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Abstract

Several boundary conditions that allow subsonic and supersonic flow into and out of the
computational domain are discussed. These boundary conditions are demonstrated in
the FUN3D computational fluid dynamics (CFD) code which solves the three-dimensional
Navier-Stokes equations on unstructured computational meshes. The boundary conditions
are enforced through determination of the flux contribution at the boundary to the solution
residual. The boundary conditions are implemented in an implicit form where the Jacobian
contribution of the boundary condition is included and is exact. All of the flows are gov-
erned by the calorically perfect gas thermodynamic equations. Three problems are used to
assess these boundary conditions. Solution residual convergence to machine zero precision
occurred for all cases. The converged solution boundary state is compared with the re-
quested boundary state for several levels of mesh densities. The boundary values converged
to the requested boundary condition with approximately second-order accuracy for all of
the cases.

1 Introduction

The solution of a partial differential equation or a system of partial differential equations
requires a statement of the dependent variables along the boundaries of the solution

space. When physically relevant solutions of the equations are sought, the imposition of the
boundary conditions should solve the correct numerical problem without adversely affecting
solution stability.

The choice between an explicit or implicit implementation of the boundary conditions
in the solution algorithm is dependent on the numerical method that is used for solving the
governing equations. Explicit treatments of boundary conditions has occupied much of the
literature. The compilation of papers in the proceedings Numerical Boundary Condition
Procedures [1] contains extensive discussions of the state-of-the-art theories at the time of
printing. In particular, Moretti [2], Blottner [3], Pulliam [4], and Thompkins and Bush [5]
discuss inflow and outflow boundary conditions for both Navier-Stokes and Euler equations.

Much of that work centered around developing a system of equations, often in terms of
characteristic variables, to describe the desired physical state in a consistent form at the
boundary. Information is communicated through the boundary interface via wave propaga-
tion and convection. The flow of information across the boundary determines the physical
conditions to impose. Thus, the boundary conditions must be formulated to keep the so-
lution realizable at the boundary. The interior solution will be consistent with the speci-
fied physical state at all of the boundaries once an iteratively converged solution has been
achieved.

Figure 1 is a schematic of a boundary where the physical state is on the right side and
the solution space is on the left. Also shown are the upstream and downstream propagating
Riemann invariants, R− and R+. The convention in FUN3D [6] is that the normal vector at
a boundary, n̂ = �n/|�n|, is outwardly directed from the interior. The velocity perpendicular
to the boundary, U⊥, is defined by the scalar product of the local velocity vector with the
boundary normal, U⊥ =

−→
U · n̂, where

−→
U = uî + vĵ + wk̂.

Designated by the sign and magnitude of U⊥, the flow conditions at the boundary are
listed in Table 1. The Euler equations have five eigenvalues—three that are associated with
convective waves, λ2−4, and two that are associated with acoustic waves, λ1,5. A positive
eigenvalue corresponds to a wave that is entering the domain and that conveys physical
information specified from the outside (i.e., the boundary condition). A negative eigenvalue
is a wave that is leaving the solution domain. As discussed in Kim et al. [7], various
conditions for a boundary are summarized in Table 1. For example, for the specification
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Interior state Requested
physical state

Inside the domain Outside the domain
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R− = Ub − 2cb
γ−1

� �n

Figure 1. Characteristics at a boundary.

of a subsonic inflow boundary with the use of primitive variables, density and velocity or
density and pressure are combinations that can be used to completely define the condition.
In practice, many methods are used to enforce a particular condition at a boundary interface.
In this work, the boundary conditions are enforced weakly, that is, by calculating and
applying the flux contribution of the boundary condition to the solution residual rather
than setting the physical value of the boundary condition.

The details of each boundary condition are discussed in a generic framework in section 2;
and a discussion of the discrete, computational method used for evaluation of the boundary
conditions in FUN3D follows in section 3. Three test geometries are described in section 4.
Computations that demonstrate the use of the boundary conditions are given in section 5.

Table 1. Flow Conditions at a Boundary

Case Condition U⊥ |U⊥| Eigenvalue
Specify

λ1 λ2 λ3 λ4 λ5

1 Subsonic inflow <0 <c <0 >0 >0 >0 >0 pt, Tt, α, β*

2 Subsonic outflow >0 <c <0 <0 <0 <0 >0 p
3 Supersonic inflow <0 >c >0 >0 >0 >0 >0 All
4 Supersonic outflow >0 >c <0 <0 <0 <0 <0 None

*Alternatively ρ and
−→
U or ρ and p, but not

−→
U and p.

2 Boundary Conditions

To evaluate the fluxes at the boundary, information from the interior of the domain is
combined with the physical constraints of the problem. As shown in Figure 2, the flux at
the boundary depends on a combination of the left and right states (qL and qR) and the
direction, n̂, and area, A, of the boundary (F = f(n̂, A, qL, qR)). The left state is equal to
the interior state, qi, and the right state is a function of the interior state, qi, the free-stream,
q∞, and/or user-specified parameters, B, depending on the boundary condition.

The linearization of the flux function for fixed grids, is written as the change in the flux
function, F , with respect to the state vector, q, on the left side of the boundary:

∂F
∂q

∣∣∣∣
L

=
∂F
∂qL

+
∂F
∂qR

∂qR

∂qL

(1)
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Left state Right state

qL = qi qR = f(qi, q∞,B)

F
Figure 2. Flux and boundary states.

The first two derivatives, ∂F/∂qL and ∂F/∂qR, are the Jacobians for the numerical flux
function used in the spatial differencing. FUN3D provides multiple options for the numerical
flux function. The results in this work use Roe’s approximate flux scheme and the Jacobian
terms of Roe’s scheme were handcoded term-by-term. The third term, ∂qR/∂qL, is deter-
mined exactly by using automatic differentiation via operator overloading of the equations
in the boundary condition functions in Griewank and Corliss [8, 9]. This differentiation
technique, which is based on the chain rule, permits the partial derivatives of the boundary
condition variables with respect to the interior variables to be calculated and propagated
through each of the boundary condition function calls and results in the Jacobian term of
the boundary conditions.

