solid and dashed) and (iv) Hydrad 

(thick solid). In (iii) the radiative correction has a small influence. As in the first 

example, the temperature throughout shows little difference between the four runs 

whereas the density varies considerably. We see that the unmodified quadratic C1 

model gives very high densities in the decay phase that disagree significantly with the 

Hydrad and ARGOS results. However, modifying C1 to include gravity gives a 

density that is closer to the EBTEL-1 model. The Hydrad density is lower than all the 

EBTEL runs, the discrepancy being smaller at peak density than in Paper 1. In the 

decay phase, the linear C1 profile now does better than the quadratic one when the 

gravitational correction is included. Thus, we see that the agreement between EBTEL-

1 and ARGOS in Paper 1 was partly coincidental. Interestingly the constant value of 

C1 = 4 used in EBTEL-1 does very well for this example. If one draws a straight line 

at C1 = 4 across the lower right panel, one could argue that this is indeed a reasonable 

first approximation to our variable C1. 

 

The DEMs are shown in Figure 8 in the same format as Figure 6. We see that 

inclusion of the quadratic C1 profile introduces overdense loops and so increases the 

DEM below the peak temperature but introduction of the gravitational correction 

removes this and we recover something quite similar to that in Paper 1. There is a 

small pressure correction to the transition region DEM as shown by comparing the 

thick dashed (includes effect) and dot-dashed (omits effect) in the left panel.  

 

3.3 Nanoflare with higher background heating 

 

Both the previous examples had a nanoflare with energy much larger than the 

background thermal energy in the loop or, equivalently, the background heating is 

much smaller than the peak nanoflare heating. However, nanoflare heating is not 

necessarily confined to a single heating / cooling cycle in a loop. Evidence now 

suggests that impulsive heating on occasions may be occurring in loops or strands that 

have not undergone such a cycle (e.g. Warren et al, 2011), so that the heating takes 

place in a higher ambient density. 
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We have re-run the case described in Section 3.1 with a higher background heating. 

To conduct a proper comparison with Hydrad, care is needed in setting up the initial 

state. The reader will have noticed in the earlier figures that the initial density and 

temperature was different in Hydrad and EBTEL for the same background heating. 

[This is a reflection of the fact that modelling the full spatial structure of a loop will 

give a slightly different value of the temperature and density from an approximate 

model that neglects this structure.] So long as the nanoflare is “large” in the sense that 

at its peak intensity the heating is much stronger than the background, this does not 

matter. However, for a “weak” nanoflare, it is important to run EBTEL and Hydrad 

with roughly the same initial density. Thus, Hydrad is initialised with a background 

heating of 4.1 10-4 ergs cm-3 s-1 giving a temperature and density of 1.36 MK and 8.31 

108 cm-3 respectively. EBTEL has a heating of 3.93 10-4 ergs cm-3 s-1 giving a 

temperature and density of 1.48 MK and 8.31 108 cm-3 respectively. To compare with 

EBTEL-1, we have to increase the background heating by 50% to ensure starting from 

roughly the same temperature and density. The nanoflare itself is as in Section 3.1. 

 

Figure 9 shows the evolution of the temperature and density for EBTEL-1, EBTEL-2 

with the gravitational and radiative corrections with both linear and quadratic C1 

profiles and Hydrad. The agreement between the two approaches can be considered 

satisfactory with the linear C1 profile doing a better job with the density. Comparing 

with Figure 4, we see lower peak temperatures and, although the peak density is 

higher when the initial density is higher, the actual density increase is smaller.  In the 

case of Section 3.1, the peak temperature is set by a balance between the maximum 

heating rate and thermal conduction losses.  With the higher initial density we have 

here, the temperature never reaches this point.  Instead, the peak temperature 

corresponds to an approximate equality between the total energy input of the 

nanoflare and the increase in thermal energy, p/(γ-1), at roughly constant density. 

