
AMERICAN
METEOROLOGICAL
SOCIETY

Weather and Forecasting

EARLY ONLINE RELEASE
This is a preliminary PDF of the author-produced
manuscript that has been peer-reviewed and 
accepted for publication. Since it is being posted
so soon after acceptance, it has not yet been
copyedited, formatted, or processed by AMS
Publications. This preliminary version of the 
manuscript may be downloaded, distributed, and
cited, but please be aware that there will be visual
differences and possibly some content differences 
between this version and the final published version.

The DOI for this manuscript is doi: 10.1175/2011WAF2222455.1

The final published version of this manuscript will replace
the preliminary version at the above DOI once it is available.

© 201  American Meteorological Society1



Improving Numerical Weather Predictions of Summertime Precipitation over the 

Southeastern U.S. through a High-Resolution Initialization of the Surface State

Jonathan L. Case1*,

Sujay V. Kumar2, 

Jayanthi Srikishen3, and 

Gary J. Jedlovec4

1ENSCO Inc/Short-term Prediction Research and Transition (SPoRT) Center, Huntsville, AL

2SAIC/NASA Goddard Space Flight Center, Greenbelt, MD

3Universities Space Research Association (USRA), Huntsville, AL

4NASA Marshall Space Flight Center/SPoRT Center, Huntsville, AL

Revised manuscript submitted to Weather and Forecasting

January 2011

  
*Corresponding Author Address: 
Jonathan L. Case, National Space Science and Technology Center, 320 Sparkman Dr., Room 
3062, Huntsville, AL 35805. Email: Jonathan.Case-1@nasa.gov.



2

ABSTRACT

It is hypothesized that high-resolution, accurate representations of surface properties such as 

soil moisture and sea surface temperature are necessary to improve simulations of summertime 

pulse-type convective precipitation in high resolution models.  This paper presents model 

verification results of a case study period from June–August 2008 over the Southeastern U.S. 

using the Weather Research and Forecasting numerical weather prediction model.  Experimental 

simulations initialized with high-resolution land surface fields from the NASA Land Information 

System (LIS) and sea surface temperature (SST) derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) are compared to a set of control simulations initialized with 

interpolated fields from the National Centers for Environmental Prediction 12-km North 

American Mesoscale model.  The LIS land surface and MODIS SSTs provide a more detailed 

surface initialization at a resolution comparable to the 4-km model grid spacing.  Soil moisture 

from the LIS spin-up run is shown to respond better to the extreme rainfall of Tropical Storm 

Fay in August 2008 over the Florida peninsula.  The LIS has slightly lower errors and higher 

anomaly correlations in the top soil layer, but exhibits a stronger dry bias in the root zone. The 

model sensitivity to the alternative surface initial conditions is examined for a sample case, 

showing that the LIS/MODIS data substantially impact surface and boundary layer properties. 

The Developmental Testbed Center’s Meteorological Evaluation Tools package is employed 

to produce verification statistics, including traditional gridded precipitation verification and 

output statistics from the Method for Object-Based Diagnostic Evaluation (MODE) tool.  The 

LIS/MODIS initialization is found to produce small improvements in the skill scores of 1-h 

accumulated precipitation during the forecast hours of the peak diurnal convective cycle. 

Because of very little union in time and space between the forecast and observed precipitation 
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systems, results from the MODE object verification are examined to relax the stringency of 

traditional grid point precipitation verification.  The MODE results indicate that LIS/MODIS 

initialized model runs increase the 10 mm h-1 matched object areas (“hits”) while simultaneously 

decreasing the unmatched object areas (“misses” plus “false alarms”) during most of the peak 

convective forecast hours, with statistically significant improvements up to 5%.  Simulated 1-h 

precipitation objects in the LIS/MODIS runs more closely resemble the observed objects, 

particularly at higher accumulation thresholds. Despite the small improvements, however, the 

overall low verification scores indicate that much uncertainty still exists in simulating the 

processes responsible for air-mass type convective precipitation systems in convection-allowing 

models.
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1. Introduction

One of the most challenging weather forecast problems in the Southeastern U.S. is daily 

summertime pulse-type convection. Atmospheric flow and organized, synoptic-scale forcing are 

generally weak in this region during the summer. Thus, convection typically initiates in response 

to local low-level convergent boundaries such as sea/lake breezes, outflow boundaries, and other 

temperature and moisture discontinuities often related to horizontal gradients in surface heating 

rates. Numerical simulations of pulse-type convection usually have low skill, even in local 

predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. 

Forecast errors can arise from assumptions within physics parameterizations, model resolution 

limitations, and uncertainties in initial atmospheric state and land surface properties. For this 

study, it is hypothesized that high-resolution, accurate representations of surface properties such 

as soil moisture, soil temperature, and sea surface temperature (SST) are necessary to better 

simulate the interactions between the surface and atmosphere, and ultimately improve 

predictions of local circulations and summertime pulse-type convection. 

The impact of soil moisture heterogeneity and land surface (and ocean) properties on surface 

fluxes, boundary layer properties, and warm-season quantitative precipitation forecasts continues 

to be an important topic.  On the large scale, Koster et al. (2000) showed that SSTs contribute to 

precipitation predictability in the Tropics while soil moisture states contribute to precipitation 

predictability in transition zones between dry and humid climate regions.  Koster and Suarez 

(2003) demonstrated that the land surface initialization has a statistically significant impact on 

summer precipitation in continental regions that experience large soil moisture anomalies, and 

strong sensitivities of evaporation to soil moisture and precipitation to evaporation.  Koster et al. 

(2004) ran retrospective atmospheric general circulation model simulations initialized with 
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realistic land surface model (LSM) fields to show the importance of a proper land surface 

initialization on the forecast skill of summer precipitation over the North American Great Plains. 

Soil moisture heterogeneity can lead to the development of mesoscale circulations nearly as 

strong as sea-breeze circulations (Ookouchi et al. 1984; Avissar and Pielke 1989).  These 

mesoscale circulations and associated heat fluxes are affected by large-scale winds, the 

distribution of soil wetness, and the wavelength of the land-surface discontinuities (Chen and 

Avissar 1994a), and can significantly affect the development and intensity of clouds and 

precipitation (Chen and Avissar 1994b).  Chen and Dudhia (2001) highlighted the importance of 

improving the model soil moisture initialization at fine scales due to the sensitivity of soil 

thermal properties, hydraulic conductivity, and the surface energy budget on variations in soil 

moisture.  A positive feedback mechanism between soil moisture and precipitation was presented 

in Eltahir (1998), in which the author described how wet soil moisture conditions lead to an 

increase in net solar and terrestrial radiation, and atmospheric water vapor that are concentrated 

in a shallower boundary layer, resulting in greater moist static energy per unit mass favoring 

convective rainfall processes.  These positive feedbacks between soil moisture and convective 

precipitation likely occur during the summer months over much of the eastern U.S. (Findell and 

Eltahir 2003).  Trier et al. (2004) examined a case of convective initiation along a dryline in 

which the numerical simulations were quite sensitive to the initial soil moisture details, which 

led to localized differences in the sensible and latent heat fluxes and corresponding low-level 

thermodynamic structure.  

The International H2O Project 2002 field campaign (IHOP_2002) took place over the U.S. 

Southern Great Plains during the late Spring and early Summer of 2002 with some of its primary 

goals to improve convective initiation predictions and quantitative precipitation forecasts in 
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numerical weather prediction models (Weckworth et al. 2004; Weckworth and Parsons 2006).  

The land surface component of IHOP_2002 included a sophisticated observational network to 

measure land surface variables in order to examine the effects of surface properties on boundary 

layer evolution, evaluate LSMs, and assess the role of LSMs in improving numerical convective 

forecasts (LeMone et al. 2007).  LeMone et al. (2008) evaluated characteristics of the Noah LSM 

for a fair-weather case during IHOP_2002 while Holt et al. (2006) modeled a convective 

initiation case study, initializing the land surface with an offline version of the Noah LSM.  Holt 

et al. (2006) found that synoptically-driven convection along a dryline tended to be delayed in its 

onset relative to observations in all their sensitivity runs; however, the inclusion of a 

sophisticated transpiration model resulted in more skillful air temperature and moisture forecasts.  

Also, Trier et al. (2008) documented that the choice of LSM and initial soil moisture distribution 

both had major impacts on the evolving thermodynamic variables in the PBL and subsequent 

precipitation forecasts in a convection-allowing model configuration.

