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Although the note by Hapke and Nelson has virtually no relevance to our original

publication, it contains a number of statements that are misleading and/or wrong. We,

therefore, use this opportunity to dispel several profound misconceptions that continue

to hinder the progress in remote sensing of planetary surfaces.
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1. Introduction

In a recent paper [1], we proposed an approximate
technique for the calculation of coherent backscattering
(CB) by a semi-infinite, plane-parallel discrete random
medium (DRM). In their comment [2], Hapke and Nelson
(hereafter designated HN) picked on one sentence in our
paper as an excuse for submitting a note intended to draw
attention to a number of papers of theirs that, presum-
ably, have been unjustly ignored by the JQSRT community.

The sentence in question reads: ‘‘Unfortunately, we
have no reliable experimental or theoretical results
which would allow us to test the proposed technique for
larger particles and other values of the parameters
characterizing the scattering medium.’’ A straightforward
clarification in response to HN would be to replace the
words ‘‘experimental results’’ with the words ‘‘results of
controlled laboratory measurements’’. Indeed, the mea-
surements cited in HN fall in the category of laboratory
observations rather than controlled laboratory experi-

ments. As such they cannot be used to substantiate a
physically-based theory. We believe that, normally, this
subtlety would be understood by a knowledgeable reader.
Unfortunately, however, Ref. [2] contains a number of
statements that are misleading and/or wrong. We, there-
fore, decided to respond to HN and use this opportunity to
dispel several profound misconceptions that continue to
hinder the progress in remote sensing of planetary
surfaces.

2. What is coherent backscattering?

It is imperative to recognize that the interaction of
electromagnetic radiation with any discrete random
medium is fully described by the macroscopic Maxwell
equations (MMEs) supplemented by appropriate bound-
ary conditions [3–5]. Indeed, at each moment in time, the
entire scattering object (e.g., a cloud of water droplets or a
particulate regolith surface) can be represented by a
specific spatial configuration of a number N of discrete
finite particles. Each particle is assumed to be sufficiently
large so that its atomic structure can be ignored and the
particle can be characterized by optical constants appro-
priate to bulk matter. In electromagnetic terms, the
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presence of a particle means that the optical constants
inside the particle volume are different from those of the
surrounding host medium. The spatial distribution of the
optical constants throughout the medium dictates the
corresponding boundary conditions which, along with the
radiation condition at infinity [6], make the solution of the
MMEs unique.

Let us assume for a minute that we have at our
disposal a direct computer solver of the MMEs (in the
form of a suitable {computer; computer program} combi-
nation) capable of handling electromagnetic scattering by
an arbitrarily complex DRM. Then we would not need any
other theoretical concept for the interpretation of labora-
tory or remote-sensing measurements of electromagnetic
scattering. Indeed, the output of any measurement could
then be modeled by solving the MMEs for a representative
set of realizations of a DRM followed by statistical
averaging of the relevant optical observables.

Unfortunately, such a solver of the MMEs does not
exist and is unlikely to become available in the near
future. In practice, one has to simplify the problem by
making one or more specific assumptions. The result of
these simplifications is twofold. First of all, the problem
becomes solvable. Second of all, it becomes both possible
and convenient to identify certain idealized theoretical
concepts, such as, for example, radiative transfer (RT) and
CB. Such concepts are unnecessary in principle and have
restricted validity. However, they constitute what is
usually called ‘‘physical understanding of the problem’’
and as such may have some positive heuristic value and
increase the level of mental comfort of researchers
analyzing digital computer outputs or experimental data.

The specific way to introduce the concepts of RT and
CB is to derive the exact Foldy–Lax equations (FLEs) for a
multi-particle group from the macroscopic Maxwell
equations [4,7,8] and then convert the FLEs into an
infinite order-of-scattering expansion [4,5]. In the frame-
work of this formalism, each particle is uniquely and
completely characterized by the respective dyadic transi-
tion operator. In many cases of practical interest, the
original FLEs are intractable and have to be simplified.
One of such simplifications is the far-field version of the
FLEs wherein it is assumed that each particle is located in
the far-field zones of all the other particles forming the
group [4,5,9,10]. Three fundamental ingredients of the far-
field FLEs are as follows:

(i) the partial field scattered by any particle i and
exciting any particle j evolves into an outgoing
spherical wavelet by the time it reaches particle j;

(ii) each particle is now characterized by the scattering
dyadic rather than by the dyadic transition operator;
and

(iii) instead of the original system of volume integral
equations one deals with a system of algebraic
equations.