Depending upon the specific application, the four inflow/outflow conditions listed in
Table 1 ( that is, subsonic inflow/outflow and supersonic inflow/outflow ) can be formed in
different ways. Several methods for determining the boundary state, qR, are discussed in
sections 2.1 through 2.9. For each boundary condition, the format of the introductory table
is as follows: the type of condition, the specified conditions, variables that are extrapolated
from the interior, and variables that are updated as a consequence of applying the boundary
condition. Words expressed with the fixed-width font indicate code variables that occur
within FUN3D.

Variables with dimensions are denoted by an overhead ˜ symbol. Non-dimensional vari-
ables are denoted without any symbol overhead. Freestream values are denoted by the
subscript ∞ . The equations relating the dimensional to the non-dimensional flow-field
variables are as follows:

ρ̃ = ρρ̃∞, ũ = u c̃∞, ṽ = v c̃∞, w̃ = w c̃∞, p̃ = p ρ̃∞c̃2
∞ (2)

ẽ = e ρ̃∞ c̃2
∞, c̃ = c c̃∞, T̃ = T T̃∞ = c2 T̃∞ (3)

ρ∞ = 1, p∞ = 1/γ, c∞ = 1, T∞ = 1 (4)
u∞ = M∞ cos α∞ cos β∞, v∞ = −M∞ sin β∞, w∞ = M∞ sin α∞ cos β∞ (5)

The equations in the subsequent sections are written in their non-dimensional form.

2.1 Far-Field Boundary Condition (farfield roe)

Type Specify Extrapolate Update

Outflow M∞, [M∞ ≥ 0], α∞, β∞ None All

The far-field boundary condition specifies the free-stream conditions that are calculated
from the user input variables M∞, α∞, and β∞.

ρ∞ = 1, c∞ = 1, p∞ =
ρ∞c2

∞
γ

,
−→
U∞ =

⎡
⎣ M∞ cos α∞ cos β∞

−M∞ sin β∞
M∞ sin α∞ cos β∞

⎤
⎦ (6)

3



The right-state vector is:

qR =

⎡
⎣ ρ∞−→

U∞
p∞

⎤
⎦ (7)

2.2 Riemann Invariant Boundary Condition (riemann)

Type Specify Extrapolate Update

Inflow/outflow M∞ [M∞ ≥ 0] Entropy (outflow) ρ, p

The Riemann invariants correspond to the incoming R− and outgoing R+ characteristic
waves. The invariants determine the locally normal velocity component and the speed of
sound. The entropy, s, and the speed of sound, c, are used to determine the density and
pressure on the boundary (see Figure 1.) The incoming Riemann invariant uses the far-field
conditions, qo =

[
ρ∞,

−→
U∞, p∞

]T.

R+ = Ui +
2ci

γ − 1
, R− = Uo − 2co

γ − 1
(8)

where

Ui =
−→
U i · n̂,

−→
U i = [ui, vi, wi]

T
, c2

i =
γpi

ρi
(9)

Uo =
−→
U o · n̂,

−→
U o = [uo, vo, wo]

T
, c2

o =
γpo

ρo
(10)

Mi =
|Ui|
ci

(11)

If the flow at the boundary is locally supersonic leaving the domain (Mi ≥ 1), then no
incoming characteristic waves exist; thus, R− is set equal to

R− = Ui − 2ci

γ − 1
(12)

Similarly, if the flow is supersonic entering the domain, then no outgoing characteristic
waves exist and R+ is set equal to

R+ = Uo +
2co

γ − 1
(13)

A velocity, Ub, and the speed of sound, cb, at the boundary are the sum and difference of
the invariants:

Ub =
1
2
(
R+ + R−)

, cb = 4 (γ − 1)
(
R+ − R−)

(14)

The velocity that is imposed on the boundary depends on the local direction of flow. If
the sign of U⊥ is positive, then the flow is exiting the computational domain and the
entropy is extrapolated from the interior and is used to update the density at the boundary.
Conversely, a negative U⊥ indicates that the flow is entering the computational domain and
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the free-stream entropy is used. Summarizing, the velocity and entropy on the boundary
are calculated from the following equations.

−→
Ub =

{−→
U i + (U − Ui)n̂, if U > 0 (outflow)−→
U o + (U − Uo)n̂, if U ≤ 0 (inflow)

(15)

sb =

⎧⎨
⎩

c2i
γργ−1

i
, if U⊥ > 0 (outflow)

c2o
γργ−1

o
, if U⊥ ≤ 0 (inflow)

(16)

The density and pressure on the boundary are then calculated as follows.

ρb =
(

c2
b

γsb

)1/γ−1

, pb =
ρbc2

b

γ
(17)

The right-side vector is

qR =

⎡
⎣ ρb−→

Ub

pb

⎤
⎦ . (18)

2.3 Outflow Mach-Number Boundary Condition (subsonic outflow mach)

Type Specify Extrapolate Update

Outflow M [0 ≤ M < 1] T ρ, p

The Mach number at the boundary, Mset, is specified for the entire boundary, and the flow
is assumed to be adiabatic and isentropic. The local acoustic speed is determined from
the temperature of the interior state, qi, with the local speed of sound determined using
Eq. (19).

ci =
√

Ti, Ti =
γpi

ρi
(19)

For each point on the boundary, the Mach number, Mi, is used to determine a new total
pressure, pt,b.

