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ABSTRACT 

We present a detailed analysis of the GeV gamma-ray emission toward the su­

pernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board 

the Fermi Gamma-ray Space Telescope. An investigation of the relationship among 

G8.7-0.l and the TeV unidentified source HESS J1804-216 provides us with an im­

portant clue on diffusion process of cosmic rays if particle acceleration operates in the 

SNR. The GeV gamma-ray emission is extended with most of the emission in posi­

tional coincidence with the SNR G8.7-0.l and a lesser part located outside the western 

boundary of G8.7-0.l. The region of the gamma-ray emission overlaps spatially­

connected molecular clouds, implying a physical connection for the gamma-ray struc­

ture. The total gamma-ray spectrum measured with LAT from 200 MeV-IOO GeV 

can be described by a broken power-law function with a break of 2.4 ± 0.6 (stat) ± 

1.2 (sys) GeV, and photon indices of 2.10 ± 0.06 (stat) ± 0.10 (sys) below the break 

and 2.70 ± 0.12 (stat) ± 0.l4 (sys) above the break. Given the spatial association 

among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the 

decay of 1IoS produced by particles accelerated in the SNR and hitting the molecular 

clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV 

morphology is not well represented by the TeV emission from HESS J1804-216 and 

that the spectrum in the GeV band is not consistent with the extrapolation of the TeV 

gamma-ray spectrum. The spectral index of the TeV emission is consistent with the 

particle spectral index predicted by a theory that assumes energy-dependent diffusion 

of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum 

originates from the interaction of particles accelerated in G8.7-0.1 with molecular 

clouds, and we constrain the diffusion coefficient of the particles. 

Subject headings: cosmic rays - acceleration of particles ISM: individual objects 
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(GS.7-0.l, HESS 11S04--216) - ISM: supernova remnants - gamma rays: ISM 
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1. Introduction 

Galactic cosmic rays are widely believed to be accelerated through the diffusive shock 

acceleration process at the shock of supernova remnants (SNRs) (Reynolds 2008, and references 

therein). It is generally expected that if a dense molecular cloud is overtaken by a supernova 

blast wave, the molecular cloud can be illuminated by relativistic particles accelerated at 

SNR shocks (e.g. Aharonian et al. 1994). If the accelerated particles are comprised mostly 

of protons, say> 100 times more abundant than electrons like the observed Galactic cosmic 

rays, decays of neutral pions produced in inelastic collisions of the accelerated protons with 

dense gas are expected to be a dominant radiation component in the gamma-ray spectrum of the 

cosmic-ray-illuminated molecular cloud. Thus, gamma-ray observations of SNRs interacting with 

adjacent molecular clouds are important for the study of cosmic rays. 

The Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope has 

recently detected GeV gamma rays from several middle-aged SNRs interacting with molecular 

clouds (Abdo et al. 2009, 20I0b,c,h,i). The GeV emission from these SNRs is bright and 

spatially coincident with molecular clouds, suggesting a hadronic origin as the most plausible 

explanation (Abdo et al. 2009, 20IOb,c,h,i). In addition, the LAT spectra of these sources exhibit 

spectral breaks above a few GeV and steepening above the breaks. A possible conventional 

mechanism for these spectral properties is the energy-dependent diffusion of accelerated 

particles from the SNR shell into nearby molecular clouds (e.g., Aharonian & Atoyan 1996; 

Gabici & Aharonian 2007; Ohira et al. 2011). On the other hand, Uchiyama et al. (2010) indicated 

that reaccelerated pre-existing cosmic-rays compressed at a radiative shock in a molecular cloud 

can explain the flat radio spectra and high gamma-ray luminosity observed in these SNRs and that 

the Alfven wave evanescence due to the strong ion-neutral collisions at the shock can cause the 

spectral breaks. Thus, the observation of GeV gamma rays from an additional SNR in this class 

adds valuable information for the study of cosmic-ray acceleration in SNRs and their interactions 
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with surrounding matter and/or magnetic fields. 