 

3.4 Small Flare 

 

Our fourth example is of a modest flare in a short loop with L = 25 Mm. The 

maximum heating is 2 ergs cm-3 s-1, and the pulse half-width 100 secs, so the total 

heating per unit area is 5 1011 ergs cm-2 which for a loop diameter 20% of the half-
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length gives a total energy input of 4 1029 ergs. We neglect “thick target” heating 

which was discussed in Paper 1 and remains part of the EBTEL code.  

 

The four panels of Figure 10 show the loop temperature and density in the same 

format as above for the EBTEL-1 values, the various profiled versions of C1 and two 

Hydrad runs. For this flaring case the gravitational correction to C1 is not important. 

Once again, the temperature plots for all the approaches are superficially similar. 

Hydrad gives the highest temperatures and EBTEL-1 the lowest. The significant 

differences are seen in the density. The Hydrad density is much lower than all of the 

EBTEL runs: a peak of 2.5 1010 from Hydrad contrasting with 4 1010 from the various 

EBTEL runs. In the decay phase the differences narrow, but we see from the T-n plot 

that while the scaling between T and n in the Hydrad run is consistent with our 

expectations, the EBTEL runs have a weaker decay (i.e. T  n<2). 

 

We have addressed the density discrepancy from a number of viewpoints that are 

discussed more fully in Paper 3. These include: the coronal pressure forcing the 

chromosphere downward, leading in turn to longer loops and lower coronal densities 

(Klimchuk, 2006) and the violation of the subsonic flow assumption. However, for 

this case, we believe that the low coronal density lies in the treatment of the 

chromospheric radiation in Hydrad. The baseline version of the code limits the 

radiative losses if the density above 30 kK exceeds 1012 cm-3. This can be seen as 

modelling a number of processes, such as optically thick effects. The thick dashed 

line in Figure 10 shows what happens if this threshold density is set to 1011 cm-3. Now 

there is much better agreement between EBTEL and Hydrad with the linear C1 profile 

doing slightly better. The density limiter now does not permit the initial large 

downward heat flux to be radiated away at high density, but forces plasma to 

evaporate into the corona, as indeed EBTEL does. 

 

4. Discussion and Conclusions. 

 

Simple 0D hydrodynamic models have a long and quite successful history in 

modelling the temporal evolution of transiently-heated coronal loops. Motivated by 

discrepancies in some results, and by recent better understanding of coronal radiative 

cooling, we have updated our original version of the EBTEL model to include 
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gravitational stratification and correct radiative cooling. For the cases we have 

presented, we believe that the approximate model gives reasonable agreement with 

the full numerical results for the same parameters. EBTEL now permits highly over-

dense loops to form in the cooling phase, and accounts for coronal stratification in 

long, cool loops. This is achieved through the evolution of the key parameter, the ratio 

of the transition region to coronal radiation. This is required to take on an equilibrium 

value around the time of maximum density, and a radiative value later on during the 

cooling. The transition is accomplished by either a linear or quadratic function. Our 

results suggest a slight preference for the linear one. 

 

EBTEL is a useful tool in looking at the generic evolution of temperature and density, 

as well as the DEM of single loops. It runs fast (a few seconds on a contemporary 

laptop), and can be convolved with other software to generate, for example, light 

curves in various coronal emission lines, DEM profiles as a function of temperature 

etc. But, perhaps more useful is the ability to model a multi-strand corona. In such a 

scenario (e.g. Cargill, 1994; Cargill and Klimchuk, 1997), the coronal emission comes 

from many (perhaps thousands) of separately evolving strands. This is still beyond the 

abilities of 1D hydro codes, at least with a realistic turn-around time whereas EBTEL 

can model such a scenario in a few hours, and indeed perhaps less if a properly 

optimised version is used. 
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Appendix. Comparison of analytical and numerical values of C1 for a simple 

power law radiative loss function 

 

C1 and C3 can be calculated analytically from Martens (2010). Assuming uniform 

heating, a single power law slope of α for the radiation function, and boundary 

conditions of vanishing heat flux at top and bottom of loop, and vanishing 

temperature at bottom, he writes the energy equation in terms of the variable 

2/7)/( aTT=η as: 
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Setting α = -1/2, we get C3 = T0/Ta = (2/7)2/5 = 0.606. For α= -2/3, C3 = 0.584.  