Mi =
|Ui|
ci

, Ui =
−→
U i · n̂ (20)

pt,b = pi

[
1 +

1
2
(γ − 1)M2

i

] γ
γ−1

(21)

The static pressure, p, is updated using the new total pressure and the set Mach number,
Mset

p = pt,b

[
1 +

1
2
(γ − 1)M2

set

]− γ
γ−1

(22)

If the flow is locally supersonic as a result of some transient flow condition, then the boundary
condition will reset the local static pressure to the local total pressure. If the specified Mach
number is supersonic, then an extrapolation boundary condition should be used. Thus,

pb =

{
p, if Mi < 1 (subsonic)
pt, if Mi > 1 (supersonic)

(23)
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The right-state state is written as:

qR =

⎡
⎣γpb/Ti−→

U i

pb

⎤
⎦ (24)

Note: Using this condition is inconsistent if the boundary face adjoins a viscous surface.
The Mach number is fixed over the entire boundary and precludes the presence of a velocity
gradient that would normally be present on the viscous no-slip surface. A constant pressure
boundary condition, such as the subsonic outflow boundary, should be used in this situation.

2.4 Pressure Outflow Boundary Condition (back pressure)

Type Specify Extrapolate Update

Outflow p/p∞ [p/p∞ > 0]
−→
U, T ρ

For a subsonic outflow boundary condition, the static pressure ratio, pset/p∞, is specified,
while the velocities and temperature are extrapolated. The boundary flow is assumed to be
adiabatic and isentropic. The density is updated from the extrapolated temperature and
the requested static pressure. If the flow is supersonic at this boundary, then all quantities
are extrapolated. The pressure is calculated as

pb =

{
pset, if Mi < 1 (subsonic)
pi, if Mi ≥ 1 (supersonic)

(25)

and the right-side vector is

qR =

⎡
⎣γpb/Ti−→

U i

pb

⎤
⎦, Ti =

γpi

ρi
(26)

2.5 Subsonic Outflow Boundary Condition (subsonic outflow p0)

Type Specify Extrapolate Update

Outflow p/p∞ [p/p∞ > 0]
−→
U, T ρ

The manner in which this boundary specifies the static pressure ratio is the same as that
presented in section 2.4 but with different implementation details. If any reverse flow (i.e.,
flow into the computational domain) occurs, setting the static pressure at the boundary
is numerically ill-posed. This boundary condition will explicitly set the flow to exit the
domain. The flow is also forced to remain subsonic by setting the local static pressure to
the local total pressure if the local Mach number is greater than one. The velocities, Ui, and
the temperature, Ti = γpi/ρi, are extrapolated from the interior solution. The pressure is

pb =

{
pset, if Mi < 1 (subsonic)
pt, if Mi > 1 (supersonic)

(27)
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and the velocity is

−→
Ub =

{−→
U i, if U⊥ > 0 (outflow)
|Ui|n̂, if U⊥ < 0 (inflow)

, U⊥ =
−→
U i · n̂ (28)

The right-side vector is

qR =

⎡
⎣γpb/Ti−→

Ub

pset

⎤
⎦ (29)

2.6 Mass Flow Out Boundary Condition (massflux out)

Type Specify Extrapolate Update

Outflow ṁ [ṁ ≥ 0]
−→
U, T ρ, p

This boundary condition allows for specification of the mass flow out of the computational
domain. Adiabatic flow through the boundary is assumed, and the method iteratively
modifies the static pressure for the entire boundary to obtain the requested mass flow
condition. The choice of equations solved for this boundary condition is from the CFD code
VULCAN [10].

The boundary values of momentum thrust Eq.(30), pressure force Eq.(31), and mass flow
Eq.(32), are calculated by using the following integrals, where the domain of the integration
is the entire boundary face:

Fm =
∫

boundary

ρ
(−→

U · n̂
)2

dA, (momentum thrust) (30)

Fp =
∫

boundary

p dA, (pressure force) (31)

ṁ =
∫

boundary

ρ
(−→

U · n̂
)

dA, (mass flow) (32)

The static pressure is updated with a form of the continuity equation:

pb =
1
A

[
Fmδm + Fp

]
, δm =

(
1 − ṁset

ṁ

)
(33)

The velocity and the temperature are extrapolated from the interior computational domain
so that the right-state vector is:

qR =

⎡
⎣γpb/Ti−→

U i

pb

⎤
⎦ (34)

2.7 Subsonic Inflow Boundary Condition (subsonic inflow pt)

Type Specify Extrapolate Update

Inflow pt/p∞, Tt/T∞, n̂ p, R+, Ht ρ,
−→
U

7



The user can specify the direction of the velocity at the boundary either by the flow angles
(αset and βset) relative to the global coordinate axis, or as normal to the boundary, n̂b.

n̂ =

{
cos αset cos βset î − sin βset ĵ + sinαset sin βset k̂

n̂b

(35)

The right-side vector, qR, is determined from the outward propagating invariant, R+, and
a statement of the total enthalpy, Ht, at an element face on the boundary. The formulation
of this boundary condition is the same as that used in [10], which assumes that the flow
through the boundary is adiabatic and isentropic. Following these assumptions, we write

Hti =
pi

ρi

(
γ

γ − 1

)
+

1
2

(
u2

i + v2
i + w2

i

)
(36)

R+ = −Ui − 2ci

γ − 1
(37)

Because the flow is adiabatic, that is, the total enthalpy is conserved across the boundary,
we can state that

Ht =
c2
b

γ − 1
+

1
2
U2

b (38)

Then, by extrapolating R− to the boundary, we obtain

R+ = −Ub − 2cb

γ − 1
(39)

By combining Eqs. (39) and (38), we obtain

Ht =
c2
b

γ − 1
+

1
2

(
R+ +

2cb

γ − 1

)2

(40)

Equation (40) is solved for cb, which is the sonic speed at the boundary, by rewriting it as
a quadratic equation of the form[

1 +
2

(γ − 1)

]
c2
b + 2R+cb +

γ − 1
2

(
R+2 − 2Ht

)
= 0 (41)

The solution has the form

cb± = − b

2a
±

√
b2 − 4ac

2a
(42)

where a, b, and c are the coefficients of the quadratic equation (Eq. 41):

a = 1 +
2

(γ − 1)
, b = 2R+, c =

γ − 1
2

(
R+2 − 2Ht

)
(43)

