Seasonal Variations of Stratospheric Age Spectra in GEOSCCM

Li, Feng1,2, Darryn Waugh3, Anne R. Douglass2, Paul A. Newman2, Steven Pawson2, Richard S. Stolarski2,3, Susan E. Strahan1,2, J. Eric Nielsen2,4

1NASA Goddard Earth Sciences Technology and Research, Greenbelt, MD, USA
2NASA Goddard Space Flight Center, Greenbelt, MD, USA
3Johns Hopkins University, Baltimore, MD, USA
4Science Systems and Application Inc., Lanham, MD USA

Popular Summary

There are many pathways for an air parcel to travel from the troposphere to the stratosphere, each of which takes different time. The distribution of all the possible transient times, i.e. the stratospheric age spectrum, contains important information on transport characteristics. However, it is computationally very expensive to compute seasonally varying age spectra, and previous studies have focused mainly on the annual mean properties of the age spectra. To date our knowledge of the seasonality of the stratospheric age spectra is very limited.

In this study we investigate the seasonal variations of the stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM). We introduce a method to significantly reduce the computational cost for calculating seasonally dependent age spectra. Our simulations show that stratospheric age spectra in GEOSCCM have strong seasonal cycles and the seasonal cycles change with latitude and height. In the lower stratosphere extratropics, the average transit times and the most probable transit times in the winter/early spring spectra are more than twice as old as those in the summer/early fall spectra. But the seasonal cycle in the subtropical lower stratosphere is nearly out of phase with that in the extratropics. In the middle and upper stratosphere, significant seasonal variations occur in the subtropics. The spectral shapes also show dramatic seasonal change, especially at high latitudes. These seasonal variations reflect the seasonal evolution of the slow Brewer-Dobson circulation (with timescale of years) and the fast isentropic mixing (with timescale of days to months).
Seasonal Variations of Stratospheric Age Spectra in GEOSCCM

Li, Feng1,2, Darryn Waugh3, Anne R. Douglass2, Paul A. Newman2, Steven Pawson2, Richard S. Stolarski2,3, Susan E. Strahan1,2, J. Eric Nielsen2,4

1NASA Goddard Earth Sciences Technology and Research, Greenbelt, MD, USA
2NASA Goddard Space Flight Center, Greenbelt, MD, USA
3Johns Hopkins University, Baltimore, MD, USA
4Science Systems and Application Inc., Lanham, MD USA

Correspondence to: Feng Li (feng.li@nasa.gov)
Abstract

The stratospheric age spectrum is the probability distribution function of the transit times since a stratospheric air parcel had last contact with a tropospheric boundary region. Previous age spectrum studies have focused on its annual mean properties. Knowledge of the age spectrum's seasonal variability is very limited. In this study, we investigate the seasonal variations of the stratospheric age spectra using the pulse tracer method in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM). The relationships between the age spectrum (also called Transit-Time Distribution, or TTD) and the Boundary Impulse Response (BIR) are reviewed and a simplified method to reconstruct seasonally varying age spectra is introduced. The age spectra in GEOSCCM have strong seasonal cycles, especially in the lowermost and lower stratosphere and the subtropical overworld. These changes reflect the seasonal evolution of the Brewer-Dobson circulation, isentropic mixing, and transport barriers. We also investigate the seasonal and interannual variations of the BIRs. Our results clearly show that computing an ensemble of seasonally dependent BIRs is necessary in order to capture the seasonal and annual mean properties of the stratospheric age spectrum.
1. Introduction

The mean age of stratospheric air is the average time for an air parcel to travel from a source region in the troposphere (or near the tropopause) to a sample region in the stratosphere [Hall and Plumb, 1994]. The mean age is a fundamental transport timescale that has been widely used in stratospheric transport studies, particularly in the evaluation of chemical transport models and chemistry-climate models (CCMs) [Hall et al., 1999a, b; Eyring et al., 2006]. However, the mean age only contains partial information of transit timescales. The complete information is included in the age spectrum, i.e., a probability distribution function of all the possible transit times since an air parcel had last contact with the tropospheric boundary source region [Hall and Plumb, 1994; Waugh and Hall, 2002]. Many studies have shown that the age spectrum is more useful than the mean age in diagnosing transport characteristics, e.g., the relative importance of different transport pathways into the lower stratosphere [Andrews et al., 2001; Bonisch et al., 2009], the seasonal variations of stratospheric transport [Andrews et al., 1999; Reithmeier et al., 2008; Bonisch et al., 2009], and the horizontal recirculation rate in the tropical pipe region [Strahan et al., 2009].

The age spectrum is a kind of boundary propagator. By definition, the boundary propagator $G(r,t|\Omega,t')$ is a Green's function that solves the continuity equation for the mixing ratio of a conserved and passive tracer $\chi(r,t)$ [Hall and Plumb, 1994]. This solution can be expressed by the following integration

$$\chi(r,t) = \int_{-\infty}^{t} \chi(\Omega, t') G(r, t | \Omega, t') dt'$$
where Ω is the boundary source region, r is the sample region, t' is the source time or the time the tracer had last contact with Ω, and t the field time or the time the tracer is sampled at r. In many cases the boundary propagator is easier to interpret if it is rewritten as a function of the transit time ξ = t-t', i.e.,

\[\chi(r,t) = \int_0^\infty \chi(\Omega,t-\xi)G(r,t|\Omega,t-\xi)d\xi \]

where G(r,t|Ω,t-ξ)dξ represents the mass fraction of the air parcel at r and a specific field time t that was last in contact with Ω between ξ and ξ+dξ ago [Waugh and Hall, 2002; Holzer et al., 2003; Haine et al., 2008]. Here G(r,t|Ω,t-ξ) is the age spectrum, and it is called the Transit-Time Distribution (TTD) in tropospheric and ocean transport literatures [e.g., Holzer et al., 2003; Haine et al., 2008]. In this paper we use TTD and age spectrum interchangeably.