Numerical models have been shown to be sensitive to the input land and ocean surface 

initialization data in the southeastern U.S. as well. Baker et al. (2001) found through idealized 

simulations over central Florida that soil moisture initialization impacted the timing and location 

of precipitation, with areas of wet soils preferentially focusing heavy precipitation.  Case et al. 

(2008) presented improvements to simulated sea breezes and surface verification statistics over 

Florida by initializing the Weather Research and Forecasting (WRF) numerical weather 

prediction model with land surface variables from an offline spin-up run of the NASA Land 

Information System (LIS). LaCasse et al. (2008) documented the sensitivity of WRF model 

simulations over oceanic regions around Florida to high-resolution SSTs derived from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s polar orbiting Aqua 
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and Terra satellites.  The authors found that the static stability near the Florida East Coast 

decreased under easterly flow regimes, and that favored zones of low-level convergence 

occurred near Florida’s East Coast under easterly flow and over the Florida Current under 

westerly flow. 

Many of these studies have highlighted the challenges involved in quantifying the impact of 

the land surface condition on PBL evolution and convection.  To this end, community-wide 

efforts to converge on metrics of land-atmosphere interactions (e.g. 'coupling strength') include 

those at global (GLACE; Koster et al. 2006) and local (LoCo; Santanello et al. 2009) scales.  A 

missing component of these community-wide studies has been a rigorous evaluation of the actual 

impacts of high-resolution land representation in a forecast environment and on sensible weather.  

With these issues in mind, this paper focuses on the impacts of a subset of high-resolution 

surface initialization datasets on numerical model simulations of typical pulse-type, summertime 

convection over a southeastern U.S domain, with an emphasis on precipitation verification. One 

of the added challenges to this study is that during the summer, the southeastern U.S. does not 

typically experience well-organized synoptic-scale forcing (e.g. fronts and drylines) such as that 

previously studied over the U.S Great Plains during campaigns like IHOP_2002. In particular, 

the impact of soil moisture on precipitation should be most clearly identifiable for locally-

coupled and weak synoptic forcing conditions such as in this experiment.

This modeling study makes use of both the NASA LIS for land surface initialization and 2-

km resolution MODIS SSTs for ocean initialization to examine the sensitivity to and possible 

improvements realized from these datasets.  Both traditional and object-based precipitation 

verification results are highlighted.  The remainder of this paper is organized as follows.  Section 

2 provides a description of the surface initialization datasets for the model simulations.  Section 3
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describes the simulation methodology for the sensitivity experiment.  Results are presented in 

Section 4, and conclusions are given in Section 5.  

2. Surface Initialization Datasets

High-resolution surface datasets are generated for both the land and ocean surface in order to 

provide detailed information physically consistent with the WRF model resolution of this study.  

A brief description of each dataset is given below.

a. NASA Land Information System

The NASA LIS is a high performance land surface modeling and data assimilation system

that integrates satellite-derived datasets, ground-based observations and model reanalyses to 

force a variety of LSMs (Kumar et al. 2006, 2007). By using scalable, high-performance 

computing and data management technologies, LIS can run LSMs offline globally with a grid 

spacing as fine as 1 km to characterize land surface states and fluxes.  

To provide physically-consistent land surface initialization data in a simulated real-time 

environment, the Noah LSM (Ek et al. 2003) is run offline (i.e. uncoupled) within LIS at the 

same horizontal grid spacing as the WRF grid.  The goal here is to demonstrate a realistic 

scenario in which a generalized LIS initialization dataset could be provided to a variety of users 

(e.g. National Weather Service forecast offices and other government, university, and private 

sector weather entities) running their own local modeling application on domains with 

comparable grid resolution.  

For consistency, the Noah LSM in the offline LIS uses the same soil and vegetation database 

as in the WRF model.  The soil properties are represented by the State Soil Geographic 

(STATSGO; Miller and White 1998) database.  For the land-water mask and land cover type, the 
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U.S. Geological Survey 1-km global database derived from the Advanced Very High Resolution 

Radiometer (AVHRR) satellite data from 1992−1993 is up-scaled to the WRF grid resolution.  

Additional required parameters include quarterly climatologies of albedo (Briegleb et al. 1986) 

and maximum snow surface albedo (Robinson and Kukla 1985), monthly climatologies of 

greenness vegetation fraction data derived from AVHRR with a native resolution of ~14 km 

(Gutman and Ignatov 1998), and a deep soil temperature climatology (serving as a lower 

boundary condition for the soil layers) at 3 meters below ground, derived from 6 years of Global 

Data Analysis System (GDAS) 3-hourly averaged 2-m air temperatures using the method 

described in Chen and Dudhia (2001).

The offline LIS run is cold-started on 1 January 2004 with a uniform first-guess soil 

temperature and volumetric soil moisture of 290 K and 25%, respectively, in all soil layers.  The 

Noah LSM is integrated for a time period of 4 years, 5 months from 1 January 2004 to 1 June 

2008, using a time step of 30 minutes.  Such a long integration time is used to ensure that the 

model states can reach a fine-scale equilibrium with the forcing meteorology (Cosgrove et al. 

2003b; Rodell et al. 2005).  Atmospheric input to the LIS/Noah run is provided by GDAS 

analyses (Derber et al. 1991), which consists of three-hourly data at a horizontal resolution of 

0.469° (~52 km). Precipitation forcing from the Stage IV high-resolution analyses replace the 

GDAS precipitation, providing a detailed antecedent precipitation field.  The Stage IV product 

consists of hourly ~5-km precipitation analyses produced operationally by the U.S. River 

Forecast Centers, based on rain gauges and radar precipitation estimates from the Weather 

Surveillance Radar-1988 Doppler network (Lin and Mitchell 2005; Lin et al. 2005). The forcing 

fields are downscaled to the running resolution within LIS using bilinear or conservative (for 

precipitation) interpolation approaches. In the case of downward shortwave radiation, an 
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additional zenith-angle based temporal disaggregation is applied (Cosgrove et al. 2003a). The 

forcing fields of downward-directed longwave radiation, pressure, 2-m air temperature and 2-m 

relative humidity are further topographically corrected via lapse-rate and hypsometric 

adjustments using the elevation data differences between the LIS and native GDAS forcing grid

(Cosgrove et al. 2003a).

b. MODIS Sea Surface Temperatures

MODIS SST gridded composites, produced by the NASA Short-term Prediction Research 

and Transition (SPoRT; Goodman et al. 2004) Center, are created at 2-km resolution by 

combining data from multiple passes of the polar-orbiting Earth Observing System satellites 

(Haines et al. 2007).  The compositing technique assumes that the day-to-day variation of SST is 

relatively small — the degree to which this assumption is valid will likely vary spatially and 

seasonally.  Data from both the Terra and Aqua platforms are combined to create separate 

day/night composites for a total of four composites per day valid at 0400, 0700, 1600, and 1900 

UTC.  Care is taken to remove most cloud contamination in the Haines et al. (2007) compositing 

technique.  A binary cloud mask is first applied prior to computing the SST at a given pixel.  

Next, the warmest two of the most recent three SST values in the collection for each pixel are 

averaged, thereby discarding the coldest reading and removing possible cloud-contaminated 

pixels that may have eluded detection by the cloud mask.  

3. Experiment Design

A modeling sensitivity experiment is conducted with version 3.0.1.1 of the Advanced 

Research WRF (ARW; Skamarock et al. 2008) in which the land and ocean/lake surface data 

from the National Centers for Environmental Prediction (NCEP) North American Mesoscale 

(NAM) model are replaced with high-resolution data from a LIS offline simulation and MODIS 
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SST composites, respectively.  Details on the specific model configurations, initialization 

datasets, and verification methodologies are described below. 

a. Model Configuration and Period of Study

This investigation consists of a set of control and experimental ARW simulations initialized 

once per day at 0300 UTC from June to August 2008.  This initialization time is chosen to mimic 

the local model configurations used by the NOAA/NWS Miami, FL and Mobile, AL.  The 

combination of limited computational resources, a need for timely model output, and the use of 

local atmospheric analyses for initializing the atmosphere at these offices (i.e. the Local Analysis 

and Prediction System) justifies the choice of an “off-hour” initialization time.  A total of 81 

paired control and experimental forecasts are generated, with a few days unavailable due to 

missing MODIS SST composites.  The model is integrated 27 hours to 0600 UTC the following 

day, similar to the operational runs made at NOAA/NWS Miami, FL and Mobile, AL.  The 

simulation domain consists of a single grid of 309 x 311 staggered points in the zonal and 

meridional directions, respectively, at 4-km horizontal grid spacing, centered over the 

Southeastern United States. The grid contains 39 sigma-pressure vertical levels extending from 

the surface to a domain top of 50 mb. The vertical spacing is stretched from a minimum of 0.004 

sigma near the surface (corresponding to ~40 m) to a maximum of 0.034 sigma at upper levels.  