The physically consistent result is the larger of the two roots and is chosen to update the
sonic velocity at the boundary:

cb = max(cb+ , cb−) (44)

The updated inflow velocity and the Mach number at the boundary are then computed by
using

U =
2cb

γ − 1
− R+, Mb =

U
cb

(45)
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The static pressure and temperature are calculated from the isentropic relations

pb = pt,set

(
1 +

γ − 1
2

M2
b

) γ
γ−1

, Tb = Tt,set

(
pb

pt,set

)γ−1
γ

(46)

The primitive variables that are determined from the input boundary conditions are placed
in the right state qR as

qR =

⎡
⎣pb/RTb

Un̂
pb

⎤
⎦ (47)

2.8 Mass Flow In Boundary Condition (massflux in)

Type Specify Extrapolate Update

Inflow ṁ [ṁ ≥ 0], Tt/T∞ ρ p

Mass flow into the computational domain through this boundary condition is updated by
adjusting the static temperature, T, at the boundary through a form of the energy equation:

cpT +
U

2

2
= cpTt,set (48)

The variable, Tt,set, in Eq. (48) is the user-specified total temperature at the boundary,
and the flow is assumed to be isentropic and adiabatic through the boundary face. An
expression for the velocity is derived by dividing the specified mass flow by the density and
can be written as

U =
ṁ
ρ̄A

, ρ̄ =

∫
boundary

ρ dA

A
(49)

A quadratic equation of static temperature is written by combining Eq. (49) with Eq. (48)
and using a thermally perfect gas assumption for density in terms of the static pressure and
temperature, ρ̄ = p̄/RT:

1
2

(
ṁR

p̄A

)2

T2 + cpT − cpTt,set = 0 (50)

The solution to the resulting equation is a quadratic equation

T± = − b

2a
±

√
b2 − 4ac

2a
(51)

where the coefficients of the quadratic equation are

a =
1
2

(
ṁR

p̄A

)2

, b = cp, c = −cpTt,set (52)

The larger root is taken to update the static temperature at the boundary as

Tb = max(T+, T−) (53)

9



To lessen transients during the solution startup, the user can ramp the mass inflow, ṁ, from
zero up to the specified amount by using the iteration parameter flow mflux ramp as

ṁramp = min
(

1,
iteration

flow mflux ramp

)
mset (54)

The continuity equation determines the mean velocity at the boundary, and the density is
updated from the updated static temperature as

U =
Tb

γ

ṁramp

p̄A
(55)

The right-state vector is:

qR =

⎡
⎣ ρi

−Un̂
ρiTb/γ

⎤
⎦ (56)

2.9 Supersonic Inflow Boundary Condition (fixed inflow)

Type Specify Extrapolate Update

Inflow ρ,
−→
U, p None All

Pressure, density, and velocity (
−→
U set) are specified for the supersonic inflow boundary con-

dition. The velocity vector is forced to be normal to the boundary. The right-state vector
is:

qR =

⎡
⎣ ρset

−|Uset|n̂
pset

⎤
⎦ (57)

3 Computational Method

3.1 FUN3D Code

FUN3D is an unstructured three-dimensional, implicit, Navier-Stokes code. Roe’s flux dif-
ference splitting [11] is used for the calculation of the explicit terms. Other available flux
construction methods include HLLC [12], AUFS [13], and LDFSS [14]. The default method
for calculation of the Jacobians is the flux function of van Leer [15], but the method by
Roe and the HLLC, AUFS and LDFSS methods are also available. The use of flux limiters
are mesh and flow dependent. Flux limiting options include MinMod [16] and methods by
Barth and Jespersen [17] and Venkatakrishnan [18]. Other details regarding FUN3D can
be found in Anderson and Bonhaus [6] and Anderson et al. [19], as well as in the extensive
bibliography that is accessible at the FUN3D Web site, http://fun3d.larc.nasa.gov.

3.2 Boundary Element Discretization

Discretization of the computational volume consists of any combination of tetrahedra, hex-
ahedra, prisms, and pyramids. The faces of the volume elements are either triangles or
quadrilaterals. Therefore, the boundaries consist only of either triangular or quadrilateral
faces or combinations of both types of face elements. An example of a boundary face that
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Figure 3. Perspective view of triangular boundary element in Y-Z plane.

Table 2. Boundary Element Node Weight Factors

Topology W1 W2 W3

Tetrahedral 6/8 1/8 1/8
Hexahedral, prism, pyramid 1 0 0

consists of triangular face elements is shown in the perspective sketch in Figure 3. A space
of subelements is formed to calculate the fluxes at the boundary. Three subelements are
formed from each of the corner nodes (1, 2, and 3) of the triangular face element. The area
and the orientation of the quadrilateral subelements are determined by using the center of
the element , Pc; the left and right midpoints, Pl and Pr; and the main node, Pm. The
normal vector is the cross product of the two vectors that are formed from the main and
center nodes,

−−−→
PmPc, and the left and right midpoints,

−−→
PlPr, so that �n =

−−−→
PmPc ×−−→

PlPr.
The interior, or left state, for the subelement is calculated from an area weighted average

of the interior state nodal values, q1, q2, and q3. The values of the area weights, W, change
with the element topology and are listed in Table 2. A detailed derivation of the boundary
node weighting for tetrahedral meshes can be found in appendix A.

qL = W1q1 + W2q2 + W3q3 (58)

A flux function calculates the contribution to the solution residual for the subelement from
the interior and right-side (i.e., boundary condition ) states. The inviscid flux is added to
the solution residual at each solution time step. Roe’s approximate Riemann solver was
used for the boundary flux contributions to the residual.

4 Test Case Descriptions

The three geometries that are described in Sections 4.1 through 4.3 are used to demonstrate
the inflow and outflow boundary conditions that were described in Section 2. The geometries
are representative of a typical physical situation that could be modeled with each of the
different boundary conditions. Static pressure and mass flow outflow subsonic conditions are
applied to the outflow boundary of the bell-mouth geometry, Section 4.1. Total pressure-
total temperature conditions and mass flow inflow conditions are applied to the inflow
boundary of the American Society Of Mechanical Engineers ( ASME ) nozzle geometry,
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Section 4.2. Fixed primitive variable conditions that simulate a supersonic inflow are applied
to the inflow boundary of the diffuser geometry, Section 4.3.