The age spectrum cannot be directly observed, and we rely almost solely on models to compute the age spectrum. Two methods have been used to calculate the stratospheric age spectrum, the pulse tracer method [Hall et al., 1999b] and the trajectory method [Schoeberl et al., 2003]. The pulse tracer method is simpler and has been used more commonly than the trajectory method. It does not need any additional software and can be easily implemented. Put a pulse of a conserved and passive tracer in the boundary source region Ω at a specific source time t' and let it disperse throughout the interior area. The time series of the mixing ratio of this tracer at any interior point r, which can be expressed mathematically as G(r,t'+ξ|Ω,t'), represents the model's time-evolving response to a delta function boundary condition. G(r,t'+ξ|Ω,t') is called the Boundary
Impulse Response (BIR, *Haine et al.*, 2008). Thus the direct product of the pulse tracer method is not the TTD, but the BIR. In general the BIR $G(r, t' + \frac{\xi}{2}; t')$ is not equal to the age spectrum (TTD) $G(r, t; t' - \frac{\xi}{2})$, because the boundary propagator is a function of both field time t and source time t'. However, for a stationary condition the boundary propagator is only a function of the transit time ξ, i.e., for any t and t', $G(r, t; t' - \frac{\xi}{2}) = G(r, t' + \frac{\xi}{2}; t')$. All the previous stratospheric pulse tracer age spectrum studies used this property to compute the BIR as the TTD [*Hall and Plumb*, 1994; *Hall et al.*, 1999a, b; *Schoeberl et al.*, 2005]. These studies assumed steady flow and performed a single realization of the BIR as an approximation of the annual-mean or time-averaged TTD.

The traditional stratospheric pulse tracer studies have greatly improved our understanding of the annual mean properties of the age spectrum [*Hall and Plumb*, 1994; *Waugh and Hall*, 2002; *Schoeberl et al.*, 2005], but their approach has disadvantages. By assuming steady flow and performing a single realization, their method cannot be used to investigate the seasonality of the stratospheric age spectra. Stratospheric transport has a strong seasonal cycle due to the seasonal variations of processes such as tropical upwelling, subtropical jets, and polar vortices [*e.g.*, *Chen*, 1995; *Pan et al.*, 1997; *Rosenlof et al.*, 1997; *Ray et al.*, 1999; *Randel et al.*, 2001]. One would expect the stratospheric age spectra to have large seasonal variations. However our knowledge of the age spectrum’s seasonality is very limited. To date the only work that investigated the seasonal variations of stratospheric age spectra was done by *Reithmeier et al.* [2008] using a trajectory method. *Reithmeier et al.* [2008] found that the age spectra in the ECHAM4 general circulation model (GCM) have strong seasonal cycles, and that the
shapes of the age spectra change significantly with latitudes. However, there are serious transport biases in ECHAM4. Specifically, the subtropical barrier is too weak and is located too far away from the Equator compared to observations. These biases could be related to the limitations of the version of ECHAM4 used in Reithmeier et al. [2008], which has a very coarse horizontal (6 degrees) and vertical (only 19 levels) resolution and a very low model top at 10 hPa. The model limitations and the poor transport performance cast doubts on the results of Reithmeier et al. [2008].

Another concern about the traditional pulse tracer method is whether a single BIR is a good approximation of an annual-mean age spectrum. Because in reality the stationary assumption does not hold, the single BIR approach implies that the seasonality of stratospheric transport has small impact on the annual mean properties of the age spectrum. Hall et al. [1999b] found that the mean age of a single BIR agrees reasonably well with the annually averaged clock tracer mean age. This was used as evidence that the annual mean properties of the age spectrum could be well captured by a single BIR realization. But no previous studies actually investigated the seasonal change of the BIR and the differences between the TTD and the BIR in the stratosphere.

The limits of the traditional stratospheric pulse tracer method can be addressed by performing an ensemble of time-dependent BIR simulations. Holzer et al. [2003] and Haine et al. [2008] described in detail a straightforward method to calculate the TTDs in unsteady flow using the pulse tracer. We will review their method in the next section. This method requires performing a large number of BIR experiments in different seasons.
and years to reconstruct the time-varying TTDs, and therefore it is computationally expensive. We want to point out that the pulse tracer method produces a more internally consistent age spectrum than the trajectory method because it uses the full and same model transport operator, including processes such as parameterized mixing, diffusion, and entrainment that could not be accurately represented by other methods [Holzer et al., 2003].

In this study we investigate the seasonal variations of the age spectra in the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) using the pulse tracer method. We introduce an approach to significantly reduce the computational cost for calculating seasonally varying age spectra based on the method of Holzer et al. [2003] and Haine et al. [2008]. Our main purpose is to understand the seasonality of the stratospheric age spectra. Another purpose is to clarify the differences between the BIR and the TTD. Our work broadens the usage of the pulse tracer age spectra. These results will improve the understanding of the transport characteristics in the GEOSCCM, which has been shown to produce realistic stratospheric transport by various diagnostics [SPARC CCMVal, 2010]. Our results could also be used by empirical studies as guidance for age spectrum's seasonal variability.