The model physics schemes are chosen to emulate the real-time configuration of the 4-km 

ARW at the National Severe Storms Laboratory, which focuses especially on convection and 

severe weather forecasting problems (Kain et al. 2010).  For both the control and LIS+MODIS-

initialized simulations (hereafter LISMOD), the ARW physics options consist of the rapid 

radiative transfer model (Mlawer et al. 1997) and the Dudhia scheme (Dudhia 1989) for 

longwave and shortwave radiation, respectively. The WRF Single Moment 6-class microphysics 
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scheme (WSM6, Hong and Lim 2006; Skamarock et al. 2008) is used without any convective 

parameterization physics; thus, all convection is determined explicitly by the WSM6 

microphysics and model dynamics. The planetary boundary layer and turbulence processes are 

parameterized by the Mellor-Yamada-Janjić scheme (Janjić 1990, 1996, 2002). Horizontal 

diffusion is handled by the two-dimensional Smagorinsky first-order closure scheme 

(Smagorinsky et al. 1965). All runs use the Noah LSM as configured in version 3.0.1.1 of the 

ARW, being nearly identical to the version run operationally at NCEP (Chen and Dudhia 2001; 

Skamarock et al. 2008; Ek et al. 2003). Surface-layer calculations of friction velocities and 

exchange coefficients needed for the determination of sensible and latent fluxes in the LSM are 

provided by the NCEP Eta similarity theory scheme (Janjić 1996, 2002). The positive-definite 

advection options for moisture and scalars are enabled to remove the possible unphysical effects 

and high precipitation bias that can result from the “clipping” of negative mixing ratios in the 3rd 

order Runge-Kutta transport scheme (Skamarock and Weisman 2008; Skamarock et al. 2008). 

For the control runs, all initial conditions for the atmosphere, land, and the NCEP Real-Time 

Global (RTG) SSTs come from the native-resolution (12-km, grib 218) NCEP NAM model 3-h 

forecast initialized at 0000 UTC.  Three-hourly boundary conditions for both the control and 

LISMOD runs are provided by the NAM model 3-h to 30-h forecasts.  The SSTs remain fixed 

throughout the 27-h ARW simulations.  Interpolation of initial and boundary condition data is

done with the WRF Pre-Processing System (WPS) utilities.  

b. Experimental Simulations

The experimental runs are identical to the control configuration except that the land surface 

initial conditions are replaced by output from the offline LIS spin-up run and the RTG SSTs of 

the NAM model are replaced by the 2-km MODIS SST composites.  The LIS data are output in 
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GRIB1 format daily at 0300 UTC for the period of record (June – August 2008) to initialize the 

WRF land surface fields in the LISMOD simulations.  The GRIB1 formatted LIS data are used 

by the WPS with only a few minor modifications required.  First, the WPS file 

“METGRID.TBL” is modified to handle the LIS land-sea mask for interpolation of data to the 

WRF grid.  The new LIS land-sea mask defined in METGRID.TBL is then applied to each of the 

land surface variables to be interpolated to the WRF grid.  In addition, the interpolation method 

used in WPS for the LIS fields is a nearest-neighbor approach, as this method preserves the most 

detail and minimizes differences caused by interpolation.  A summary of all the LIS fields 

incorporated into the WRF initial conditions is given in Table 1.  

The MODIS SST composite from 0400 UTC the previous day is incorporated into the daily 

WRF initial conditions at 0300 UTC to minimize diurnal variations in SST relative to the model 

initialization time.  The only exception occurs for model initializations from 3–14 June 2008, 

when SST data are missing for the 0400 UTC MODIS composites.  For these initializations, the 

0700 UTC MODIS composites from the previous day provide the SST initial conditions. For all

simulations, the SSTs are held fixed throughout the duration of the forecast. This approach may 

not be the most realistic, since SST does have a low amplitude diurnal cycle under clear sky / 

calm wind conditions (Zeng and Beljaars 2005); however, we attempt to show the value of the 

more accurate, higher spatial resolution SST data on the forecast fields.

c. Verification Methodology and Tools

For verifying precipitation and other fields in both the control and LISMOD runs, the 

Meteorological Evaluation Tools (MET) package is employed (Brown et al. 2009).  Created by 

the WRF Developmental Testbed Center at the National Center for Atmospheric Research, the 

MET package is a highly-configurable, state-of-the-art suite of model verification tools. Both 
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traditional statistics and the object-oriented verification methodology available in MET are 

applied.  Known as the Method for Object-based Diagnostic Evaluation (MODE; Brown et al. 

2007; Davis et al. 2009), this utility classifies “objects” in gridded fields, calculates a wide 

variety of object attributes, and merges/pairs forecast objects with observed objects to determine 

the similarities and differences between the various objects.  This utility is used to obtain more 

meaningful precipitation verification statistics of pulse-type convection over the southeastern 

U.S., compared to traditional grid-point by grid-point verification techniques.

4. Results

This section provides results that illustrate some of the differences between the LIS land 

surface and MODIS SST initialization versus the interpolated NAM data in the control runs.  

Sample forecast impacts are presented, as well as verification output from MET/MODE.  

a. LIS Offline Run Results from Tropical Storm Fay

A high-impact event that affected the domain during the period of record is Tropical Storm 

Fay in late August.  In the 8-day period from 18−26 August, the storm produced prodigious 

amounts of rainfall across eastern and northern Florida, southwestern Georgia, and Alabama, 

with some local maxima exceeding 700 mm.  Needless to say, the volumetric soil moisture 

increased dramatically during this 8-day period over the affected areas. The root zone layer in 

the Noah LSM (40–100 cm) should have a substantial impact on the subsequent evapo-

transpiration into the atmosphere.  Figure 1 depicts the moistening of the 40–100 cm soil layer 

from 18–26 August, comparing changes in the Control/NAM initialization (panel a) to the LIS 

initialization (panel b).  Both model initialization differences show a similar broad pattern of 

moistening from Florida and southern Georgia into east-central Mississippi that follows the 

general pattern of rainfall depicted in Figure 1c.  The LIS differences have much more detail as 
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expected; however, the LIS (Figure 1b) has substantially higher amounts of moistening across 

much of the eastern Florida peninsula, which visually corresponds much better to the pattern of 

the rainfall maximum in Figure 1c compared to the Control (Figure 1a).

A LIS/Noah time-depth cross section at a selected point in southwestern Georgia (Figure 1d) 

helps to illustrate the dramatic soil moistening associated with Tropical Storm Fay.  At this 

location, the soil type is categorized as “loamy sand”, which has wilting/porosity points of 3% 

and 42%, respectively.  In about a day, the volumetric soil moisture in the upper one meter 

increases from a minimum of less than 6% to a maximum value near 40%, transitioning from 

near the wilting point to porosity.  Such a sudden shift from excessively dry to moist can have 

substantial impacts on the surface energy budget and subsequent short-term forecasting issues.  It 

is therefore important to be able to capture accurately the rapid changes to the soil moisture field 

in such situations in order to improve subsequent short-term numerical simulations.

b. Differences in Surface Initialization Datasets

The combination of LIS spin-up data and MODIS SSTs provide a more detailed 

representation of the land and water surface compared to the control run using interpolated 12-

km NAM data.  The depiction of 0–10 cm soil moisture at 0300 UTC 9 June 2008 in Figure 2

helps to illustrate this point.  While the regional patterns of soil moisture are fairly similar, the 

LISMOD initialization data provides information more consistent with the resolution of the WRF 

model in Figure 2b.  Locally more moist conditions are resolved in LIS within the narrow river 

valleys of eastern Georgia and South Carolina, where soil textures containing a higher silt 

content retain more moisture compared to the surrounding sandy soils.  The difference field also 

indicates systematically drier initial conditions in this soil layer from southern Mississippi to 

northwestern South Carolina (Figure 2c).  Over Florida, drier soil moisture is interspersed with 
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local pockets of wetter soil moisture.  These soil moisture variations are likely attributed to 

differences between the 12-km NAM Data Assimilation System (NDAS), which front-ends the 

NAM model, and the GDAS, which forces the LIS off-line run in combination with the Stage-IV 

precipitation analyses.  Also, the ability of the 4-km LIS to better capture local areas of 

antecedent convective-type precipitation compared to the 12-km NDAS explains the local 

variations in soil moisture over Florida.  It should be noted that the NDAS also uses the Stage-IV 

precipitation product to initialize its soil fields, similar to the offline LIS run.