4.1 Generic Bell-Mouth

The generic bell-mouth configuration is a geometry that transitions an external flow to
an internal flow over a range of conditions without flow separation [20]. The bell-mouth
geometry is routinely used at experimental facilities as a flow-conditioning device for testing
inlets or propulsion simulators. Figure 4(a) shows a perspective view of the geometry with
the symmetry planes, the external outflow plane, and the external surface of the bell-mouth.
A detailed view of the external bell-mouth surface from the same perspective view is shown

X

Y

Z

Bell mouth

External
outflow plane

Z-symmetry
plane

Y-symmetry
plane

(a) Perspective view of the geometry.

X

Y

Z

Bell mouth

External
outflow plane

Z-symmetry
plane

Y-symmetry
plane

Flow
direction

(b) Detailed view of external bell-mouth ge-
ometry.

Figure 4. Bell-mouth geometry with representative surface mesh.

in Figure 4(b). The direction of the flow is from left to right. The radius of the inlet is 1.0,
and the far-field boundary is 30 inlet radii upstream, as shown in Figure 5(a). The shape

rinlet

030 rinlet

4 rinlet

External
outflow
plane

Flow
direction

Freestream
boundary

30 rinlet

(a) Symmetry plane view.

Circular arc

Ellipse
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(he, ke)

Tangent point

Tangent point

Flow
direction

Inlet
face

External
outflow
plane

rinlet

0

4 rinlet

Centerline

Rc

Tangent point

(b) Geometric definition of the bell-mouth.

Figure 5. Bellmouth geometry details.

of the bell-mouth consists of an elliptic contraction section with a 9:1 capture area. (See
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Figure 6. ASME nozzle geometry.

Figure 5(b).) The bell fairs to a flat external wall via a circular-arc lip. For this study,
the geometry is axisymmetric and is modeled with a quarter-plane symmetric unstructured
tetrahedral mesh. The mathematical equation that describes the elliptic portion of the
bell-mouth is

(x − he)
2

a2
e

+
(y − ke)

2

b2
e

= 1, he = 0.0, ke = 3.0, ae = 4.5, be = 2.0 (59)

and the equation that describes the circular-arc fairing is

(x − hc)
2 + (y − kc)

2 = R2
c , hc = −ae + Rc, kc = ke, Rc = 1.0 (60)

4.2 ASME Flow Calibration Nozzle

The ASME nozzle is a flow standard geometry that is used for calibration of full-pipe
flows in experimental facilities [21] and serves as an excellent configuration for validation of
internal flow calculations. A perspective view of the mesh is shown in Figure 6(a), and a
streamwise cross-sectional view of the nozzle is shown in Figure 6(b). The geometry consists
of two constant-area cylindrical sections joined via two elliptically contoured sections. The
upstream plenum section has a cross-sectional radius of 5 in., and the downstream nozzle
section is a constant-area pipe with a radius of 2.5 in. The plenum entrance is at station
x = −10.0, with the exit at station x = 8.0. The fairing tangent point between the two
elliptical contours is at x ≈ 0.54. All of the computations were accomplished by using
quarter-plane symmetric tetrahedral meshes. The equation that defines the nozzle wall
contour from the middle tangent point to the downstream tangent point is

(x − hn)2

a2
n

+
(y − kn)2

b2
n

= 1, hn = 5.0, kn = 2.5, an = 5.0, bn = 2.5 (61)

and the equation that defines the nozzle wall from the upstream tangent point to the middle
tangent point is

(x − hp)2

a2
p

+
(y − kp)2

b2
p

= 1, hp = −3.0, kp = 2.5, ap = 3.99, bp = 2.9 (62)
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Figure 7. Conical diffuser geometry.

Table 3. Test Case Mesh Densities

hN Bell-mouth ASME nozzle Diffuser

tetrahedra/nodes tetrahedra/nodes tetrahedra/nodes

1.0 51,078/10,253 50,309/10,202 25,484/5,670
0.8 99,125/19,326 97,517/19,129 52,499/10,992
0.6 235,111/44,370 231,510/43,760 132,693/26,452
0.4 775,258/141,372 764,440/139,535 433,863/82,184
0.2 6,648,653/1,168,680 6,011,766/1,059,652 2,271,735/491,521

4.3 Supersonic Diffuser

The third test geometry is a conical diffuser with a wall divergence angle of 3 degrees.
The increasing cross-sectional area of the duct maintains the supersonic flow condition
downstream of the supersonic fixed inflow boundary. A perspective view of the geometry
is shown in Figure 7(a). A streamwise cross-sectional view of the geometry is shown in
Figure 7(b).

5 Discussion

The unstructured meshes with tetrahedral cells were generated using the software package
VGRID [22]. The number of nodes for the cases is changed through the use of the global
parameter, ifact. The ifact parameter controls the density and number of cells, N, by
increasing or decreasing the strength of the sources within the mesh generation data file.
The total number of cells (and nodes) for each case are listed in Table 3.