Our method for calculating the age spectra is described in Section 2. We review the relationship between the TTDs and BIRs and describe how to compute TTDs and BIRs in unsteady flow using a simplified version of the method of Holzer et al. [2003] and Haine et al. [2008]. We will also briefly introduce the GEOSCCM and the simulations.
Seasonal variations of the TTDs are presented in Section 3. This is followed by discussions of the seasonal and interannual variations of the BIRs in Section 4. Discussions and summary are given in Section 5. All results presented in this paper are zonally and monthly averaged and then interpolated to the isentropic coordinate.

2. Method

As introduced in Section 1, the TTD and the BIR are different kind of boundary propagators. They are orthogonal to each other and their relationship is illustrated in Figure 1a. The contours in Figure 1a are an example of the boundary propagator at 60°N and 420 K. The TTD is fixed in field time and increases toward older source time, i.e., a horizontal cut through the boundary propagator map from right to left. The BIR is fixed in source time and increases with field time, i.e., a vertical cut from bottom to top. For unsteady flow the boundary propagator is a function of both field time t and source time t' and therefore TTD and BIR are not the same (Figure 1c). Only in steady flow TTD equals BIR.

The BIR can be easily computed from the pulse tracer experiment. Once the BIR is obtained, the TTD can be constructed from the BIR. For steady flow, this is simple because the TTD equals the BIR. And we only need to perform a single tracer experiment because the age spectrum for a stationary condition has no time dependence. But in reality, transport is not stationary and computing the TTD is more complicated. The most direct method is to construct a complete boundary propagator map with many
successive vertical BIR sections and then a horizontal cut through the map gives the TTD (Figure 1., also see Figure 1 of Haine et al. [2008] and Figure 2 of Holzer et al. [2003]). This method requires a large number of tracer experiments, so in practice some simplifications have to be made.

We first computed twelve BIRs with twelve pulse tracers released in each month of a given model year. The method of Hall et al. [1999b] is followed to compute the BIR. The boundary source region is set to be the tropical lower troposphere from 10°S to 10°N and between the surface and about 800 hPa. In order to approximate the delta function boundary condition, a pulse of artificial conserved and passive tracer is uniformly released in the source region. The tracer's mixing ratio is set to an arbitrary constant value for the first month of the experiment and then held as zero through the rest of the experiment in the source region. Each experiment runs for twenty years in order to account for the long tail of the stratospheric age spectrum [Schoeberl et al., 2003]. Then the time series of the tracer's mixing ratio is the BIR. Twelve pulses were released at each month of a given year and each pulse tracer produces one BIR. Figure 1b shows an example of the calculated BIRs at 60°N and 420 K as a function of source time t' and field time t. Here the source time represents when the pulses are released at the tropical surface and the field time is when the mixing ratio of the tracer is sampled in the stratosphere.

The twelve BIRs form twelve vertical sections of the boundary propagator map, but they are not enough to reconstruct the TTDs. For a 20-year long TTD, a total of 240 pulse
192 experiments are needed. In practice it is not possible to run such a large number of
193 experiments with the GEOSCCM. So we make an initial assumption that the BIR's
194 interannual variability is sufficiently small compared to its seasonal variability that we
195 can ignore age spectrum's interannual variations for the purpose of this study. We will
196 show in section 4 that this is a reasonable assumption in GEOSCCM. Under this
197 assumption, we construct the boundary propagator map by simply repeating the 12 BIRs
198 every year for 20 years and shifting the source time accordingly, i.e., let $G(r,t'+\frac{\Omega}{12},t') =$
199 $G(r,t'+n\times12|\Omega,t'+n\times12)$, where t' = Jan, Feb,...Dec represents the source time of the
200 pulse tracer experiments, and $n = 1, 20$ are the repeating years. We then obtain the TTDs
201 as horizontal cuts through the map (Figure 1a). In the next section we show evidence that
202 our method is valid in a climatological mean sense, i.e., our calculation captures very
203 well the seasonality of the climatological mean.

205 The pulse experiments were performed in a transient simulation using the GEOSCCM
206 Version 2. GEOSCCM Version 2 is an update from GEOSCCM version 1 [Pawson et
207 al., 2008]. It couples the GEOS5-GCM [Reineker et al., 2008] with a comprehensive
208 stratospheric chemistry package [Douglass et al., 1996]. The model has 72 vertical levels
209 with a top level at 1 Pa. The simulation was carried out on a horizontal resolution of 2°
210 latitude by 2.5° longitude. The twelve pulses were released in each month of model year
211 2000 and ran for 20 years to 2019, where the model year represents the conditions of the
212 external forcings. The simulation was forced with IPCC (2001) greenhouse gas (GHG)
214 temperature and sea ice contents were taken from an NCAR Community Climate System
Model 3.0 run in the A1b GHG scenario. The solar forcing was held constant in the experiments.

Results from GEOSCCM Version 2 have been extensively analyzed and evaluated using observation-based process-oriented diagnostics along with other CCMs in the SPARC CCMVal-2 project \cite{SPARC CCMVal, 2010}. Overall GEOSCCM performs well in terms of the stratospheric dynamical and thermal structure, trace gas distributions, and their decadal changes in the recent past. GEOSCCM has quite realistic transport characteristics in the stratosphere. The tropical ascent rates, the lower stratospheric mixing rates, and the mean age compare well to observations. GEOSCCM has the best performance in mean age among all the CCMs that participated in the CCMVal-2. But GEOSCCM has a somewhat stronger subtropical barrier in the middle stratosphere and a stronger Antarctic polar vortex barrier than observed.