A validation of the LIS versus control (NAM) soil moisture is conducted at available 

observation sites from the U.S. Department of Agriculture’s Soil Climate Analysis Network 

(SCAN, Schaefer et al. 2007).  Twenty-eight available SCAN observation sites fall within the 

WRF modeling domain, but most sites are clustered in northern Alabama and western 

Mississippi (Figure 3).  SCAN measures soil temperature and volumetric soil moisture at depths 

of 2, 4, 8, 20, and 40 inches (~5, 10, 20, 50, and 100 cm) at most locations. 

There is an inherent ambiguity that occurs with directly comparing a soil moisture or 

temperature in a grid box to an observation at a point, primarily due to spatial heterogeneities in 

soil type and vegetation coverage (Robock et al. 2003; Marshall et al. 2003; Godfrey and 

Stensrud 2008).  Therefore, the soil temperature and moisture in the model initial conditions are 

evaluated using a spatial averaging technique similar to that presented in Robock et al. (2003) 

and Godfrey and Stensrud (2008).  In addition, a depth-weighted average of the root zone is

computed in a manner following Reichle et al. (2007) and soil moisture anomaly correlations are

calculated similar to Kumar et al. (2009).  

The modeled near-surface soil moisture and temperature in the 0−10 cm layer are directly 

compared to SCAN observations at 5 cm, representing the mid-point of this layer.  For the 
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modeled soil moisture and temperature in the root zone, a depth-weighted average of the 10−40

cm and 40−100 cm layers is computed as follows:

90
)(60)(30 1004040cm-10 cm

RZ
FcstFcstFcst −+

= . (1)

The depth-weighted observed soil moisture and temperature in the root zone is determined by:

90
)(50)(25)(10)(5 100502010 cmcmcmcm

RZ
ObsObsObsObsObs +++

= . (2)

At each model initialization hour (0300 UTC), the spatial average of the modeled control and 

LISMOD soil moisture and temperature interpolated to the SCAN locations is computed along 

with the spatial average of the observed soil moisture and temperature.  

The results indicate that both the control/NAM and LIS soil moisture initializations more 

closely emulate the observations and trends at 5 cm than in the root zone.  Figure 4a shows that 

day-to-day variations in modeled 5-cm soil moistures trend similarly to the observations, with 

the LIS tending to be closer to the observations, especially in June and July.  However, both of 

the modeled soil moisture time series experience a sluggish response to precipitation events 

relative to the observations, consistent with the findings in Marshall et al. (2003) and Godfrey 

and Stensrud (2008).  The anomalies in the control/NAM and LIS are very similar during the 

period of record (Figure 4b).  In the root zone, both the NAM and LIS have considerably drier 

soil moisture than the SCAN observations throughout the entire summer, with the LIS being 

drier than the NAM by about 2–3% (Figure 4c).  This dry bias in the root zone is also consistent 

with the results in Godfrey and Stensrud (2008).  The anomalies in the root zone trend nearly 

identically between the NAM and LIS in which both model initializations have too much 

amplitude about the summer mean compared to the root zone SCAN observations (Figure 4d).  
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The anomaly correlations of the spatial averaged soil moisture are nearly identical at both 5 cm 

(0.875 for NAM; 0.871 for LIS) and the root zone (0.549 for NAM; 0.561 for LIS).  

The differences between the NAM and LIS are even smaller when examining the spatial 

averages of the soil temperature.  Again, both the modeled soil temperatures are more similar to 

the observations at 5 cm than in the root zone (Figure 5).  Both the NAM and LIS have root zone 

temperatures consistently cooler than the SCAN observations by about 2–3 K (Figure 5b).  

Interestingly, the 5-cm soil temperatures exhibit a slightly greater range than the observed 5-cm 

soil temperatures, despite the fact that the 5-cm modeled soil moisture was generally too moist 

during June and July.  Further investigation is needed to determine the source of this 

inconsistency, which could be related to an improper representation of the soil characteristics, 

soil heat flux, and/or incoming energy from the atmospheric forcing dataset.  The similar 

behavior between the NAM and LIS presented in these figures suggests that the biases being 

realized (particularly in the root zone) may be a manifestation of the Noah land surface model 

physics and/or mis-classification of the land surface properties, since the Noah model and same 

fixed parameters are used in both the NAM and the LIS for this experiment.  

Despite the ambiguities between modeled and point observations of soil variables, the 

validation statistics at the individual SCAN stations are also examined, since a goal of this study 

is to determine the impacts of introducing spatial variability in the surface initialization that is 

more consistent with the model grid resolution.  Table 2 summarizes the bias, RMS error and 

anomaly correlation statistics at the individual SCAN stations.  The results are generally 

consistent with the spatial averaged statistics in that the LIS is slightly drier than the NAM soil 

moisture as indicate by a decrease in the bias of 1–2%.  The LIS 5-cm soil moisture has a higher 

anomaly correlation of 0.722 compared to the NAM model’s 0.657.  The root zone anomaly 
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correlations are nearly identical to one another.  The soil temperature evaluated at the individual 

stations indicates roughly a 0.2 K increase in the RMS error in the LIS initial conditions.  

Anomaly correlations are quite similar with the NAM slightly higher than the LIS at both the 5-

cm level and root zone layer.  

From a verification perspective, the mixed results make it difficult to determine which soil 

initial field is consistently more accurate, especially considering the sparseness and variable 

density of the SCAN observations.  The results do suggest that LIS is perhaps providing a better 

initial conditions of the upper soil layer (5 cm) as a result of the Noah LSM spin-up with Stage 

IV precipitation analyses on a higher resolution grid compared to the NAM 12-km resolution.  

The main points we can conclude are that the LIS produced a slightly drier overall soil layer 

compared to the NAM (at least at the SCAN locations), and that the 4-km LIS provided greater 

horizontal detail, which is probably more representative at 5cm given the modest improvement in 

the LIS soil moisture anomaly correlation.  

Meanwhile over the adjacent waters, the MODIS SST product provides much more thermal 

structure over the Gulf of Mexico and Atlantic waters compared to the interpolated RTG SSTs 

from the NAM model (Figure 6).  For the model run initialized at 0300 UTC 9 June, SSTs were 

obtained from the 0700 UTC 8 June SPoRT/MODIS composite.  Substantial differences (up to 

2°C) are found in the vicinity of the shallow near-coastal waters near the Florida coast.  For this 

composite, the MODIS tends to be cooler than the RTG.  However, many days in late July and 

August have patterns of both warming and cooling relative to the RTG SSTs (not shown).  

The most noteworthy aspect of the MODIS composite is its ability to capture the fine-scale 

horizontal gradients in SSTs compared to the once-daily RTG product.  The smoothness of the 

RTG data in Figure 6a precludes the model from capturing the relatively cool shelf waters off the 
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Florida East Coast.  However, the LISMOD SSTs in Figure 6b are able to depict the cool shelf 

waters and the magnitude of the Gulf Stream east of Florida.  The SST differences illustrate the 

locally sharper horizontal gradients captured by the SPoRT MODIS product in Figure 6c.  

Previous studies have documented improved error statistics of the SPoRT MODIS product 

compared to RTG SSTs (Haines et al. 2007) and the positive benefit realized in numerical 

simulations (LaCasse et al. 2008). 

c. Sample Forecast Sensitivities from 9 June

The surface initialization differences depicted in Figure 2 and Figure 6 lead to distinct 

impacts on the model predicted thermodynamic properties (Figure 7).  The corridor of drier LIS 

soil moisture from southern Mississippi to northwestern South Carolina results in an increase of 

sensible heat flux by over 50 W m-2 in many locations at the 13-h forecast valid at 1600 UTC 9 

June (Figure 7a).  The partitioning of higher sensible heat flux relative to the latent heat flux 

produces a decrease in the simulated 2-m dew point temperature by as much as 2°C across this 

corridor (Figure 7b).  The increased surface heating also produces locally higher PBL heights 

(Figure 7c), especially over southwestern Mississippi and central Georgia.  The combination of a 

decrease in the moisture transport into a deepening boundary layer subsequently results in 

smaller values of convective available potential energy (CAPE) particularly over portions of 

southern Mississippi, northeastern Louisiana, central Georgia and northwestern South Carolina.  