An equivalent mesh size can be related to the mesh density (or number of degrees of
freedom) N. The equivalent mesh size should decrease with an increase in the number of
cells. In three dimensions, the equivalent mesh size, hN, should tend to zero as N−1/3. The
equivalent mesh size can also be related to a characteristic distance defined in terms of the
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Table 4. Test Cases

Boundary condition Boundary name Geometry Specified conditions

Pressure outflow back pressure Bell-mouth p/p∞
Pressure outflow subsonic outflow p0 Bell-mouth p/p∞
Mach number outflow subsonic outflow mach Bell-mouth M
Mass flow outflow massflux out Bell-mouth ṁ
Pressure subsonic inflow subsonic inflow pt ASME nozzle pt/p∞, Tt/T∞ , α, β
Mass flow inflow massflux in ASME nozzle ṁ, Tt/T∞
Supersonic inflow fixed inflow Diffuser ρ,

−→
U, p

local control volume size, hv = ‖V−1/3‖, where the norm used in this study is the L∞ norm.
A statement of the asymptotic order of error can only be made when consistently refined

meshes are used. Consistent mesh refinement is purely geometric occurring when a linear
relationship exists between the equivalent mesh size based on degrees of freedom ,hN, and
the equivalent mesh size based on the characteristic distance, hV. See Thomas et al. [23]
for additional discussion on consistent refinement. The similarity of the mesh families for
each configuration is shown in Figure 8. A consistently refined mesh is shown as a dashed
line in the Figure. All three geometries display a linear trend between the equivalent mesh
measures, hN and hV.

The free-stream Mach number, unless otherwise noted, was 0.2 and the Courant-Friedrichs-
Lewy (CFL) number, unless otherwise noted, was ramped from 1 to 100 over 250 iterations.
Flux construction was performed by using the approximate Riemann solver by Roe and
without any flux limiting. The boundary condition test cases are listed in Table 4. The
bell-mouth was used to test the static pressure and the mass flow out boundary conditions.
The ASME nozzle was used to test boundary conditions with the total temperature and ei-
ther total pressure or mass flow set at an inflow boundary. The diffuser geometry was used
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Figure 9. Mach number contours for the bell-mouth geometry.

to test the supersonic fixed inflow boundary condition. In the following sections, solution
convergence histories for each of the mesh densities are shown for each boundary condi-
tion. Also, the convergence of the error in the boundary value is shown for each boundary
condition. The error in the boundary condition is the difference between the user-defined
boundary condition and the area-weighted average of the boundary solution condition from
the code. The area-weighted average for a variable, φ, is designated by an overbar φ and is
calculated as

∫
boundary

φdA/
∫
boundary

dA.
The area-weighted average values for ρ, p, pt, and mass flow are calculated by the

summation equations, Eqs. (63). The average velocity, speed of sound, and Mach number
are calculated by Eqs. (64).

ρ =
1
A

∑
boundary

ρ δA, p =
1
A

∑
boundary

p δA, pt =
1
A

∑
boundary

(
p +

1
2
ρU2

)
δA (63)

ṁ =
∑

boundary

ρU⊥δA, U = ṁ/ρA, c =
√

γp/ρ, M = U/c (64)

where δA is the area of an individual element on the boundary face and A is the boundary
area, A =

∑
boundary δA. The error in the boundary condition for the parameter φ is then

Errorφ = φset − φ (65)

5.1 Bell-Mouth Calculations

The bell-mouth geometry was used to test the fixed subsonic Mach number, fixed static
pressure, and mass flow outflow boundary conditions. Surface Mach number contours on
and around the bell-mouth for an outflow mass flow condition of 0.25 and a free-stream
Mach number of 0.2 are shown in Figure 9. For this set of conditions, the flow stagnation
point is slightly below the leading edge of the bell-mouth, as evidenced by the region of zero
Mach number contours. The flow accelerates externally around the bell mouth leading edge
to exit the computational domain further downstream.
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5.1.1 Static Pressure Outflow (back pressure)
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Outflow p/p∞ = 0.90, M∞ = 0.2
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(c) Boundary value error property.

Figure 10. Static pressure ratio boundary condition, back pressure.

The solution residual history for the fixed static pressure (also known as a back pressure) test
is shown in Figure 10(a). Iterative convergence was achieved for all mesh levels for the set
condition of p/p∞ = 0.9. The boundary value error typically reached the final level for each
equivalent mesh size in fewer than 400 iterations, Figure. 10(b). The final boundary value
error is typically achieved before interative convergence of the solution residual. The change
in boundary value error with equivalent mesh size after iterative convergence is shown in
Figure 10(c). The error in the set static pressure converges as the square of the equivalent
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mesh size. The second-order convergence property in the error is indicated by the slope of
the dotted line.

5.1.2 Subsonic Static Pressure Outflow (subsonic outflow p0)
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Outflow p/p∞ = 0.90, M∞ = 0.2
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(c) Boundary value error property.

Figure 11. Subsonic outflow boundary condition, subsonic outflow p0.

The residual history for subsonic outflow static pressure calculations is shown in Fig-
ure 11(a). Similar to the back pressure boundary, all mesh levels achieve iterative con-
vergence for the set condition of p/p∞ = 0.9. The boundary value error achieved the final
value for each mesh level typically before 400 iterations, Figure 11(b). The change in bound-
ary value error with equivalent mesh size after iterative convergence is shown in Figure 11(c).
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The error in the set static pressure converges as the square of the equivalent mesh size. The
second-order convergence property in the error is indicated by the slope of the dotted line.

5.1.3 Mach-number outflow (subsonic outflow mach)
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(c) Boundary value error property.

Figure 12. Mach-number boundary condition, subsonic outflow mach.

The Mach-number outflow boundary condition adjusts the static pressure to obtain the
specified Mach number. The residual history for the fixed subsonic Mach-number outflow
boundary condition test is shown in Figure 12(a). Iterative convergence was achieved for
all mesh levels for the set condition of Mset = 0.9. As shown in Figure 12(b), the error in

19



the Mach number reaches the final value within several hundred iterations for this test case.
The error in the set Mach number converges as the square of the equivalent mesh size. The
second-order convergence property in the error is indicated by the slope of the dotted line
(Figure 12(c)). For this configuration, Mset= 0.9 is approximately equivalent to a inflow
static pressure ratio of p/p∞ = 0.61.

5.1.4 Mass flow outflow (massflux out)

Type Specify
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(c) Boundary value error property.

Figure 13. Mass flow out boundary condition, massflux out.