3. **Seasonal Variations of the Transient Time Distribution**

Three parameters that characterize aspects of the age spectra are the modal age $\tau_m(r,t)$, the mean age $\Gamma(r,t)$, and the width $\Delta(r,t)$ \cite{Waugh and Hall, 2002}. The modal age is the most probable transit time, corresponding to the time of the spectral peak. The mean age is the first moment of the age spectrum $\Gamma(r,t) = \int_0^\infty \xi G(r,t|\Omega,t-\xi) d\xi$ and represents the average transit time. The width is related to the second moment of the age spectrum $\Delta(r,t) = \sqrt{\frac{1}{2} \int_0^\infty (\xi - \Gamma(r,t))^2 G(r,t|\Omega,t-\xi) d\xi}$, which is a measure of the spread of the
Among the three parameters, only the mean age can be derived from measurements and its seasonal variability has been studied before [Andrews et al., 1999; Reithmeier et al., 2008; Bonisch et al., 2009]. Here we first show the seasonal variations of the mean age.

Figure 2 shows the mean age (contour) and its differences from the annually averaged mean age (color) as functions of latitude and potential temperature at two month intervals. The mean age has significant seasonal variations and these variations change with latitude and height (also see Figures 5a, 5d, and 5g which show the seasonal evolution of the mean age at the 360 K, 420 K, and 550 K isentropic surface). In the extratropical lower stratosphere (poleward of about 30° degrees latitude and below about the 500 K isentropic surface), the mean age has a strong annual cycle with the youngest air in summer and early fall and the oldest air in winter and early spring. Large seasonal change is also found in the subtropical lower stratosphere (between 10° and 30° degrees latitude and below about 450 K). Its magnitude is smaller than that in the extratropics in absolute value, but is comparable in relative change, which is up to 40% different from the annual-mean value. In winter/early spring and summer/early fall, the seasonal cycle in the subtropical lower stratosphere is nearly out-of-phase with that in the extratropics. In the middle and upper stratosphere above about 500 K the seasonal variability of the mean age is generally smaller than that in the lower stratosphere, and the largest seasonal variations are found in the subtropics.
Before discussing the seasonal variations of the TTDs in more detail, we conduct a consistency check within the model by comparing the TTD mean age and its seasonal cycle with the model clock tracer mean age. The clock tracer is a linearly increasing tracer whose source region is at the global surface. For the clock tracer, the mean age is simply calculated as the time lag between the stratospheric sample region and the reference region, defined here as the tropical surface in order to be consistent with the pulse tracer experiment. This consistency check can determine whether our calculated TTD mean age is correct and whether it is worth investigating further into the seasonality of the TTDs. Figure 3 shows the climatology of the monthly clock tracer mean age distribution. Comparing Figure 3 with Figure 2 clearly shows that the clock tracer and age spectrum have almost exactly the same mean age distribution and seasonal variations. Small differences are found in the tropopause region. It appears that the clock tracer mean age is a bit younger and its seasonal cycle is stronger than the age spectrum mean age in the extratropical tropopause region. Nevertheless, given the completely different methodology in the TTD and the clock tracer, the overall very similar mean age seasonal evolution in these two methods provides convincing evidence that our calculation of the TTD is valid, in the sense it represents very well the climatological seasonal variations of the age spectra.

The model simulated mean age seasonal variations agree well with the small number of observational studies that have been published to date. Bonisch et al. [2009] investigated this topic with mean age derived from in-situ measurements of SF₆ and CO₂ during the SPURT aircraft campaigns that were carried out in the upper troposphere/lower
stratosphere in the extratropics over Europe. They found that in the lowermost stratosphere bounded by the tropopause and the 380 K isentropic surface, the oldest air (> 3 years) was observed in April and the youngest air (< 1 year) was observed in October. Our model results are consistent with Bonisch et al. [2009], although the oldest air occurs in March and the youngest air occurs in September in our model calculations (note there are no March and September data in Bonisch et al., 2009). This agreement gives us more confidence in our calculations.

The seasonal change of the mean age reflects the seasonality of stratospheric transport. In a simplified view, the stratospheric transport is controlled by the integrated effects of the slow Brewer-Dobson circulation (with timescale of years) and the relatively fast isentropic mixing (with timescale of weeks to months). The Brewer-Dobson circulation is strongest in NH winter and weakest in NH summer [Rosenlof, 1995]. The seasonal variations of isentropic mixing are controlled by the seasonal evolution of the mixing barriers. There are three mixing barriers, which can be identified by the locations of the strongest gradients in Figure 2 (indicated by symbol X). The polar barrier, located at the edge of the polar vortex in winter and early spring, suppresses mixing between the polar old air and midlatitude young air. The subtropical barrier isolates the tropical pipe from the surf zone in the overworld and it is strongest in late winter/early spring and weakest in late summer/early fall. The tropospheric jet or tropopause barrier significantly limits cross-tropopause mixing between the tropical upper troposphere and the midlatitude lowermost stratosphere in winter. The seasonal variations of the mean age are determined by the relative importance of these processes.
The seasonal cycle of the mean age in the extratropical lowermost stratosphere (between about the tropopause and the 380 K isentropic surface) indicates that the fast isentropic mixing between the tropical upper troposphere or Tropical Tropopause Layer (TTL) and the midlatitude lowermost stratosphere is most important in summer/early fall and least important in winter/early spring [Bonisch et al., 2009]. This is consistent with the seasonal cycle of the tropical jet and tropopause barrier [Chen, 1995; Pan et al., 1997]. The tropospheric jet is weak and the tropopause is high during the summer/early fall (Figures 4a and 4b), and the cross-tropopause isentropic mixing is strong. In winter/early spring the strong tropospheric jet and low tropopause height significantly suppress the cross-tropopause mixing. The strong wintertime and weak summertime Brewer-Dobson circulation descent might also play a role in determining the seasonal change of the mean age in the lowermost stratosphere.