Parts of west-central Georgia experience CAPE reductions of 500 J kg-1 or more. These results 

are consistent with the dry soil corollary of the feedback mechanism described in Eltahir (1998).  

The impacts from the LIS soil initialization is far more complicated over the Florida 

peninsula.  The detailed variations in the LIS soil moisture relative to the control/NAM produce

local pockets of alternating higher/lower sensible heat flux (Figure 7a), likely related to 
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antecedent rainfall from the Stage IV precipitation forcing in the LIS spin-up.  The propensity is 

for higher sensible heat fluxes and lower 2-m dew point temperatures across the Florida 

peninsula, ultimately resulting in a greater coverage of lower CAPE (Figure 7d).  Interestingly 

over the Gulf of Mexico, the CAPE tends in increase despite a slight cooling of the SSTs from 

the MODIS composite in the 9 June model initialization.  This scenario is likely a manifestation 

of the decrease in the PBL height (Figure 7c) helping to concentrate the moisture transport from 

the ocean surface into a shallower boundary layer.  These substantial modifications to the heat 

fluxes and CAPE certainly have the potential to impact convective rainfall in the model.

A sample 1-h forecast precipitation comparison ending 2100 UTC 9 June 2008 is presented 

in Figure 8.  The flow pattern was very weak on this day, with few discernable boundaries or 

organized flow pattern over the southeastern U.S.  Figure 8 shows how the forecast 1-h 

precipitation patterns and modes are quite similar overall in the control and LISMOD runs.  

However, the difference field depicts numerous small-scale fluctuations between the forecasts 

(Figure 8c).  Compared to the Stage-IV product in Figure 8d, both simulations over-predict 

precipitation across northern Mississippi and Alabama while under-predicting rainfall over the 

southern portions of these states.  Both the control and LISMOD runs appear to be most skillful 

in predicting the convection over the western part of the Florida peninsula.  

At first glance, the precipitation forecast sensitivities appear somewhat subtle, despite 

relatively substantial changes in the details of the land and water initial conditions.  A qualitative 

examination of many different days during the period of record (not shown) indicated that the 

broad patterns of forecast precipitation in the control and LISMOD runs are generally similar, 

especially at longer accumulation intervals.  The different model solutions tend to look more 

similar to one another rather than the validating Stage IV precipitation analysis, as is often the 
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case in high-resolution convection-allowing model runs under weak synoptic flow.  Most of the 

differences in forecast precipitation arise from small-scale fluctuations in individual convective 

elements that evolve differently due to the variations in the land/water surface interactions with 

the PBL.  If the control forecast is significantly in error with the timing and placement of 

precipitation, then the LISMOD is also generally in error.  Therefore, it appears that the high-

resolution input from LIS and MODIS SSTs leads to numerous small-scale variations in the 

convective precipitation pattern, while the broad-scale patterns of simulated precipitation are still 

largely driven by the atmospheric initial and boundary conditions, in addition to model dynamics 

and physics.

d. Selected Traditional Verification Statistics

Point verification statistics at approximately 500 primary and mesonet stations over the 

southeastern U.S. are calculated using the MET package.  The bias and error standard deviation

as a function of forecast hour (Figure 9a and b, respectively) for 2-m temperature and dew point 

temperature reveal relatively minor differences in most forecast hours.  The bias plots (Figure 

9a) indicate that the LISMOD develops a slightly higher warm bias by a few tenths of a degree 

Celsius between forecast hours 9 and 18, while a nominal dry dew point bias ≤ 0.5°C occurs 

between forecast hours 9 and 27.  The error standard deviation in Figure 9b shows only small 

differences between control and LISMOD, with the LISMOD having marginally larger errors.  

Statistically significant results at the 95th percentile are denoted by non-overlapping plots of the 

lower and upper confidence intervals on each series in Figure 9.  

The 3-h NAM forecasts providing the initial conditions to both model runs experience a 

warm bias of nearly 2°C at 0 hours (Figure 9a).  The temperature bias steadily decreases during 

the night into the daylight hours until 21 hours (0000 UTC), after which, the temperature bias 



23

switches back to positive.  A distinct diurnal signal is seen in the error standard deviation 

(representing the random errors) of the 2-m temperature and to a lesser extent the 2-m dew point 

temperature.  Maximum random errors occur distinctly during the daytime between forecast 

hours 15 and 21 (1800 UTC to 0000 UTC, Figure 9b), and is likely attributed to the model’s 

inability to forecast accurately the afternoon convection timing and location.  False alarm 

convective outflow boundaries combined with forecast misses of actual outflow boundaries 

likely lead to the large random component of the errors during the afternoon and early evening 

hours, in both the temperature and dew point.  These results are consistent with the findings in a 

previous model verification study over the Florida peninsula (Case et al. 2002).

Using traditional grid-point by grid-point techniques, the 1-h accumulated precipitation 

errors are computed during the forecast hours of typical peak convective activity (12−24 hours, 

corresponding to 1500−0300 UTC).  The results indicate that both the control and LISMOD 

over-predict the area coverage of 1-h accumulated precipitation at all three thresholds examined 

(bias > 1 for 5-, 10-, and 25-mm h-1; Figure 10a).  However, the LISMOD tends to reduce the 

bias between forecast hours 12−18, especially at the higher intensities.  The Heidke Skill Score 

in Figure 10b depicts a low skill under 0.10 for all precipitation thresholds, diminishing with 

forecast hour. The LISMOD has a marginally higher skill, mainly between forecast hours 12 and 

18.  Standard threat scores also reveal low skill for the 1-h accumulated precipitation, with the 

LISMOD being marginally higher at most forecast hours (Figure 10c).  The 24-h accumulated 

precipitation statistics for the 3-h to 27-h forecasts show a similar story, with the LISMOD threat 

scores only marginally better than the control at each of the three thresholds (5 mm, 10 mm, and 

25 mm, Figure 10d).  The largest improvements in 24-h threat score occurs in the 25-mm 

threshold. All threat score changes in panels (c) and (d) are statistically significant where plots 
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of the lower and upper confidence intervals do not overlap. Overall, however, the traditional 

statistics differences are quite minor and do not reveal large performance differences in model 

accuracy, except for a reduction in the high-intensity precipitation bias resulting in slightly 

improved threat scores.

Because the model precipitation fields have so little overlap with the observed precipitation 

at most times, this measures-oriented approach to verification provides little utility for

interpreting differences in the results.  Many forecasters find value in high-resolution model 

precipitation forecasts based on the realism to observed features and depiction of the convective 

modes, despite the spatial and temporal biases and uncertainties that exist.  Davis et al. (2006) 

describe the limitations of using traditional metrics in precipitation verification, as illustrated in 

Figure 1 of their paper, and present an object-based approach to precipitation verification 

applicable to higher-resolution model configurations.  

To provide a better interpretation of the precipitation forecast differences in our high-

resolution model forecasts, the MODE object-based technique in the MET verification package

is invoked.  Using the MODE tool enables a more lenient comparison between the simulated and 

observed precipitation similar to how a forecaster may interpret the quality of the forecast model.  

The MODE is tuned to identify detailed features at various accumulation thresholds, but does not 

require that the precipitation features exactly overlap to be considered a “hit”.  

e. MODE Object-Based Verification

The remainder of the analysis focuses on the non-traditional object-based verification 

available from MET’s MODE tool.  A snapshot of forecast/observed object pairs from the 

control and LISMOD simulation from 9 June is presented first, followed by overall composite 

results from running MODE over all 81 control and LISMOD forecasts from summer 2008.  
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The object-matching in MODE is centered on an “interest function”, which combines several 

attributes about the feature of interest — in this case 1-h accumulated precipitation from the 

WRF model (forecast) and Stage IV precipitation analyses (observed).  The attributes consist of 

object characteristics such as centroid distance, minimum boundary distance, orientation angle 

difference, etc.  MODE resolves objects in a gridded field through convolution thresholding.  

This technique involves applying a filter function to the raw data using a tunable radius of 

influence.  The filtered field is then thresholded using another tunable parameter (typically the 

precipitation threshold) to create a mask field.  Finally, the raw data are restored to objects where 

the mask meets/exceeds the specified threshold.  More information on the technical details of 

MODE can be gleaned from Brown et al. (2007) and Davis et al. (2009).  

Forecast and observed objects are matched based on additional input criteria and a minimum 

value of the “interest function”, which scales between 0 and 1.  The fuzzy engine weights used to 

formulate the interest function are given in Table 3, and are simply the default values in the MET 

software.  These weights seem reasonable for the problem at hand since they emphasize the 

distances between objects as the most important factors determining object similarity.  