G8.7-0.1 is a middle-aged SNR located within W30 (Ojeda-May et al. 2002), a massive star 

forming region, and having nine discrete H II regions along the southern boundary (Blitz et al. 

1982). In the radio band, the shell-like synchrotron emission has a diameter of rv 45' and a spectral 

index of a = 0.5 (Kassim & Weiler 1990), suggesting that electrons are accelerated via diffusive 

shock acceleration. The conjunction of the molecular clouds associated with G8.7-0.l (Blitz et al. 

1982) and an OH maser on the eastern edge of the remnant (Hewitt & Yusef-Zadeh 2009) 

imply that the SNR is interacting with those molecular clouds. The northern part of the 

remnant is filled by a thermal X-ray plasma observed by ROSAT (Finley & Oegelman 1994). 

The distance to G8.7-0.l is estimated to be rv 4.8-6 kpc based on kinematic distances to 

the H II regions associated with the SNR (Kassim & Weiler 1990; Brand & Blitz 1993) and 

3.2-4.3 kpc based of the SNR evolution with the observed X-ray temperature and the angular 

radius (Finley & Oegelman 1994). The age of the SNR is estimated to be 1.5-2.8 x 104 yr based 

on applying a Sedov solution to the X-ray observation under the assumption of an initial kinetic 

energy of 1051 erg (Finley & Oegelman 1994), or alternatively, 1.5 x 104 yr using the relation 

between the age and the surface brightness (Odegard 1986). In this paper, we adopt an age of 

2.5 x 104 yr. 

The HESS collaboration found a TeV gamma-ray source in the vicinity of G8.7-0.1, 

HESS 11804-216, which has an extension of 22' (Aharonian et al. 2006) and has been confirmed 

by CANGAROO-III (Higashi et al. 2008). This source lacks an evident counterpart and is 

classified as unidentified. Gabici & Aharonian (2007) predicts that a number of TeV unidentified 

sources might be explained by molecular clouds illuminated by cosmic rays escaping from a 

nearby SNR. Thus, the relationship between HESS 11804-216 and G8.7-0.1 is interesting for 

probing the diffusion process of cosmic rays assuming that G8.7-0.! is a probable cosmic-ray 

accelerator. Measurements with the Energetic Gamma-Ray Experiment Telescope (EGRET) 
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onboard the Compton Gamma-ray Observatory found no gamma-ray sources around G8.7-0.1. 

A gamma-ray source is listed around G8.7-0.1 in the Astro-rivelatore Gamma a Immagini 

LEggero (AGILE) one year catalog (Pittori et al. 2009). However, AGILE has not published 

a detailed analysis of this field. Three LAT sources in the vicinity of G8.7-0.1 are listed in 

the IFGL catalog (Abdo et al. 20IOd), which is compiled under the assumption that sources 

are point-like. IFGL J1805.2-2137c was studied by Castro & Slane (2010) as the SNR with a 

point-like assumption. 

In this paper, we report a detailed analysis of the LAT sources around G8.7-0.1 based on 

23-months data. First, we give a brief description of the gamma-ray selection in Section 2. The 

analysis procedures and results are explained in Section 3, including measurements of the spatial 

extension and spectra of the LAT sources near the remnant. The discussion is given in Section 4, 

followed by conclusions in Section 5. 

2. OBSERVATION & DATA REDUCTION 

The LAT is the main instrument on Fermi. The energy band extends from rv 20 MeV to 

> 300 GeV 1 
• It is an electron-positron pair production telescope consisting of layers of tungsten 

foils and silicon microstrip detectors to measure the arrival directions of incoming gamma 

rays, and a hodoscopic cesium iodide calorimeter to determine the gamma-ray energies. The 

instrument is surrounded by 89 plastic scintillator tiles that serve as an anticoincidence detector 

for rejecting charged particle events. Details of the LAT instrument and pre-launch expectations 

of the performance can be found in Atwood et al. (2009). Relative to earlier gamma-ray missions, 

the LAT has a large rv 2.4 sr field of view, a large effective area (rv 8000 cm2 for >] GeV if 

on-axis), and improved angular resolution with a point spread function (PSF) described by a 68% 

I As noted below in the present analysis we use only events with energies> 200 MeV. 
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containment angle better than 1 ° at 1 Gey. 