A very similar cycle is found in the extratropical lower stratosphere between about the 380 K and 500 K isentropic surface. Again this suggests that isentropic mixing has the largest impact and Brewer-Dobson circulation descent has the smallest impact in summer/early fall. In the polar stratosphere the seasonal evolution of the Brewer-Dobson circulation and the polar barrier determine the seasonal change of the mean age. In winter the strong descent brings old air to the polar region from higher altitudes. The polar barrier prohibits mixing between the old polar air and the young midlatitude air throughout the winter, resulting in the oldest air in the spring polar region. In summer
and early fall, mixing with the younger midlatitude air and weak descent result in the youngest polar air.

One interesting feature is the near opposite phase of the seasonal cycle of the mean age in the subtropical and midlatitude lower stratosphere below about the 450 K isentropic surface. This feature is most clearly seen in the NH in January, March and July, September in Figure 2 (also see Figures 5a and 5d). The seasonal change of the subtropical lower stratospheric mean age cannot be explained by that of the tropical upwelling. The strongest upwelling occurs in the subtropics of the summer hemisphere (Figure 4c), but the oldest subtropical air is found in the summer hemisphere. One possible explanation is that the opposite phase reflects the seasonal cycle of isentropic mixing in this region. The strong mixing in summer/early fall between the subtropics and midlatitudes leads to anomalously old subtropical air and young midlatitude air. And the weak isentropic mixing in winter/early fall leads to anomalously young subtropical air and old midlatitude air. It should be noted, however, that there are no observational studies on the mean age's seasonal variations in the subtropical lower stratosphere. Thus this model feature needs to be verified by observations of the mean age.

We also note the phase of the seasonal cycle of the subtropical mean age changes above the 450 K isentropic surface, which is most clearly seen in winter/early spring and summer/early fall. This suggests the base of the tropical pipe is located at about 450 K, consistent with observations [Rosenlof et al., 1997]. The edge of the lower tropical pipe moves toward the equator in late winter/early spring and brings old air to the subtropical
lower stratosphere above 450 K. It moves away from the equator in late summer/early fall and the subtropical lower stratosphere is filled with more young tropical air.

The age spectra provide additional information on transit timescales. Figure 5 shows the seasonal evolution of the modal age, width and the mean age at the 360, 420, and 550 K isentropic surfaces. Outside the Tropics the 360 K isentropic surface represents the lowermost stratosphere. The 420 K isentrope is used to represent the tropically controlled transition region, which is bounded between approximately the 380 K and 450 K isentropic surfaces [Rosenlof et al., 1997]. And the 550 K is chosen to represent the overworld. The width is an important age spectrum parameter [Hall and Plumb, 1994]. Physically it is a measure of the strength of the recirculation [Strahan et al., 2009]. A stronger recirculation leads to a wider width, longer tail, and older mean of the spectra. Thus it is not surprising that the width has almost the same seasonal variations as the mean age.

The modal age represents the timescale of the most common path. Its seasonal change is similar to that of the mean age, but the modal age change is more abrupt. At 360 K the modal age is 1 month equatorward of 30°N and S for all seasons. But at high latitudes the modal age is younger in summer than other seasons. This summer shortcut can also be clearly seen at 420K, especially in the NH. For instance, it takes only two months to transport the spectral peak from the TTL to the NH high latitudes during Jun-Aug. But this fast path is shut off during winter/early spring, as illustrated by the strong gradients in the sub-polar latitudes. These large gradients, also seen in the mean age, show the
change of the relative importance of the fast isentropic mixing and the slow Brewer-Dobson circulation descent in winter/early spring due to the combined effect of the strong wintertime adiabatic descent and the polar barrier. The modal age at 550 K shows very dramatic seasonal variations at high latitudes. Interestingly the strongest gradient in the mean age occurs in the subtropics, representing the impact of the subtropical barrier that isolates the tropical pipe from the surf zone. However, the subtropical barrier is not clear in the modal age.

We now examine the seasonal cycle of the age spectra at some chosen latitudes at the 360, 420, and 550 K isentropic surfaces. At 360 K and 20°N a narrow spectral peak at 1 month characterizes the age spectra (Figure 6). The modal ages are the same for all seasons, but the width is wider in summer than in winter. At 46°N, the strongest spectral peaks and the youngest peak value (1 month) occur in August and September. The weakest peaks (about half that in fall) with the oldest peak values (3 months) occur in March and April, suggesting that the fast pathway evident during the summer is suppressed during the winter. Almost exactly the same seasonal variations are found at high latitudes. At 80°N, the fall age spectra have the youngest mean age and the strongest spectral peak. Their modal age of 4-5 months indicates that the spectral peaks leave the source region in late spring/early summer. The spring spectra have the oldest mean and model age, and their spectral peaks are traced back to fall of the previous year. These results are consistent with the wintertime tropospheric jet barrier in the lowermost stratosphere. The SH age spectra have very similar seasonal variability as their NH counterparts.
The overall seasonal change in the age spectra at the 420 K isentropic surface (Figure 7) is similar to that at 360 K. One feature in the 420 K age spectra not seen in the lowermost stratosphere is the large change in the modal age at high latitudes (also see Figure 5e). For instance at 80°S the modal age changes dramatically from about 0.75 year in the February spectrum to about 4 years in the November spectrum. The sharp jump in the winter/early spring modal age is associated with significant changes in the spectral shape. For example, the February and March spectra at 80°N have three comparable peaks with transit time of about 1.2, 2.7 and 3.7 years, respectively. The second peak is a bit higher than the other two and that is the modal age by definition. Apparently the modal age is not a very useful parameter to characterize the spectral shape for this kind of spectrum. Note even the first peak is much older than the 0.5 year modal age of the summer spectra. Also the magnitude of the February-March peaks is about ¼ of the July-August spectra. We interpret this as the seasonal change of the dominant pathway at high latitudes. In summer/early fall, isentropic mixing brings young TTL air directly to the polar region. In winter/spring, slow descent from high altitude dominates.