Forecast/observed objects are considered matches if the interest function is ≥ 0.6 and the distance 

between the object centroids is no greater than 80 km.  A single forecast object could be matched 

with more than one observed object and vice versa. The interest function is not calculated for 

object pairs whose centroids are greater than 80 km apart.  The rationale for an 80-km restriction 

is to avoid having a precipitation object on the west coast of Florida be matched with one on the 

east coast of Florida, which should not be considered a “hit”.  
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1) OUTPUT FROM 9 JUNE 2008

Output from MODE for precipitation objects of 10 mm or greater for the 1-h period ending 

2100 UTC 9 June is given in Figure 11.  A comparison between the control forecast and 

observed objects (Figure 11a, left column) shows one matched forecast precipitation object 

across southwest Florida with several false alarm objects across the western Florida peninsula.  

The LISMOD run (Figure 11b) has two matched 10-mm objects in southwestern Florida, a larger 

false alarm object over the west-central Florida peninsula and two very small false alarm objects 

in the interior part of the peninsula.  

It should be noted that if we had increased the object centroid distance criterion (80 km), 

modified the fuzzy weights in Table 3, and/or relaxed the interest function threshold, then more 

forecast and observed objects would have been matched.  Such a stringent requirement is used to 

minimize object matching for rainfall areas that a forecaster would not consider a “hit”.  Despite 

the somewhat stringent constraints placed on MODE, this configuration appears optimal based 

on the level of detail and accuracy desired for this experiment. 

Once the object matching is done, the total area of matched and unmatched objects is 

provided at each forecast hour in the MODE output.  A summary of the matched/unmatched 

objects areas for the 10 mm h-1 precipitation intensity (with forecast and observed object areas 

combined together) indicates that the LISMOD out-performed the control run on this day at 

many of the forecast hours (Table 4).  Six of the 9 forecast periods experiencing 10 mm h-1

precipitation have reductions in the unmatched area in LISMOD, while 7 of 9 have increases in 

the total matched area.  Meanwhile, the control has only 3 forecast periods with improvements in 

the unmatched area over LISMOD and no improvements in the matched area.  
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2) MODE VERIFICATION FOR SUMMER 2008

By applying the same object matching criteria to all forecasts for the summer 2008, we can 

determine whether the LISMOD consistently out-performed the control in 1-h precipitation 

forecasting accuracy during the peak convective hours.  The analysis focuses on 10 mm h-1

precipitation objects during the peak convective forecast hours (12−24 h).  The frequency of 

forecast and observed objects per day is summarized in Figure 12, indicating that both the 

control and LISMOD tend to produce more 10 mm h-1 precipitation objects than observed at all 

peak convective forecast hours.  The observed daily frequency averages from 2 to 7 objects per 

forecast hour while the control/LISMOD daily frequency generally averages from 4 to 12 objects 

per forecast hour.  The matched and unmatched area for precipitation objects during the peak 

convective hours are summed for each control and LISMOD forecast run.  Improvements 

correspond to increases in the matched area and decreases in the unmatched area, as summarized 

in Figure 13.  The LISMOD individual forecasts experience varying degrees of improvement and 

degradation from run to run relative to the control runs (CON in Figure 13a-c). The LISMOD 

runs tend to have the largest increases in matched area (e.g. mid-August) and more numerous 

decreases in unmatched areas.  However, there continues to be much more unmatched area than 

matched area, on the order of a 2:1 ratio or more.  While some improvements have been made, 

the forecast improvements still needed are substantial in comparison to what the model can 

provide in this configuration.

A summary of the mean matched/unmatched precipitation object areas per forecast run is 

provided in Table 5 for each of the three accumulated precipitation thresholds examined (5, 10, 

and 25 mm h-1).  The LISMOD produces on average more matched and fewer unmatched object 

areas compared to the control for all three thresholds between forecast hours 12−24.  The lone 
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exception is the matched area for 25 mm h-1, in which the matched area averages the same in 

both the control and LISMOD.  Using a standard t-test, all of the improvements in unmatched

area are determined to be statistically significant at the 99th percentile, while only the 4.3% 

improvement in 10 mm h-1 matched area is marginally significant at the 90th percentile.  All other 

changes to the matched area at other thresholds are non-significant.

The improvements to the forecast precipitation are also prevalent as a function of forecast 

hour, at least in the 10 mm h-1 threshold (Figure 14).  During the peak convective times, the 

LISMOD consistently produced a slight increase in the matched area and a slight decrease in the 

unmatched area as a function of forecast hour (Figure 14a).  The percentage change in 

matched/unmatched area indicates the greatest improvement earlier in the day between forecast 

hours 12 and 19 (Figure 14b).  The 5-mm h-1 threshold also shows a notable improvement in the 

LISMOD, mainly from a reduction in unmatched area; however, the 25-mm h-1 threshold does

not show much of a clear distinction between the control and LISMOD as a function of forecast 

hour (not shown).

Figure 15 provides a summary of the overall distribution of interest function values between 

forecast and observed object pairs at all forecast hours between 1500−0300 UTC for all 81 

forecast days (Sample sizes for each threshold are given in Table 6).  Higher interest function 

values indicate that the forecast objects tend to be more similar in attributes to the corresponding 

observed objects.  Among the three precipitation thresholds presented in Figure 15, the LISMOD 

has a larger interest value at higher percentiles in the distribution, particularly for the more 

intense precipitation thresholds.  The LISMOD has a consistently higher interest value nearly 

everywhere in the distribution for the 25-mm h-1 threshold, and from the 50th to 90th percentiles 

for 10-mm h-1 threshold.  The 5-mm h-1 interest values show little overall difference between 
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control and LISMOD.  This result indicates that the LISMOD forecasts produced 1-h 

accumulated precipitation areas that more closely resemble the observed rainfall areas for more 

intense thresholds.  

The reduced precipitation bias and false alarm objects combined with an increase in object 

hits suggest that higher-resolution land surface (particularly soil moisture) and SSTs in the 

LISMOD lead to some improvements in the surface heating rates, PBL evolution, and 

subsequent mesoscale circulations. If the changes from generally drier regional soil moisture in 

LISMOD were purely systematic, then one would expect to see only a decrease in the bias and 

false alarm objects, and not any improvements to the matched objects. Despite the slight 

improvements to verification results, the skill scores and false alarm rate are still low, indicating 

the model’s inability to predict accurately diurnal convection over the southeastern U.S. under 

weakly-forced conditions.  

5. Summary and conclusions

This paper presents results from a numerical modeling sensitivity experiment in which the 

interpolated land and ocean surface fields from the NCEP NAM model in a control WRF model 

simulation are replaced with high-resolution datasets provided by unique NASA assets in an 

experimental simulation: the LIS and SPoRT/MODIS SSTs.  The LIS is run in an offline mode 

for several years at the same grid resolution as the WRF model in order to provide WRF with 

compatible land surface initial conditions in an equilibrium state.  The MODIS SSTs provide 

more detailed analyses of the SSTs over the oceans and large lakes compared to the RTG product 

used in the control model runs.  

Results indicate that the LISMOD initial conditions contain much more detail, consistent 

with the WRF model resolution, when compared to the control initial conditions.  The large-scale 
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patterns of soil moisture are fairly similar, but the LISMOD initial conditions do have some 

systematic regional differences, probably due to the LIS better resolving the fine-scale 

precipitation features of the Stage IV data compared to the 12-km NDAS.  The MODIS SSTs are 

better able to capture the spatial variability in SSTs, especially in the waters surrounding the 

Florida peninsula.  The LIS soil moisture and MODIS SSTs are shown to have substantial 

impacts on the sensible heat flux, 2-m dew points, PBL height, and CAPE.  On 9 June, the CAPE 

is reduced over areas of drier soil moisture due to the decrease in low-level moisture diffused 

through a deeper PBL.  The forecast precipitation fields are fairly similar, especially in the 

overall larger-scale patterns; however, numerous small-scale differences occur due to the 

variations in soil moisture distribution in the initial conditions.  

Traditional verification methods of 2-m temperature and dew point do not reveal substantial 

differences between the two forecast configurations.  Only slight differences in the 2-m 

temperature and dew point errors are evident.  The traditional grid point precipitation verification 

does show a small reduction in the over-prediction of rainfall areas in LISMOD; however, the 

skill is almost equally low in both experiments.  Output from MODE’s object-based verification 

within the MET package reveals that the LISMOD consistently generated precipitation objects 

that better matched observed precipitation objects, especially at higher precipitation intensities.  