Routine science operations of the LAT began on August 4,2008, after the conclusion of a 

commissioning period. We have analyzed events around G8.7-0.1 collected from August 4, 2008, 

to July 9, 2010, with a total exposure of rv 5.5 X 1010 cm2 s (at 1 GeV). During this time interval, 

the LAT was operating in sky survey mode nearly all of the time, obtaining complete sky coverage 

every 2 orbits (rv 3 hours) and relatively uniform exposure over time. 

We used the standard LAT analysis software, ScienceTools v9r15, which is available from 

the Fermi Science Support Center (FSSQ2, and applied the following event selection criteria: 1) 

events should have the highest probability of being gamma rays, i.e., they should be classified 

as so-called Diffuse class (Atwood et al. 2009), 2) the reconstructed zenith angles of the arrival 

direction of gamma rays should be less than 105° to minimize contamination by gamma rays from 

the limb of the Earth, 3) the center of the LAT field of view should be within 52° of zenith in order 

to exclude data from the short time intervals when the field of view contains a larger portion of the 

Earth. No gamma-ray bursts were detected by the LAT within 15° of G8.7-0.1; thus, we did not 

need to apply any additional time cut. The energy range analyzed here is restricted to> 200 MeV 

to avoid possible large systematic uncertainties at lower energies due to the strong Galactic diffuse 

emission (especially for G8.7-0.l, which lies in the direction of the Galactic center), smaller 

effective area, and broader PSF. 

2Software and documentation of the Fermi ScienceTools are distributed by Fermi Science Sup­

port Center at http://fermi.gsfc.nasa.gov/ssc 
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3. ANALYSIS AND RESULTS 

3.1. Morphological Analysis 

Figure 1 shows a smoothed count map in the 2-10 Ge V energy band in a 10° x 10° 

region around G8.7-0.1. The average surface brightness of this region is about 2 times 

larger than neighboring regions along the Galactic plane. There are three LAT sources in the 

vicinity of G8.7-0.l in the IFGL catalog (Abdo et al. 20IOd): IFGL Jl805.2-2137c and IFGL 

Jl 806.8-21 09c located to the east, and IFGL Jl803.l-2147c located to the west. 

In order to evaluate the source extension and location of these three sources, we used the 

maximum likelihood tool, gtlike, which is available as part of the Fermi ScienceTools. The 

likelihood is the product of the probabilities of observing the gamma-ray counts within each 

spatial and energy bin for a specified emission model. The best parameter values are estimated 

by maximizing the likelihood of the data describing the given model (Mattox et al. 1996). The 

probability density function for the likelihood analysis includes I) individual sources detected 

in the IFGL catalog within 15° of G8.7-0.l, 2) the Galactic diffuse emission resulting from 

cosmic-ray interactions with interstellar medium and radiation based on the LAT standard diffuse 

background model glCiem_v02 available from the FSSC3
, and 3) an isotropic component to 

represent extragalactic gamma rays and residual instrumental backgrounds using the standard 

isotropic spectral template isotropic_iem_v02 also available from the FSSC. The region of 

interest for the binned maximum likelihood analysis was a square region of 20° x 20c in 

Galactic coordinates centered on G8.7-0.l with a pixel size of O? 1. The instrument response 

functions (IRFs) used in our work were the "Pass 6 v3 Diffuse" (P6_ V3_DIFFUSE) IRFs; 

a post-launch update to address gamma-ray detection inefficiencies that are correlated with 

3The model can be downloaded from 

http://fermi.gsfc.nasa.gov/ssc/dataiaccess/iat/BackgroundModels.html. 
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background rates. Since PSR 11S09-2332 (Abdo et al. 20Wf) and W2S (Abdo et al. 2010h) are 

the brightest sources in the region of interest, they must be carefully modeled to perform the 

morphological studies. Their spectral shapes were modeled as a power-law with an exponential 

cutoff and a broken power-law, respectively. A spatial template was used for W2S to take into 

account its extension (Abdo et al. 20Wh). 