The 550 K age spectra also show large jumps in modal age at high latitudes (Figure 8). The modal ages of the winter/spring spectra are much older (up to two times) than those of the summer spectra, but their magnitudes are stronger. This suggests that mixing between middle and high latitudes in summer, which is weak because of the summer stratospheric easterlies, leads to a younger although weaker spectral peak in the polar region. In winter/spring the mixing is prohibited and the spectral peaks represent solely
the descent of the Brewer-Dobson circulation. The younger and weaker summer spectral
peak is a unique feature in the overworld high latitudes and it explains the relatively
small mean age seasonal cycle in this region.

The change of the spectral shape from a single peak at low and middle latitudes to
multiple peaks at high latitudes was first reported by Reithmeier et al. [2008], who
calculated age spectra in the ECHAM4 GCM using the Lagrangian trajectory method. A
major focus of Reithmeier et al. [2008] was to understand what causes the high latitudes
multiple spectral peaks, which are 1 year apart and independent of height. They argued
that these multi-modal polar spectra are caused by two processes: the seasonality of the
tropical upwelling that generates single mode spectra at midlatitudes, and the
summertime mixing between the polar and midlatitude air that leads to a superposition of
the midlatitude single mode spectra with the polar spectra once a year and generates
multiple annual peaks.

Although our TTDs show multiple peaks similar to those in Reithmeier et al. [2008],
there are some differences. Figure 9 shows the March and September age spectra at 80°N
and S at 420 K. The starts of the age spectra are shifted such that the x-axis reflects the
season of the source time. The age spectra are plotted in the logarithmic scale to
highlight the tail region. In both the NH and SH high latitudes, the annually repeating
peaks last contacted the tropical surface during their respective summer season. This is
not the case in Reithmeier et al. [2008] (see their Figures 5 and 9). These annual peaks
are very clear in the tail region, suggesting they are caused by the annual cycle of the
recirculation into the polar stratosphere. Our results indicate that air parcels leaving the
tropical surface in summer have a larger chance to be re-circulated into the polar
stratosphere. Apparently the annual cycle of the Brewer-Dobson circulation and polar
vortex barrier determine the annual cycle of the recirculation into the polar region, but the
mechanism is not clear.

The tails of the age spectra, defined here as regions with transit time older than 4 years,
decay exponentially with time. Thus the tails can be approximated by an exponentially
decaying mode $\Psi_0(r,t)\exp(-\frac{t}{\tau_0})$ (straight solid lines in Figure 9). This decay rate τ_0 is
the eigentime of the lowest mode of the age spectra [Hall et al., 1999a; Ehhalt et al.,
2004]. It is a fundamental stratospheric transport diagnostic and remains nearly constant
in different seasons and locations (2.77 years in GEOSCCM). Of course this does not
mean that the tails are not seasonal dependent, because $\Psi_0(r,t)$ changes with season and
location.

4. Seasonal and Interannual Variations of the Boundary Impulse
Response

A concern about the traditional pulse tracer approach is that it uses only a single BIR
realization to approximate the annual-mean TTD. Haine et al. [2008] showed
theoretically that the statistical properties of an ensemble mean of the TTDs are
equivalent to those of an ensemble mean of the BIRs in unsteady flow. We have
compared the annual-mean TTDs and BIRs in our model simulations and have found
they are nearly identical (not shown). This means if the seasonality of the BIR is small, a single BIR realization could be a good representation of an annual-mean TTD.

Our simulations show significant seasonal variations in the BIR. In order to illustrate the BIR’s seasonality, Figure 10 plots the seasonal evolution of the BIR mean age, modal age, and width at 420 K. The seasonal change is small in the tropics, but becomes significant at high latitudes. For example, in the NH polar region, the mean age of the winter released BIR (about 2.75 years) is about 25% younger than the mean age of the summer released BIR (3.5 years). And the modal age of the spring BIR (5 months) is only half of the summer value (10 months). Clearly, the annual-mean properties of the age spectrum cannot be well captured by a single BIR in areas of large BIR seasonality such as the polar region.

We also want to emphasize that the seasonal change of the BIR, which is based on the source time, could be very different from the seasonal change of the TTD that is based on the field time. Our model results show that both the phase and magnitude of the BIR’s seasonal cycle are different from those of the TTD’s (compare Figure 10 with Figures 5d-5f). One striking difference is the shift of the phase in the extratropics between the BIR and TTD. The summer-released BIRs have the oldest mean age, modal age and the largest width, which is nearly out of phase with the TTDs whose youngest mean and modal age, and smallest width occur in the late summer/early fall. It can be also clearly seen that the seasonal change of the BIR is much smaller than that in TTD.
In order to help to understand the different seasonality in the BIR and the TTD the seasonal evolution of the BIRs at 80°N and 420 K is plotted in Figure 11. This is similar to Figure 1b, but only the first two years of the BIRs are shown. The most interesting feature is that the modal ages of the BIRs are seasonally locked to the summer field time. No matter when the pulse is released, its peak always reaches high latitudes during Jun-Aug. It takes about 6 months for the peaks of the winter-released pulse to arrive 80°N. The transport of summer-released BIRs into the polar lower stratosphere is strongly suppressed in winter and early spring by the vortex barrier. They do not penetrate into the high latitudes until the breakup of the polar vortex in late spring. This leads to the oldest and weakest spectral peaks, meaning that the summer-released BIRs have the smallest fraction of young air and thus oldest mean age. Furthermore, the summer/early fall peaks and winter/early spring valleys with respect to the field time means that the TTDs, which are horizontal cuts from right to left through the boundary propagator map, have the youngest mean age in summer/late fall and oldest mean age in winter/early spring (see Figure 7).