The residual history and the boundary value error history for the fixed mass flow outflow
calculation are shown in Figure 13(a). Iterative convergence was achieved for all mesh levels
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for the set condition of ṁ = 0.25. As shown in Figure 13(b), the error in the mass flow
reaches the final value within several hundred iterations for most cases. The relaxation of
the static pressure to set the mass flow took longer for the equivalent size mesh hN = 0.2
as a result of a lower damping of the pressure oscillations in the flow field. The error in
the set mass flow converges as the square of the equivalent mesh size. The second-order
convergence property in the error is indicated by the slope of the dotted line (Figure 13(c)).
The average values for the Mach number and the static pressure ratio at the boundary for
this mass flow setting are approximately 0.33 and 0.95, respectively.

5.2 ASME Nozzle Calculations

Two inflow boundary conditions are evaluated in this section using an ASME flow calibration
nozzle. Figure 14 shows Mach-number contours for choked-flow conditions in the nozzle. The
direction of flow, from left to right, is denoted by the symbol U and the vector arrow. Typical
combinations of inflow and outflow boundaries for an internal flow configuration includes
(a) total pressure–total temperature inflow with static pressure outflow; (b) total pressure–
total temperature inflow with mass flow outflow; or (c) mass flow inflow and extrapolation
outflow. Choice (c) would work for choked flows where the exit Mach number is equal to
or greater than 1. The total pressure–total temperature inflow boundary condition is the
most appropriate inflow condition to use when the performance of the nozzle (e.g. discharge
coefficient, thrust ratio, or thrust coefficient) is to be determined. This set of conditions does
not presuppose the mass flow of the nozzle because the performance is a result of geometric
characteristics.
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Figure 14. Mach-number contours for the ASME nozzle test case.

5.2.1 Pressure Subsonic Inflow (subsonic inflow pt)

Type Specify

Inflow pt/p∞ = 1.6, Tt/T∞ = 1.0, α = β = 0.0
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(c) Boundary value error property.

Figure 15. Subsonic inflow (pt) boundary condition, subsonic inflow pt.

Iterative convergence, shown by the residual history plotted in Figure 15(a), was achieved
for all mesh levels for the set condition of pt/p∞ = 1.6. As shown in Figure 15(b), the error
in the total pressure reaches the final value within several hundred iterations for all grids.
The error in the set total pressure converges as the square of the equivalent mesh size. The
second-order convergence property in the error is indicated by the slope of the dotted line
(Figure 15(c)). The average values for the Mach number and the mass flow ratio at the
boundary for this total pressure/total temperature setting are approximately 0.14 and 4.4,
respectively.
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5.2.2 Mass Flow Inflow (massflux in)

Type Specify

Inflow ṁ = 1.0, Tt/T∞ = 1.0 (unchoked)
Inflow ṁ = 10.0, Tt/T∞ = 1.0 (choked)
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(c) Boundary value error property.

Figure 16. Unchoked mass flow boundary condition, massflux in.

The residual history and the boundary value error history for the mass flow inflow cases
are shown in Figure 16 for the unchoked nozzle flow and Figure 17 for the choked nozzle
flow condition. Iterative convergence was achieved for all mesh levels for both set conditions
of ṁ = 1.0 and ṁ = 10.0, as shown in Figures 16(a) and 17(a) respectively. The error
in the mass flow reaches the final value in about 1000 iterations for all cases, as shown
in Figures 16(b) and 17(b). The boundary value error converges approximately as the
square of the equivalent mesh size. The second-order convergence property in the error is
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Figure 17. Choked mass flow boundary condition, massflux in.
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indicated by the slope of the dotted line (Figures 16(c) and 17(c)). The average values for
the total pressure ratio at the inflow boundary for the unchoked and choked nozzle mass
flow conditions are approximately 1.03 and 3.5, respectively.

5.3 Supersonic Diffuser Calculations

A solution using the supersonic fixed inflow boundary condition at the inflow plane of the
diffuser is shown in Figure 18. An extrapolation boundary condition was used at the outflow
plane. The flow is from left to right, as indicated by the arrow. The flow accelerates from
approximately Mach 1.3 at the inflow to Mach 2.3 at the outflow.
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Figure 18. Mach-number contours for the diffuser test case.

Type Specify

Inflow ρ = 1.2,
−→
U = (1.0, 0., 0.), p = 1.0/1.4

The residual history and the boundary value error history for the fixed supersonic inflow
case are shown in Figure 19. Iterative convergence was achieved for all mesh levels for the
set conditions within a few hundred iterations. As shown in Figure 19(b), the error in the
set velocity achieves the final value for each mesh in less than 100 iterations. The error in
the set velocity converges as the square of the equivalent mesh size for the three smallest
equivalent mesh sizes. The second-order convergence property in the error is indicated by
the slope of the dotted line (Figure 19(c)).

6 Summary

Boundary conditions that allow subsonic and supersonic flow into and out of the computa-
tional domain have been derived and implemented in the computational method FUN3D.
The boundary conditions are enforced through determination of the flux contribution to
the solution residual. Roe’s approximate Riemann solver is used to construct the fluxes at
the boundary faces. These boundary conditions were implemented in an implicit manner in
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Figure 19. Supersonic inflow boundary condition, fixed inflow.
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the FUN3D CFD code and were verified for three generic test geometries. Iterative residual
convergence was achieved at all mesh-density levels for all of the conditions that were used in
this study. The user-requested condition was achieved in all cases, and error in the bound-
ary condition value decreased in a second-order manner with an increase in mesh density.
Boundary value error convergence occurs before iterative convergence and depending on the
application, boundary values were within 0.5 percent of the specified parameter value with
only a residual reduction of 5 orders of magnitude.
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7 Nomenclature

Roman letters
A area
c speed of sound
cp specific heat at constant pressure
H enthalpy
hN equivalent mesh size based on degrees of freedom, N−1/3

hv L1 norm of V−1/3, |L1| = ‖V−1/3‖1

î, ĵ, k̂ Cartesian unit vectors axis in physical space
ṁ mass flow
M Mach number
�n normal vector
n̂ unit normal vector, �n/|�n|
N number of nodes in mesh
p static pressure
R real gas constant
R Riemann invariant
s entropy
T temperature
U average velocity−→
U velocity vector, [u, v, w]T