Before investigating the extension in detail, we first determined the strength of the diffuse 

gamma-ray emission around GS.7-0.l by using the tools described above. The morphology 

analysis included only events above 2 GeV to take advantage of the narrower PSF at higher 

energies. We determined the flux and spectral parameters for all model components. In this 

process, the normalization of the Galactic diffuse emission and the flux and spectral index of a 

power-law model for the sources within 4° of the direction of GS.7-0.l were set free to account for 

the effects of the sources nearest to GS.7-0.l on the fit. The spectral parameters for more distant 

sources were fixed to the values in the IFGL catalog. The flux and spectral parameters were then 

fixed, with the exception of those for the three sources overlapping GS.7-0.l. Figure 2 shows a 

close-up view of the counts map around GS.7-0.l in the 2-10 GeV band with the diffuse emission 

subtracted. Contours representing the radio emission, CO line intensity and TeV gamma-rays are 

overlaid on the GeV gamma-ray map. 

The coincidence of IFGL lS05.2-2137c and IFGL lS06.S-2W9c with the eastern 

enhancement in the GeV counts map suggested extension of the emission. To evaluate the 

presence and size of an extended source, we modeled it as a uniform disk. We varied the radial 

size and centroid of the disk while holding the position of neighboring 1 FGL IS03 .l-2147c 

fixed at the catalog values, and evaluated the resulting maximum likelihood value (Lex) with 

respect to the maximum likelihood for the no-source hypothesis (£0). The largest likelihood ratio, 

-21n(£o/ Lex) (9 degrees of freedom) of:::::: 47S was obtained for a disk radius () of 0~37. This is 

substantially better than that obtained for a model containing two point sources, -2In(£o/ ~s) (12 



-15 -

degrees of freedom) :=:::; 433, where Lzs is the likelihood for two sources instead of a disk shape, 

whose positions were free in the optimization. Therefore, we conclude that the eastern part of 

the GeV emission is significantly extended. Hereafter, we refer to the emission as Source E and 

employ a uniform disk as the spatial model for further analysis. The best-fit centroid for the disk 

model in 12000 is found to be (RA., decl.) = (18h05m .6, -21 °38'.0) with an error radius of 0~028 

at the 68 % confidence level. 

The extension of the third source, IFGL 1803.1-2147c, (hereafter, Source W) was also 

investigated using the same procedure as above. We did not find significant extension in that case. 

An upper limit on the spatial extent of the gamma-ray emission was obtained by investigating the 

decrease of maximum likelihood with increasing radial size of the source in the input emission 

model. Under the assumption of a uniform disk, the upper limit on the radius was 22' at the 

68 % confidence level. The best-fit location for Source W in 12000 was estimated to be (R.A., 

decl.) = (l8h03m .3, -21°47'.8) with an error radius ofO~038 at the 68 % confidence level. 

To quantitatively evaluate the correlation of the GeV emission with other wavebands, we 

also performed the likelihood analysis using spatial templates derived in those bands in place 

of the best-fit models derived above. We calculated the maximum likelihood for a VLA radio 

image at 90 cm (Brogan 2006) with a point source added to model Source W since it does not 

appear to have a radio counterpart. We additionally calculated the maximum likelihood using 

the background-subtracted counts map of TeV gamma rays measured by HESS (Aharonian et al. 