We made an initial assumption in this study that the BIR's interannual variations are smaller than its seasonal variations. We performed eight additional pulse experiments to verify that this assumption is valid. The eight pulses were released respectively in January and July in years 2001 to 2004. Since we already have the January and July BIR for year 2000, a total of five January-released and five July-released BIRs for 2000-2004 were obtained. The mean and standard deviations of the five January (black) and July (red) BIRs at some chosen locations in the NH are shown in Figure 12. The SH has very
similar features and is not shown. In the subtropical lower stratosphere (20°N at 360 K and 420K) the interannual variations are very small such that the lines representing the standard deviation almost overlap with the mean BIR. In the midlatitude lower stratosphere the magnitude of the spectral peaks shows some interannual variations. Considerable interannual changes are found in the 550 K extratropics and polar lower stratosphere. Nevertheless, the seasonal differences between the January and July BIRs clearly stand out.

We have already shown that the TTD mean age agrees very well with the clock tracer mean age (Figures 2 and 3). We compared closely the mean age’s seasonal change in the polar region where relatively large interannual variations occur, and found excellent agreements between the TTD and clock tracer mean age. These results suggest that the interannual variability of the BIR has only small impact on our calculations of the TTDs.

5. Discussion and Summary

The seasonal variations of the stratospheric TTDs are investigated in this study using the pulse tracer method in GEOSCCM. We have found that the TTDs have significant seasonal variations throughout the stratosphere. The largest seasonal changes occur in the lowermost and lower stratosphere and the subtropical overworld. Up to 40% differences between the individual month and annually averaged mean age are commonly found in these regions. The modal ages and spectral shapes demonstrate even bigger changes in the polar stratosphere. The seasonal variations of the TTDs reflect the
seasonal evolution and relative importance of the slow Brewer-Dobson circulation and
the fast isentropic mixing.

The differences between the TTD and the BIR are known in tropospheric and ocean
transport studies [Holzer et al., 2003; Haine et al., 2008], but the BIR is often used as the
TTD in stratospheric transport [Hall and Plumb, 1994; Hall et al., 1999a, b; Schoeberl et
al., 2005]. These studies perform a single pulse tracer experiment and the resultant BIR
is used as an approximation of the time-averaged TTD. Here we show that the BIRs have
significant seasonal variations. Thus it is problematic to use a single BIR realization to
represent the annually averaged TTDs. Our model results also show that the phase and
magnitude of the BIR’s seasonal cycle are different from those of the TTD’s. Clearly it
is misleading to use BIRs to study the seasonality of the TTDs. On the other hand, Haine
et al. [2008] showed theoretically that an ensemble-averaged BIR is equivalent to an
ensemble-averaged TTD. This is confirmed by the nearly identical annually averaged
BIR and TTD in our results (not shown). In summary, computing an ensemble of BIRs is
needed in order to investigate either the seasonality or the annual-mean properties of the
TTDs.

Several studies have used empirical age spectra to investigate stratospheric transport
[Andrews et al., 1999, 2001; Bonisch et al., 2009]. They assumed an analytic solution for
the age spectra and used in-situ trace gas measurements to constrain the empirical
parameters. Andrews et al. [2001] proposed a bimodal spectral shape with two distinct
peaks to represent respectively the fast quasi-horizontal mixing and slow Brewer-Dobson
circulation in the NH midlatitude lower stratosphere. Bonisch et al. [2009] adopted this bimodal concept and made important revision that the superposition of the two modes does not necessarily lead to two distinct spectral peaks. The age spectra in GEOSCCM show a single peak in this region (see Figures 6 and 7), which does not support the bimodal shape of Andrews et al. [2001]. Our results appear to be consistent with the conceptual model of Bonisch et al. [2009]. However, Bonisch et al. [2009] concentrated on the mean age and did not present the seasonal evolution of their empirical age spectra. Therefore we could not make direct comparisons with Bonisch et al. [2009]. We do find multi-modal spectral shapes at high latitudes, but the multiple spectral peaks are due to the annual cycle of air recirculation. As pointed out by Reithmeier et al. [2008], it is very challenging to apply this multi-modal spectral shape in empirical studies.

An importance implication of our results is on the long-term changes in the mean age. Chemistry climate models consistently simulate a decrease of the stratospheric mean age in the recent past and in the 21st century at a rate about 2-3%/decade [e.g., Garcia and Randel, 2008; Oman et al., 2009]. The decrease in the mean age is consistent with the acceleration of the Brewer-Dobson circulation [Austin and Li, 2006; Li et al., 2008]. However, the acceleration of the Brewer-Dobson circulation is directly related to the decrease of the modal age, not the mean age [Strahan et al., 2009]. Of course a younger modal age could result in a younger mean age, but other processes, such as a weakening of recirculation and/or a decrease in the long-term decay timescale, could also contribute to the decrease of the mean age. We will investigate the long-term changes in the stratospheric age spectra in a warming climate in a separate study.
Acknowledgements.