U velocity magnitude
u,v,w Cartesian velocity components
V primal volume of elements in mesh
x, y, z Cartesian coordinates in physical space

Subscripts
b boundary state
∞ free-stream state
i internal state
L left state
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o outer state
⊥ normal to boundary element
R right state
set user-requested condition
t total conditions

Conventions
F boundary element flux vector
q primitive variables state vector
R solution residual vector

Symbols
α u-w angle of velocity
β u-v angle of velocity
γ ratio of specific heats, γ = 1.4 (air)
λ eigenvalue
ρ density
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Appendix A

Node Weighting for a Boundary Tetrahedral

The tetrahedral element that is shown in Figure A1 has four nodes with an associated
area-weighted normal, �n1, �n2, �n3, and �n4, opposite each node. The average value of the

XY

Z Node 4

Node 1

Node 3

Node 2

tetrahedral cell

n2

n3

n1

n4

→

→

→

→

Figure A1. Tetrahedral element.

variable q̄i at the face centers is one-third the sum of the three corners of that face if we
assume that a constant gradient exists across the element.

q̄1 =
1
3

(qnode2 + qnode3 + qnode4) (A1)

q̄2 =
1
3

(qnode1 + qnode3 + qnode4) (A2)

q̄3 =
1
3

(qnode1 + qnode2 + qnode4) (A3)

q̄4 =
1
3

(qnode1 + qnode2 + qnode3) (A4)

The Green-Gauss (GG) integral over the tetrahedral element is equal to one-third the sum-
mation of the product of the average value of q̄i with each directed face normal, �ni.

∮ GG

tetrahedron

∇qdV =
1
3

4∑
i=1

q̄i�ni (A5)

The dual of the tetrahedral element shown in Figure A2 has six faces, with the associated
normals �nB, �nL, and �nR on the boundaries and �n12, �n13, and �n14 facing the tetrahedral face
opposite node 1. The finite-volume (FV) integral around the dual volume is written as a
summation of q̄ times the directed normal of the face. At this point, the influence of the
nodes on the boundary faces L, R, B, a, b, and c are unknown. The goal is to make the FV
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Figure A2. Tetrahedral dual element.

integral exact when the qn are linear.∮ FV

dual

∇qdV =
q1 + q2

2
�n12 +

q1 + q3

2
�n13 +

q1 + q4

2
�n14

+ (aq1 + bq3 + cq4)�nL

+ (aq1 + bq2 + cq4)�nR

+ (aq1 + bq2 + cq3)�nB (A6)

The FV integral around the dual volume can be equated to one-fourth the GG integral
around the tetrahedron.

1
4

∮ GG

tetrahedron

∇qdV =
∮ FV

dual

∇qdV (A7)

The following shows that the left-hand side of Eq. (A7) can be expressed in a form that
matches the right-hand side of Eq. (A6). Equation (A5) is substituted into the right-hand
side of Eq. (A7) and expanded as

1
4

∫ GG

tetrahedron

∇qdV =
1
4

1
3

∑
q̄i�ni (A8)

=
1
12

(q1�n1 + q2�n2 + q3�n3 + q4�n4) (A9)

Add and subtract 2q1�n1 from Eq. (A9), and use the equations that relate �n2, �n3, and �n4 to
�n1 and the normals of the dual volume, �n12, �n13, and �n14 (Eq. A10).

�ni = 12�n1i + �n1 (A10)

1
4

∫ GG

tetrahedron

∇qdV =
1
12

[
3q1�n1 − 2q1�n1 + q2 (12�n12 + �n1)

+ q3 (12�n13 + �n1) + q4 (12�n14 + �n1)
]

(A11)
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Split the terms with the �n1i normal vector as

1
4

∫ GG

tetrahedron

∇qdV =
1
12

[
−2q1�n1 + 6q2�n12 + 6q3�n13 + 6q4�n14

+ 3q1�n1 + q2�n1 + q3�n1 + q4�n1

+ 6q2�n12 + 6q3�n13 + 6q4�n14

]
(A12)

Substituting into Eq. (A12) the additional geometric relations that equate the face normals
of �n1, �n12, �n13, and �n14 with �nL, �nR, and �nB (Eqs. (A13)-(A16):

�n1 = −3 (�n12 + �n13 + �n14) = 3 (�nL + �nR + �nB) (A13)

�n12 = −1
4

(2�nL + �nR + �nB) (A14)

�n13 = −1
4

(�nL + 2�nR + �nB) (A15)

�n14 = −1
4

(�nL + �nR + 2�nB) (A16)

1
4

∫ GG

tetrahedron

∇qdV =
q1 + q2

2
�n12 +

q1 + q3

2
�n13 +

q1 + q4

2
�n14 +

1
12

(3q1�n1)

+ q2

[
−1

8
(2�nL + �nR + �nB) +

1
4

(�nL + �nR + �nB)
]

+ q3

[
−1

8
(�nL + 2�nR + �nB) +

1
4

(�nL + �nR + �nB)
]

+ q4

[
−1

8
(�nL + �nR + 2�nB) +

1
4

(�nL + �nR + �nB)
]

(A17)

Finally, gather terms of similar face vectors:

1
4

∫ GG

tetrahedron

∇qdV =
q1 + q2

2
�n12 +

q1 + q3

2
�n13 +

q1 + q4

2
�n14

+
(

3
4
q1 +

1
8
q3 +

1
8
q4

)
�nL

+
(

3
4
q1 +

1
8
q2 +

1
8
q4

)
�nR

+
(

3
4
q1 +

1
8
q2 +

1
8
q3

)
�nB (A18)

A direct comparison of the terms in Eq. (A18) with those in Eq. (A6) shows that a = 3/4,
b = 1/8, and c = 1/8.

The author would like to thank Nishikawa Hiroaki for this derivation.
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