Each partial spherical wavelet is a transverse electro-
magnetic field and as such is characterized by a phase.
This means that one can consider a multiple-scattering

wave trajectory and evaluate its phase accumulated by
the time it reaches the observation point. Furthermore,
one can evaluate the result of the interference of two
multiply-scattered waves at the observation point de-
pending on the phase difference between the waves. This
ultimately leads to the consideration of so-called ladder
and cyclical diagrams [11] and to the derivation of the
microphysical vector theories of RT and CB [4,5]. The
vector RT theory is essentially the result of summing up
self-interference results (i.e., the ladder diagrams) [12,13],
wherein a multiply-scattered wave interferes construc-
tively with itself. The effect of CB is described by the sum
of all cyclical (or maximally crossed) diagrams [4,9,11,14–
21].

It is worth reiterating that both RT and CB are idealized
theoretical concepts. Since they follow directly from the
Maxwell equations as an outcome of making a sequence
of well-defined assumptions [4,5], the practical applic-
ability of the theories of RT and CB does not require any
validation provided that all these assumptions are
fulfilled. For example, there is little doubt that the RT
equation describes adequately the results of photopolari-
metric observations of clouds in planetary atmospheres,
as exemplified spectacularly by the discovery of micro-
meter-sized sulfuric acid droplets in the atmosphere of
Venus [22]. However, if the RT and CB theories are used to
model situations in which one or more of the underlying
assumptions are violated then the quantitative applic-
ability of these theories must be carefully examined. The
requisite benchmark test results can be obtained either by
performing a controlled laboratory experiment or by
directly solving the MMEs.

3. Controlled laboratory experiments versus laboratory
observations

One of the fundamental assumptions that one has to
make in order to arrive at the concepts of RT and CB is that
the particles forming a DRM are widely separated.
However, both concepts have been used frequently to
describe the scattering properties of densely packed DRMs
such as particle suspensions and particulate surfaces with
volume packing densities comparable to or even exceed-
ing 10%. One way to validate the quantitative applicability
of the concepts of RT and CB to such DRMs is to compare
the results of numerical computations with those of
controlled laboratory experiments.

There is a fundamental difference between controlled
laboratory experiments and laboratory observations. In
the former, one fully controls all the conditions of the
experiment and has complete knowledge of all physical
parameters specifying the scattering medium (e.g., the
size distribution, shape, refractive index, and packing
density of the particles and the geometrical dimensions of
the scattering medium) as well as the ability to change
them one at a time. The known parameters of the medium
then serve as input for numerical computations, thereby
making possible an unambiguous comparison of theore-
tical and experimental results. Laboratory observations do
not differ from remote-sensing (e.g., astronomical) ob-
servations in that one measures only the parameters of
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the scattered light but does not provide independently a
complete physical and compositional specification of the
scattering medium. As a consequence, laboratory obser-
vations (such as those referenced in HN) cannot be used
for validation purposes.

Instructive examples of the use of controlled labora-
tory experiments for validating the applicability of the
low-packing-density concepts of RT and CB to densely
packed DRMs can be found, e.g., in Refs. [1,23,24].

In some rare cases, laboratory observations result in a
forceful challenge of an approximate theory of electro-
magnetic scattering and thereby facilitate the develop-
ment of an improved approximation. A classical example
is the laboratory observation by Lyot [25] of a super-
narrow negative-polarization minimum at backscattering
angles for a particulate magnesia sample which was later
interpreted as the polarization opposition effect (POE)
caused by CB [26,27]. The simultaneous laboratory
observation of the POE and an equally narrow brightness
opposition effect (BOE) for a similar magnesia sample [28]
has provided additional support for this interpretation. (It
is worth noting that contrary to the assertions in HN, the
laboratory data reported in Ref. [28] reveal a pronounced
dependence of the opposition intensity peak on the
physical parameters of the scattering medium.)

4. Numerically exact solutions of the Maxwell equations

Another way to test the validity of idealized theoretical
concepts and the quantitative applicability of approx-
imate theories of electromagnetic scattering by DRMs is to
use the results of direct computer solutions of the MMEs.
There are three numerically exact computer solvers of the
MMEs that have been applied recently to model electro-
magnetic scattering by media consisting of large numbers
of randomly positioned particles: the superposition T-
matrix method [29,30], the discrete dipole approximation
[31,32], and the finite-difference time-domain method
[33,34]. By directly solving the MMEs one can

(i) eliminate any uncertainty associated with the use of
an approximate theoretical approach;

(ii) control precisely all physical parameters of the
scattering medium and vary them one at a time; and

(iii) compute all relevant optical observables at once.

Such modeling can be viewed in many respects as an ideal
controlled laboratory experiment in which one can study
unambiguously the onset, evolution, and potential decay
of all manifestations of RT and CB as the particle packing
density gradually increases from zero to values typical of
actual particulate surfaces and particle suspensions.
Numerous examples of using this approach can be found
in Refs. [35–49]. An important result of these studies
[48,49] is that all anticipated manifestations of CB, at least
for nonabsorbing or weakly absorbing DRMs, are remark-
ably immune to packing density effects [50–54] and can
be observed for volume densities exceeding 30%.