 

We can also calculate C1 as follows. The dimensionless coronal radiative losses are: 
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The total radiative loss is just ξ  in these units so that the TR loss is then: 
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We have calculated η0 above, and so can obtain C1, which is independent of Q, L and 

p. For α = -1/2, we get C1 = 1.76 and for α= -2/3, C1 = 2.095. 

 

We now compare the Martens solutions with a numerical solution with a lower 

boundary at 2 x 104 K and a single power law loss function above 105 K and a loss 

function scaling as T2 below. [This eliminates the problem that the vanishing heat flux 

is only exactly enforceable in the limit of vanishing base temperature.] Care is needed 

with the grid on which the hydrostatic equations are solved. We used: 

[ ]21- 1  sin)(2// -xx-xLs π=  

where x is evenly distributed between 0 and 1. 5000 points are used. The motivation 

for this grid can be seen from Eq (C1) of Rosner et al (1978) and it does give well-

resolved solutions at all temperatures. 

 

An array of cases has been run: three loop half-lengths, 2.5, 5 and 7.5 x 109, and Ta 

between 106 and 107 for each length. It turns out that the results are by and large 

independent of the loop half-length, so individual cases are not shown, rather the 

range of values found as shown in the following Table. 

 

α = −1/2. C1  C2  C3  

Analytic 1.76 0.89 0.606 

Numerical 1.65 – 1.74 0.895 0.62 – 0.61 

α = −2/3    

Analytic 2.09 0.89 0.585 

Numerical 1.88 – 2.06 0.892 0.61 – 0.59 

 

Table A1. The constants C1, C2 and C3 for two loss functions. The range of values in 

each box are those obtained as Ta increases from low to high. 

 



23 
 

It can be seen that C2 = 0.9 and C3 = 0.6 are reasonable values for both cases. The 

lower values of C1 correspond to smaller Ta where the T2 loss function at lower 

temperatures makes a greater relative contribution to the loop losses. We would argue 

that for a simple model, C1 = 1.7 for α = -1/2 and C1 = 2 for α = -2/3 are appropriate. 
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Figure 1: The upper two panels show C1 as a function of Ta for L = 5 109 cm (left) 

and 7.5 109 cm (right) for a single power law loss function with a low temperature 

correction. Stars, circles and plus signs are, respectively, C1 in absence of gravity, C1 

with gravity (both are from numerical solutions of the hydrostatic equations) and the 

estimate of C1 in Eq (11). The lower two panels show the ratio of the radiative losses 

without gravity to those with gravity in the transition region (stars) and corona 

(circles). The ratio of the two transition region losses is roughly constant. 

 
 
Figure 2: C1 as a function of Ta for L = 5 109 cm. There is no gravity. In the left plot 

stars, circles and plus signs are, respectively, C1 for single power loss function with 

low temperature correction, C1 for the full EBTEL loss function, and the estimate of 

C1 in Eq (12). The right column shows the ratio of radiative losses assuming a single 

power law and the full EBTEL form in the transition region (stars) and corona 

(circles). 

 
 
Figure 3: The upper row shows C1 as a function of Ta for two temperature ranges and 

L = 5 109 cm. Stars, circles and plus signs are, respectively, C1 for single power loss 

function and no gravity, for the EBTEL loss function and gravity, and the estimate of 

C1 in Eq (13). The lower row shows the ratio of radiative losses assuming a single 

power law with low temperature correction and no gravity, and the EBTEL loss 

function and gravity in the transition region (stars) and corona (circles). 