This work is supported by NASA's Modeling, Analysis and Prediction program. We thank Laura Pan for very helpful discussions. Computational resources for this work were provided by NASA's High-Performance Computing through the generous award of computing time at NASA Ames Research Center.
References

Figure Captions

Figure 1: Illustration of the relationship between the Transit-Time Distribution (TTD) and Boundary Impulse Response (BIR). Panel (a) is a boundary propagator map at 60°N and 420 K. This map is constructed from 252 vertical slices. Each vertical slice is a BIR, which is fixed in source time and increases with field time. The TTD is fixed in field time and increases towards older source time, i.e., a horizontal cut from right to left through the boundary propagator map. An example of the BIR and TTD is shown in panel (c). When constructing the boundary propagator map (a), we do not calculate all the 252 BIRs. Instead we only calculate 12 BIRs with source time in each month of a given year. These 12 BIR realizations (shown in panel b and in the black rectangle in panel a) are then repeated every year for 20 years to form the boundary propagator map.

Figure 2: Distribution of the TTD mean age (contour) and its difference from the annually averaged mean age (color) at two month intervals. The contour interval is 0.5 yr. The red line is the tropopause. The symbol X in the January panel indicates the location of the transport barriers.

Figure 3: Same as Figure 2, but for the climatological mean (2000-2019) clock tracer mean age.

Figure 4: Seasonal cycle of (a) the zonal wind at 360 K; (b) the tropopause height; (c) the residual vertical velocity at 360 K.
Figure 5: Seasonal evolution of the TTD mean age, modal age, and width at 360, 420 and 550 K. The contour interval is 0.25 year for the mean age and 0.2 yr for the width. The unit of the modal age is month and variable contour intervals are used in different levels: 1 month at 360 K, 2 months (modal age < 1 yr) and 4 months (modal age > 1 yr) at 420 K, and 4 months at 550 K.

Figure 6: Seasonal cycle of the TTDs at 20°, 46°, and 80° latitude north and south at 360 K. The dotted line is the modal age and the solid line is the mean age. The colors in each panel are normalized by the maximum PDF shown in the caption.

Figure 7: Same as Figure 6, but for 420 K.

Figure 8: Same as Figure 6, but for 550 K.

Figure 9: The March (black) and September (red) TTDs at 80°N and S at 420 K. The starts of the age spectra are shifted (indicated by the thin dash lines) so that the x-axis represents the season of the source time. The vertical dotted lines correspond to January in source time.

Figure 10: Seasonal evolution of the BIR mean age, modal age and width at 420 K. The contour interval is 0.25 year for the mean age and 0.2 year for the width. The contour
interval for the modal age is 2 month (modal age < 1 year) and 4 month (modal age >
1 year).

Figure 11: Seasonal evolution of the BIRs at 80°N and 420 K as a function of source
time and field time.

Figure 12: Comparison of the January (black) and July (red) BIRs at some chosen
locations in the Northern Hemisphere. The thick lines are the mean of five BIRs, which
are released in January or July in 2000-2004. The thin lines are the standard deviations
of the five BIRs.
Figure 1: Illustration of the relationship between the Transit-Time Distribution (TTD) and Boundary Impulse Response (BIR). Panel (a) is a boundary propagator map at 60°N and 420 K. This map is constructed from 252 vertical slices. Each vertical slice is a BIR,
which is fixed in source time and increases with field time. The TTD is fixed in field
time and increases towards older source time, i.e., a horizontal cut from right to left
through the boundary propagator map. An example of the BIR and TTD is shown in
panel (c). When constructing the boundary propagator map (a), we do not calculate all
the 252 BIRs. Instead we only calculate 12 BIRs with source time in each month of a
given year. These 12 BIR realizations (shown in panel b and in the black rectangle in
panel a) are then repeated every year for 20 years to form the boundary propagator map.
Figure 2: Distribution of the TTD mean age (contour) and its difference from the annually averaged mean age (color) at two month intervals. The contour interval is 0.5 yr. The red line is the tropopause. The symbol X in the January panel indicates the location of the transport barriers.
Figure 3: Same as Figure 2, but for the climatological mean (2000-2019) clock tracer mean age.
Figure 4: Seasonal cycle of (a) the zonal wind at 360 K; (b) the tropopause height; (c) the residual vertical velocity at 360 K.
Figure 5: Seasonal evolution of the TTD mean age, modal age, and width at 360, 420 and 550 K. The contour interval is 0.25 year for the mean age and 0.2 yr for the width. The unit of the modal age is month and variable contour intervals are used in different levels: 1 month at 360 K, 2 months (modal age < 1 yr) and 4 months (modal age > 1 yr) at 420 K, and 4 months at 550 K.
Figure 6: Seasonal cycle of the TTD age spectra at 20°, 46°, and 80° latitude north and south at 360 K. The dotted line is the modal age and the solid line is the mean age. The colors in each panel are normalized by the maximum PDF shown in the caption.
Figure 7: Same as Figure 6, but for 420 K.
Figure 8: Same as Figure 6, but for 550 K.
Figure 9: The March (black) and September (red) TTD age spectra at 80°N and S at 420 K. The starts of the age spectra are shifted (indicated by the thin dash lines) so that the x-axis represents the season of the source time. The vertical dotted lines correspond to January in source time.
Figure 10: Seasonal evolution of the BIR mean age, modal age and width at 420 K. The contour interval is 0.25 year for the mean age and 0.2 year for the width. The contour interval for the modal age is 2 month (modal age < 1 year) and 4 month (modal age > 1 year).
Figure 11: Seasonal evolution of the BIR at 80°N and 420 K as a function of source time and field time.
Figure 12: Comparison of the January (black) and July (red) BIRs at some chosen locations in the Northern Hemisphere. The thick lines are the mean of five BIRs, which are released in January or July in 2000-2004. The thin lines are the standard deviations of the five BIRs.