For the 1-h accumulated precipitation thresholds examined, the LISMOD runs produce an

increase in matched precipitation areas and a simultaneous decrease in unmatched areas in most 

instances (i.e. increase in hits and decrease in combined false alarms and forecast misses).  This 

result suggests that the LISMOD did not just simply decrease precipitation production due to a 

drier soil solution. Instead, the increased resolution of the surface initial conditions most likely 

impacted the local surface heating rates in a positive sense, resulting in a slight improvement to 
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the PBL evolution and simulated mesoscale circulations.  However, the overall low verification 

scores indicate that much uncertainty still exists in simulating the processes responsible for air-

mass type convective precipitation in convection-allowing models.  

Since this experiment was conducted, the NASA SPoRT Center developed an enhanced SST 

algorithm that improves upon the MODIS-only composites by incorporating microwave SST 

information from the Advanced Microwave Scanning Radiometer - Earth Observing System 

sensor aboard NASA’s Aqua satellite (Vasquez et al. 2009).  Schiferl et al. (2010) documented 

the improvements to the SST verification as well as some forecast improvements realized by this 

new algorithm around south Florida. Improvements could also be realized in the land surface 

initialization by replacing the coarse resolution, somewhat dated climatology fields of monthly 

vegetation and albedo with real composite data from the NASA MODIS instrument.  Crawford 

et al. (2001), Kurkowski et al. (2003), and James et al. (2009) each demonstrated the potential 

utility of such datasets derived from AVHRR data in a real-time modeling system through 

improvements realized in forecast low-level temperature, moisture, and near-storm 

environmental parameters.  Trier et al. (2010) recently documented improvements to the timing 

of convective initiation by modifying the default WRF-ARW formulation for surface exchange 

to be a function of vegetation type.  A more accurate representation of ocean and land surface 

fields, and better representations of the physical processes would all lead to improved 

simulations of the surface energy budget and transport of heat and moisture into the atmosphere, 

thus potentially leading to better convective precipitation forecasts.
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Figure Captions

Figure 1.  Change in volumetric soil moisture (%) in the Noah 40−100 cm layer for the 0300 

UTC WRF initializations from 18−26 August 2008, valid for the (a) control run, and (b) 

LISMOD run; (c) total Stage IV rainfall (mm), accumulated from 0000 UTC 18 Aug to 0000 

UTC 26 Aug, and (d) time-depth cross section of LIS/Noah volumetric soil moisture at 31°N, 

84°W (denoted by the ‘X’ in panel b over southwestern Georgia).

Figure 2. Comparison between WRF-initialized 0–10 cm volumetric soil moisture for the (a) 

control (NAM model), (b) LIS spin-up, and (c) difference field (LIS – control) valid at 0300 

UTC 9 June 2008.  The region depicted is the horizontal extent of the 4-km model domain.

Figure 3.  Location of Soil Climate Analysis Network (SCAN) observations used to validate the 

NCEP/NAM (control) and LIS volumetric soil moisture (%) and soil temperature at the model 

initialization times.

Figure 4.  Time series of spatial-averaged observed, control, and LISMOD volumetric soil 

moisture and daily anomalies (in %) at SCAN observations locations for each model 

initialization time for (a) 5-cm level soil moisture, (b) 5-cm level soil moisture anomaly, (c) 

weighted root zone soil moisture, and (d) weighted root zone soil moisture anomaly. Gaps in 

the time series indicate days with missing MODIS SSTs, and thus, no model forecasts.

Figure 5.  Time series of spatial-averaged soil temperatures (K) at SCAN observation locations 

for each model initialization time at the (a) 5-cm level, and (b) weighted root zone. Gaps in 

the time series indicate days with missing MODIS SSTs, and thus, no model forecasts.
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Figure 6. Comparison between WRF static SSTs for the (a) control (NAM model / RTG 

product), (b) LISMOD (SPoRT MODIS data), and (c) difference field (LISMOD – control), 

valid for the model run initialized at 0300 UTC 9 June 2008.

Figure 7.  Difference plots (LISMOD – control) of the 13-h forecasts valid at 1600 UTC 9 June 

2008 for the following fields: (a) sensible heat flux (W m-2), (b) 2-m dew point temperature 

(°C), (c) planetary boundary layer (PBL) height in meters, and (d) convective available 

potential energy (CAPE, J kg-1).

Figure 8. Comparison of accumulated precipitation (mm) for the 1-h period ending 2100 UTC 

9 June 2008 for the (a) control run, (b) LISMOD run, (c) difference between LISMOD and 

control, and (d) Stage IV precipitation.  Traditional grid point verification at a 10-mm 

threshold yields a Heidke Skill Score of 0.034 for the control run and 0.046 for the LISMOD 

run over this time interval.

Figure 9.  Comparison of 2-m temperature and dew point temperature model errors (°C) for 81 

control and LISMOD forecasts from June−August 2008 at approximately 500 surface 

observation locations.  Plots shown are (a) mean error (bias), and (b) Error standard deviation 

(StDev).
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Figure 10.  Traditional verification metrics of accumulated precipitation for all 81 forecasts in 

the study period (June to August 2008).  Plots shown are (a) bias of the 1-h accumulated 

precipitation during the peak convective hours of 1500 to 0300 UTC (forecast hours 12−24), 

(b) Heidke Skill Score (HSS) of the 1-h accumulated precipitation during forecast hours 

12−24, (c) Threat Score (TS) of the 1-h accumulated precipitation during forecast hours 

12−24, and (d) TS of the 24-h accumulated precipitation for forecast hours 3−27, according to 

the legends provided.

Figure 11. Comparison of 18-h forecast and Stage IV (observed) ≥10-mm accumulated 

precipitation objects for the 1-h period ending 2100 UTC 9 June 2008 for the (a) control run, 

and (b) LISMOD run.  Solid blue shading indicates a false alarm in the forecast field or a 

forecast miss in the observed field.  All other solid colors represent matched forecast or 

observed objects.  Outlined blue areas denote the corresponding observed (forecast) objects in 

the field of forecast (observed) objects.

Figure 12.  Frequency of forecast (control and LISMOD) and observed 10 mm h-1 MODE 

precipitation objects, representing the average number of objects per forecast hour per day

over all forecast days in the period of record.

Figure 13.  Comparison of Control (CON) and LIS+MODIS (LISMOD) 10 mm h-1 accumulated 

precipitation objects for (a) matched area, (b) unmatched area, and (c) difference in matched 

and unmatched area, summed during the peak convective hours (1500 UTC to 0300 UTC) for 

each individual forecast from June to August 2008.  

Figure 14.  Comparison between the total matched and unmatched object areas from all 81 

forecast cycles for 1-h accumulated precipitation ≥ 10 mm during the forecast hours centered 
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on the diurnal peak convective activity (12−24 hours, valid 1500 UTC to 0300 UTC).  (a) 

Total matched and unmatched object areas for the control and LISMOD according to the 

legend provided, and (b) LISMOD percentage change from the control matched/unmatched 

object area.

Figure 15.  Distribution of the total interest function for all 81 control and LISMOD 

forecast/observed 1-h accumulated precipitation object pairs during the peak convective hours 

of 1500 to 0300 UTC.  The plot depicts the control and LISMOD values within their 

respective interest function distributions at the 10th, 25th, 50th, 75th, and 90th percentiles for 