 
 
Figure 4. The temperature and density (upper row) and C1 (lower right panel) as a 

function of time for a nanoflare in a short (L = 25 Mm) loop. The lower left panel 

shows the relationship between T and n, and the evolution can be tracked in time by 

going right along the horizontal lines at low density (the heating phase) and following 

the curves. The line coding is as follows: EBTEL-1 values of C1-3 (dot), EBTEL-2 

values of C1-3 implemented as follows: EBTEL-2 with constant C1 (dash-dot), linear 

C1 model (dashed) and quadratic C1 model (thin solid). The Hydrad results are shown 

by the thick solid lines. The small panel in the temperature plot shows its evolution in 

more detail around the maximum. In the T-n plot, the straight solid lines are the 

scalings T~ n2 and T~n1/2. C1 is only shown for the linear and quadratic models and 

the gravitational and radiative corrections to C1 are not included. 
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Figure 5. As Figure 4, but shows the effect of introducing radiative and gravity 

corrections to the C1 model. The dotted curves show results for the quadratic C1 

profile in Figure 4, the dash-dot curve includes only the radiative correction and both 

radiative and gravitational corrections are shown for linear (dashed) and quadratic 

(solid) cases. The thick, solid curve is the Hydrad result. 

 
 
Figure 6. The DEM for a nanoflare in a short (L = 25 Mm) loop. The left panel shows 

separate coronal and TR contributions. The dash-dot, dotted, solid and dashed lines 

are respectively the coronal DEM for (i) EBTEL-1 values of C1-3, (ii) the quadratic C1 

profile without gravity and radiation corrections, and (iii) and (iv) quadratic and linear 

C1 profiles with gravitational and radiative correction included. The thick dashed line 

is the transition region DEM associated with coronal DEM (iii). The right panel 

shows the sum of the coronal and TR DEMs for EBTEL-1 (dash-dot), EBTEL-2 with 

quadratic transition and radiative and gravity modifications (solid) and Hydrad (thick 

solid). 

 

Figure 7. The results for a nanoflare in a long loop (L = 75 Mm). The figure format is 

the same as Figure 4. The curves are: EBTEL-1 (dash-dot), EBTEL-2 with (a) 

quadratic C1 model (dots), (b) quadratic model with gravity and radiative correction 

(solid), (c) linear model with corrections (dashed) and Hydrad (thick solid). 

 

Figure 8. The DEM for a nanoflare in a long (75 Mm) loop. The line coding is as in 

Figure 6 except that the thick dash-dot line in the left panel is the TR DEM in the 

absence of the gravitational correction. 

 
 
Figure 9. A nanoflare in a small loop with large initial density. The dash-dot, solid, 

dashed and thick solid curves show EBTEL-1, quadratic and linear C1 profiles for 

EBTEL-2 and Hydrad.  

 

Figure 10 Temperature, density, T-n and C1 as a function of time for a small flare. 

The line coding is as follows: dash-dot (EBTEL-1), quadratic C1 transition, no 

corrections (dots), quadratic and linear C1 models with gravity and radiation (solid 

and dashed). Two Hydrad results are shown corresponding to the two chromospheric 
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radiation models in the text. The one where the radiation is limited above a density of 

1012 cm-3 is shown as the thick solid line in all panels, that where the radiation is 

limited above a density of 1011 cm-3 is shown as the thick dashed line in the density 

plot. 





















0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

T
(1

07  K
)

time (s)
0 500 1000 1500 2000

0

1

2

3

4

5

n 
(1

010
 c

m
−

3 )

time(s)

0 500 1000 1500 2000
0

1

2

3

4

5

time(s)

C
1

10
5

10
6

10
7

10
8

10
9

10
10

10
11

T(K)

n(
cm

−
3 )


	Article File
	fig1
	fig2
	fig3
	fig4
	fig5
	fig6
	fig7
	fig8
	fig9
	fig10