There is no doubt that the ever-increasing efficiency of
computers will enable one to explore progressively

sophisticated scattering models and will eventually
provide the ultimate theoretical tool for the interpretation
of remote-sensing observations, thereby rendering the
idealized concepts of CB and RT unnecessary.

5. Use of laboratory observations to test unphysical
models

The Hapke bi-directional reflectance model (which is
now claimed to incorporate the effect of CB) is an
instructive example of an unphysical approach to describe
electromagnetic scattering by a DRM. This model does not
follow from the MMEs and is an artificial conglomerate of
unsubstantiated yet enticingly simple formulas intended
to provide a back-of-an-envelope solution of a profoundly
complex scattering problem. Since the Hapke model
avoids the use of physical parameters involved in the
solution of the MMEs and artificially ignores the vector
nature of light, it cannot be validated against the results of
controlled laboratory experiments. Instead, the traditional
way to ‘‘validate’’ the Hapke model has been to compare
its predictions with results of laboratory observations, the
closeness of the resulting fit being the only success
criterion. As a result, it has been established that the
Hapke model is a remarkable interpolation tool capable of
fitting virtually any observation results. Unfortunately,
the price one has to pay for this universal interpolation
capability is that the best-fit model usually has little or no
physical meaning [55]. As discussed in [56], examples of
such unphysical results are the ‘‘discovery’’ of isotropi-
cally scattering cloud particles in the atmosphere of
Venus, the ‘‘discovery’’ of backscattering particles with
negative asymmetry parameters, and the violation of the
energy conservation law.

The way in which the Hapke model is usually applied
to astrophysical observations and yields ‘‘definitive’’
results is equally suspect. Indeed, spatially integrated
telescopic observations of a heterogeneous planetary
surface yield a complex convolution of contributions from
morphologically different surface types with varying
albedos. Some of them can cause BOE and POE of varying
angular widths and amplitudes, and some of them can
cause only the more robust but still spatially varying BOE.
Therefore, it is highly problematic, if even possible, to
model such data unambiguously, unless one uses a
synthetic interpolation function capable of fitting almost
any data at the likely expense of being physically mean-
ingless.

6. Use of laboratory observations to interpret remote-
sensing observations

Another misconception pursued in the publications by
Hapke et al. cited in Ref. [2], is that laboratory observa-
tions can be used to interpret remote-sensing observa-
tions. The way this is done is to (i) postulate that what is
observed in the laboratory is the effect of CB; (ii) claim
that the results of remote-sensing observations are well-
represented by the results of laboratory observations; and
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(iii) conclude that what is observed remotely is also the
effect of CB.

The fallaciousness of this approach is obvious. As we
have already emphasized, CB is an idealized theoretical
concept. Therefore, the only way to establish the CB
nature of a laboratory or remote-sensing observation is to
compare the measurement results with the results of
theoretical computations.

A good illustration of this profound misconception is
the alleged result by Hapke et al. that CB always serves
to enhance the circular polarization ratio and suppress
the linear polarization ratio. This result appears to have
been derived from their laboratory observations, is
claimed to be an unequivocal experimental identifier of
the effect of CB, and has allegedly been used to prove
the substantial presence of CB in the sunlight reflected
by the lunar surface. However, direct computer solutions
of the MMEs reported in Refs. [38,46,48,49] demonstrate
that, in general, this result is wrong and that CB can
either enhance or suppress the linear polarization ratio
depending on the physical parameters of a specific
DRM.

Another byproduct of this misconception can be found
in HN. Indeed, the second paragraph contains a claim that
laboratory observations referenced in HN show unequi-
vocally the effect of CB, whereas the last paragraph claims
that we do not actually know what CB is.

In fact, exactly the opposite is true: we know precisely
what CB is, but do not necessarily know what was
observed in the laboratory by Hapke et al.

7. Concluding remarks

Like any idealized and approximate theoretical con-
cept, the concepts of RT and CB have their limitations and,
in the final analysis, are unnecessary. The range of
quantitative applicability of these concepts in situations
violating the basic assumptions listed in Refs. [4,5] needs
to be established by using the results of controlled
laboratory experiments and/or numerically exact compu-
ter solutions of the MMEs. Furthermore, because of the
purely theoretical nature of these concepts, their rele-
vance to optical effects observed remotely or in the
laboratory for particulate suspensions and surfaces can be
established only by comparing the results of observations
with physically-based theoretical results [48,57].

It is imperative to recognize that the limited validity of
the inherently approximate concepts of RT and CB does
not invalidate the MMEs. It is, therefore, preposterous to
suggest (see the final paragraph of HN) that the laboratory
observations by Hapke and Nelson make necessary as
major a development in physics as the discovery of the
analog of Planck’s law for CB.
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