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Outline 

• Application: Wavefront sensing for large telescopes 
– Space telescopes (James Webb Space Telescope) 
– Adaptive Optics for ground based telescopes 

• Wavefront sensing method: Focus diverse phase retrieval  
• Case of interest: Extremely broadband sources 
• Problem 

– Monochromatic phase retrieval algorithms fail above ~10% fractional 
bandwidth 

– Broadband (polychromatic) algorithms are computationally expensive 
• Solution 

– Employ monochromatic algorithm with approximation method 
• Result 

– 270x speed up in computational performance for 133% fractional 
bandwidth 

– Acceptable accuracy 
– Accuracy better for monolithic systems, worse for segmented 

• Investigate difference in accuracy between segmented and monolithic 
systems 
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Focus Diverse Phase Retrieval 
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Phase Retrieval Overview 

• Given 
– System parameters (F/#, detector pixel pitch, etc.) 
– Measured point spread function images (e.g. images of stars) through 

focus 
– Clear aperture of pupil 

• Determine 
– Wavefront error in the exit pupil of the system (phase) 

• Issues 
– Optical fields are complex-valued quantities 
– Measured data (intensity) has only magnitude, no phase 
– Measured data corrupted with noise 

• Solution strategies 
– Gerchberg-Saxton / iterative transform type algorithms 
– Non-linear optimization type algorithms 
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Nonlinear Optimization Phase Retrieval 

• Parameterize problem in terms of a set of variables (e.g. Zernike 
coefficients) 

• Generate wavefront (W) and/or field from parameters 
• Propagate field to PSF plane 
• Use an error metric to evaluate agreement between model and data1 

• Use standard non-linear optimization algorithm to reduce error metric value 
• Analytic expressions for error metric gradients allow use of gradient search 

algorithms 
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1S. T. Thurman and J. R. Fienup, “Phase retrieval with signal bias,” J. Opt. Soc. Am. A 26, 1008–1014 (2009). 
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Broadband Phase Retrieval 

• Use cases for broadband phase retrieval 
– Narrow spectral filters unavailable 
– Dim sources 
– Low throughput due to misalignment 
– Short exposures times 

• Pointing instability (space) 
• Atmospheric instability (ground based AO) 

– Segment piston determination 
 

• Traditional approach1,2 

– Simulate multiple individual wavelengths 
– Rule of thumb: 1 wavelength per 5% fractional bandwidth 
– Add incoherently to simulate polychromatic PSF 
– Do normal nonlinear optimization phase retrieval 

1 J. R. Fienup, “Phase retrieval for undersampled broadband images,” J. Opt. Soc. Am. A 16, 1831–1837 (1999). 
2 G. R. Brady and J. R. Fienup, “Effect of broadband illumination on reconstruction error of phase retrieval in optical 
metrology,” Proc. SPIE 6617, 66170I (2007). 
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Array Sizes 

• Fine for modest bandwidth 
• Very computationally intensive for large bandwidths 

– More wavelengths  more computation 
• Linear in number of wavelengths 

– Shorter wavelengths  larger arrays  more computation 
• Pupil sampling requirement 

– Avoid π phase jumps 
• Phase for given OPD increases with shorter wavelength 
• Array size inversely proportional to wavelength 
• Cost approximately quadratic in array size 

Monochromatic Pupil 
3 µm, 128x128 

Broadband Pupil 
1-5 µm, 384x384 
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Array Sizes 

– Shorter / longer wavelengths  under / over sampling 
           more computation 

• PSF initially computed on large array 
• Requires padding in pupil domain  

 

Monochromatic Pupil 
342x342 

Broadband Pupil 
(largest) 1518x1518 
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Solution Motivation 

• Achromatic system 
– Reflecting telescopes 
– Color corrected instruments 

• OPD / rays the same at all wavelengths 
• Geometrical optics spot diagram the same at all wavelengths  
• For poorly corrected systems geometrical optics should predict PSF shape 
• PSF shape should be roughly the same at all wavelengths 
• Only high frequency diffraction effects depend strongly on wavelength 
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Approximation Procedure 

• Data D, blurring kernel B, forward model F, wavefront W, K image planes 
• Blur measured PSF data with Gaussian kernel (suppress diffraction effects) 

 
 

• Simulate monochromatic PSF at the center wavelength 
 
 

• Blur modeled PSF with same Gaussian kernel  
 
 

• Use non-linear optimization to fit blurred data against blurred model 
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Broadband Test Case (FGS-like) 

• Similar to JWST Fine Guidance Sensor (FGS) 
• F/8 system 
• 18 µm pixels 
• 1-5 µm bandwidth (133% fractional bandwidth) 

– Flat spectrum 
• Modeled detector area: 128x128 pixels (artificially small)  
• Noise model: 50,000 photons in peak pixel, 25 photons of read noise, 100 

photon noise-free bias 
• Measured point spread functions at –2, 0, 2 waves center to edge defocus 
• Modeled with monolithic aperture 
• Monte Carlo simulation 

– 64 trials 
– Minumum wavefront error: 0.025 waves RMS 
– Maximum wavefront error: 0.500 waves RMS 
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Broadband Phase Retrieval Results 
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Broadband Phase Retrieval Results 

OPD in waves 
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Unblurred PSFs (Monolithic) 
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Blurred PSFs (Monolithic) 
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Wavefront Retrieval Results With Blurring 

OPD in waves 
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Monte Carlo Results 
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Monte Carlo Results 
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Segmented Systems 

• Monolithic System Results 
– Good results for monolithic system 
– 270x speed improvement 
– Small loss in accuracy 
– How does approximation perform for a segment system? 

• Segmented test case 
– Same 1-5 µm FGS-like system 
– Global aberration model: Third order aberrations 
– Segment aberration model: Piston, tip, tilt 
– Monte Carlo simulation 

• 16 trials 
• 0.1 waves RMS wavefront errors 
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Unblurred PSFs (Segmented) 
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Blurred PSFs (Segmented) 
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Results, Segmented System 
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Accuracy Comparison: Segmented System 
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Segmented System 

• Reduced Accuracy with segmented system 
• Possible causes 

– More diffraction 
– More variables (higher order phases) 
– Which is responsible? 

• To investigate 
– Apply segmented system mask to low order phases  
– Same phase model as monolithic aperture 
– Same aperture mask as segmented system 
– Isolates diffraction effect from higher order phase effect 
– Limit study to 0.25 waves wavefront to avoid issues with large 

wavefronts 
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Results: Segmented Mask 
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Unblurred PSFs (Segmented Mask) 
D

at
a 

U
nb

lu
rr

ed
 

M
on

oc
hr

om
at

ic
 

-2 waves defocus 0 waves defocus +2 waves defocus 



ASJ -27 

Blurred PSFs (Segmented Mask) 
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Accuracy Comparison: Three Cases 

Medians: 
Monolithic: 0.004  waves 
Mask: 0.009 waves 
Segments: 0.0308 waves 

Both diffraction and higher order phase reduce accuracy! 
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Conclusion 

• Broadband phase retrieval needed when:  
– Narrow spectral filters unavailable 
– Dim sources 
– Low throughput due to misalignment 
– Short exposures times 

• Pointing instability (space) 
• Atmospheric instability (ground based AO) 

• Traditional approach is computationally burdensome  
for extreme bandwidths 

• Approximate approach 
– Substitute monochromatic model 
– Blur model and data 

• Test case performance 
– ~270x reduction in computational cost for FGS-like test case 
– Good accuracy for monolithic system 
– Acceptable accuracy for segmented systems 

• Reduced by diffraction 
• Reduced by higher order segment model 
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Questions? 
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