5-mm, 10-mm, and 25-mm accumulated precipitation thresholds, according to the scale 

provided.  The interest function sample sizes are provided in Table 6.
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Figure 1.  Change in volumetric soil moisture (%) in the Noah 40−100 cm layer for the 
0300 UTC WRF initializations from 18−26 August 2008, valid for the (a) control run, and 
(b) LISMOD run; (c) total Stage IV rainfall (mm), accumulated from 0000 UTC 18 Aug to 
0000 UTC 26 Aug, and (d) time-depth cross section of LIS/Noah volumetric soil moisture at 
31°N, 84°W (denoted by the ‘X’ in panel b over southwestern Georgia).
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Figure 2. Comparison between WRF-initialized 0–10 cm volumetric soil moisture for the 
(a) control (NAM model), (b) LIS spin-up, and (c) difference field (LIS – control) valid at 
0300 UTC 9 June 2008.  The region depicted is the horizontal extent of the 4-km model 
domain.
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Figure 3.  Location of Soil Climate Analysis Network (SCAN) observations used to validate
the NCEP/NAM (control) and LIS volumetric soil moisture (%) and soil temperature at the 
model initialization times.
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Figure 4.  Time series of spatial-averaged observed, control, and LISMOD volumetric soil 
moisture and daily anomalies (in %) at SCAN observations locations for each model 
initialization time for (a) 5-cm level soil moisture, (b) 5-cm level soil moisture anomaly, (c) 
weighted root zone soil moisture, and (d) weighted root zone soil moisture anomaly. Gaps 
in the time series indicate days with missing MODIS SSTs, and thus, no model forecasts.
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Figure 5.  Time series of spatial-averaged soil temperatures (K) at SCAN observation 
locations for each model initialization time at the (a) 5-cm level, and (b) weighted root zone.  
Gaps in the time series indicate days with missing MODIS SSTs, and thus, no model 
forecasts.
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Figure 6. Comparison between WRF static SSTs for the (a) control (NAM model / RTG 
product), (b) LISMOD (SPoRT MODIS data), and (c) difference field (LISMOD – control), 
valid for the model run initialized at 0300 UTC 9 June 2008.
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Figure 7.  Difference plots (LISMOD – control) of the 13-h forecasts valid at 1600 UTC 9 
June 2008 for the following fields: (a) sensible heat flux (W m-2), (b) 2-m dew point 
temperature (°C), (c) planetary boundary layer (PBL) height in meters, and (d) convective 
available potential energy (CAPE, J kg-1).  
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Figure 8. Comparison of accumulated precipitation (mm) for the 1-h period ending 2100 
UTC 9 June 2008 for the (a) control run, (b) LISMOD run, (c) difference between 
LISMOD and control, and (d) Stage IV precipitation.  Traditional grid point verification at 
a 10-mm threshold yields a Heidke Skill Score of 0.034 for the control run and 0.046 for the 
LISMOD run over this time interval.  
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(b)
Figure 9.  Comparison of 2-m temperature and dew point temperature model errors (°C) 
for 81 control and LISMOD forecasts from June−August 2008 at approximately 500 
surface observation locations.  Plots shown are (a) mean error (bias), and (b) Error 
standard deviation (StDev). The lower and upper confidence intervals are plotted for each 
series such that non-overlapping plots at a given forecast hour indicate statistical 
significance between the Control and LISMOD at the 95th percentile.
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Figure 10.  Traditional verification metrics of accumulated precipitation for all 81 forecasts 
in the study period (June to August 2008).  Plots shown are (a) bias of the 1-h accumulated 
precipitation during the peak convective hours of 1500 to 0300 UTC (forecast hours 12−24), 
(b) Heidke Skill Score (HSS) of the 1-h accumulated precipitation during forecast hours 
12−24, (c) Threat Score (TS) of the 1-h accumulated precipitation during forecast hours 
12−24, and (d) TS of the 24-h accumulated precipitation for forecast hours 3−27, according 
to the legends provided. Lower and upper 95th percentile confidence levels are plotted with 
the threat scores in (c) and (d) such that non-overlapping plots indicate statistically 
significant differences.
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Figure 11. Comparison of 18-h forecast and Stage IV (observed) ≥10-mm accumulated 
precipitation objects for the 1-h period ending 2100 UTC 9 June 2008 for the (a) control 
run, and (b) LISMOD run.  Solid blue shading indicates a false alarm in the forecast field 
or a forecast miss in the observed field.  All other solid colors represent matched forecast 
or observed objects.  Outlined blue areas denote the corresponding observed (forecast) 
objects in the field of forecast (observed) objects.
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Figure 12.  Frequency of forecast (control and LISMOD) and observed 10 mm h-1 MODE 
precipitation objects, representing the average number of objects per forecast hour per day
over all forecast days in the period of record.
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Figure 13.  Comparison of Control (CON) and LIS+MODIS (LISMOD) 10 mm h-1

accumulated precipitation objects for (a) matched area, (b) unmatched area, and (c) 
difference in matched and unmatched area, summed during the peak convective hours 
(1500 UTC to 0300 UTC) for each individual forecast from June to August 2008.  
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Figure 14.  Comparison between the total matched and unmatched object areas from all 81 
forecast cycles for 1-h accumulated precipitation ≥ 10 mm during the forecast hours 
centered on the diurnal peak convective activity (12−24 hours, valid 1500 UTC to 0300 
UTC).  (a) Total matched and unmatched object areas for the control and LISMOD
according to the legend provided, and (b) LISMOD percentage change from the control
matched/unmatched object area.  
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Figure 15.  Distribution of the total interest function for all 81 control and LISMOD 
forecast/observed 1-h accumulated precipitation object pairs during the peak convective 
hours of 1500 to 0300 UTC.  The plot depicts the control and LISMOD values within their 
respective interest function distributions at the 10th, 25th, 50th, 75th, and 90th percentiles 
for 5-mm, 10-mm, and 25-mm accumulated precipitation thresholds, according to the scale 
provided.  The interest function sample sizes are provided in Table 6.
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Table 1.  A list of the LIS land surface fields and corresponding names in 

the WPS “METGRID.TBL” file, as used to initialize the LISMOD 

experimental WRF model runs.  

Land Surface Field
Name in WPS 

“METGRID.TBL”

Canopy Water* CANWAT

0-10 cm Soil Moisture SM000010

10-40 cm Soil Moisture SM010040

40-100 cm Soil Moisture SM040100

100-200 cm Soil Moisture SM100200

0-10 cm Soil Temperature SM000010

10-40 cm Soil Temperature SM010040

40-100 cm Soil Temperature SM040100

100-200 cm Soil Temperature SM100200

Skin Temperature SKINTEMP

Snow Water Equivalent SNOW

*Canopy water is initialized to “0” in the default WRF source code.
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Table 2.  A summary of the soil moisture and temperature validation statistics

conducted at individual SCAN stations at the model initialization hours.

Quantity Bias RMS Error Anomaly Correlation

Soil Q (5 cm) NAM 2.4 % 10.1 % 0.657

Soil Q (5 cm) LIS 0.8 % 9.2 % 0.722

Soil Q (root zone) NAM -9.9 % 13.3 % 0.550

Soil Q (root zone) LIS -11.7 % 14.2 % 0.557

Soil T (5 cm) NAM -0.01 K 2.34 K 0.722

Soil T (5 cm) LIS -0.22 K 2.53 K 0.702

Soil T (root zone) NAM -2.01 K 2.72 K 0.783

Soil T (root zone) LIS -2.05 K 2.91 K 0.774
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Table 3.  MODE Fuzzy engine weights applied to object 

attributes to compute “total interest” field.

Object Attribute Weight

Centroid distance 20%

Minimum boundary distance 40%

Orientation angle difference 10%

Ratio of object areas 10%

Intersection area ratio 20%
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Table 4.  Comparison between the total matched and unmatched areas (in number of 

grid points) of the 10-mm h-1 precipitation objects in the control and LISMOD runs 

initialized at 0300 UTC 9 June 2008.  The valid times span from 1800 UTC 9 June to 

0300 UTC 10 June.  The better (un-)matched numbers are in bold-italics.

control LISMOD

Forecast 
Hour

Matched 
Area

Unmatched 
Area

Matched 
Area

Unmatched Area

15 0 0 0 0

16 0 78 100 138

17 258 440 270 332

18 62 1 098 380 704

19 190 696 498 456

20 162 332 176 642

21 0 832 0 464

22 110 246 272 144

23 110 164 194 154

24 0 156 0 178
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Table 5.  Mean matched and unmatched object areas for the control and LISMOD per 

forecast run, and the percent improvement in LISMOD over the control.  All 1-h forecasts 

during the peak convective hours are combined for each forecast run (12−24 h, 

corresponding to the 1500−0300 UTC validation window). Statistically significant 

differences at the 99th percentile are indicated by bold italics, while significant differences at 

the 90th percentile are given by italics.

Quantity control LISMOD
Difference 

(LISMOD − control)
% Change

5-mm Matched 11 911 12 045 134 1.1% 

5-mm Unmatched 17 750 17 175 -575 -3.2% 

10-mm Matched 2 456 2 562 106 4.3%

10-mm Unmatched 6 798 6 538 -260 -3.8%

25-mm Matched 60 60 0 0% 

25-mm Unmatched 549 505 -44 -8.0% 
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Table 6.  The number of 1-h accumulated precipitation object 

pairs at various thresholds composing the interest function 

distributions plotted in Figure 15.  

Precipitation threshold

WRF 

Experiment
5 mm 10 mm 25 mm

control 8 934 2 479 74

LISMOD 9 077 2 445 69