2006). To allow for background fluctuations in the VLA and HESS templates, the fits were 

performed by changing the extracted regions of the templates (see Table 1). A simple power-law 

function was assumed for the spectral models of the above spatial templates. Note that we did 

not use the CO images to form spatial templates since they inevitably contain large amounts of 

matter unrelated to the gamma-ray emission from the remnant. The resulting maximum likelihood 

values with respect to the null hypothesis (no emission associated with G8.7-0.l) are summarized 
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in Table 1. The likelihood ratio for the radio image is higher than for the model containing three 

point sources, while the likelihood ratio for the HESS image is significantly lower. Therefore, we 

conclude that the radio morphology correlates reasonably well with the GeV emission while the 

TeV morphology does not. 

3.2. Energy Spectrum 

We used the maximum likelihood fit tool, gtlike, for the spectral analysis of the LAT 

sources. In order to produce a spectral energy distribution (SED) in a model-independent manner, 

fits were performed in eight logarithmically spaced-energy bins covering energies from 200 MeV 

to 100 Gey. Within each energy bin we fixed the spectral index at 2 for the LAT sources. Note 

that the flux within an energy bin can vary up to rv 10 % depending on the choice of spectral index 

and is taken into consideration as a systematic error. 

The resulting SEDs for Source E and Source Ware shown in Figure 3. The overlap with the 

spatially-connected molecular clouds suggests that there might be a physical connection; thus, we 

also obtained the total SED of the two sources together, as shown in Figure 3. 

We accounted for systematic errors caused by uncertainties in the extension, the Galactic 

diffuse model, and the LAT effective area. Systematic errors associated with the extension were 

estimated by varying the size of Source E by ± 1a. We considered the energy and positional 

dependence for the systematic errors of the Galactic diffuse model. The energy dependence was 

estimated by using the residual gamma-ray data with respect to the best-fit model in a region 

where no LAT source is present. We used the neighboring regions on both sides of G8.7-0.l 

along the Galactic plane (see Figure 1); (i) l = 7?1-7?7 and b = -1?1-0?9, (ii) l = 9?15-9?75 and 

b = -1?1-0:'9. The observed residual can be modeled as ~ (100 (Ell GeV) 1.89 x 10-
2 -100) % 

andrv (101 (Ell GeVr0 89X -100) % of the total Galactic diffuse flux for (i) and (ii), 
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respectively. The normalization of the Galactic diffuse model was adjusted according to the above 

equations to estimate the systematic error on the source flux. On the other hand, the positional 

dependence of this residual was estimated by Abdo et al. (20l0i) and found to be rv 6%. We 

evaluated the systematic errors due to positional dependence by varying the normalization of the 

Galactic diffuse model by ± 6% from the best fit value. We also evaluated systematic errors due to 

uncertainties in the LAT effective area, which are 10% at 100 MeV, decreasing to 5% at 500 MeV, 

and increasing to 20% at 10 GeV and above (Rando et al. 2009). The combined systematic errors 

on the flux are shown by the black bars in Figure 3. 

We evaluated the possibility of a spectral break for the combined LAT source, i.e., the sum 

of Source E and Source W, in the LAT energy band by comparing the likelihood of a simple 

power-law model and a smoothly broken power-law model for both sources. The smoothly broken 

power-law model was described as 

=KE-fl 1+ --dN . ( (E) 
dE Ebreak 

(1) 

where the photon indices, fl below the break and f2 above the break, the break energy Ebreab 

and the normalization factor K were free parameters. The parameter f3 was held fixed at 0.05. 

To treat Source E and Source W as a combined source, the spectral parameters were varied 

jointly with the exception of the flux normalizations, which were allowed to vary independently. 

The fit yields a likelihood ratio -2 In(LpdLBpd ~ 32, where L pL and L BPL are the likelihoods 

for the simple power-law model and the smoothly broken power-law model, respectively. In a 

worst-case scenario enforcing I (]' systematic uncertainties, the likelihood ratio decreases to rv 

23 (corresponding to 4.4 (]' with 2 degrees of freedom). The best-fit parameters obtained for the 

smoothly broken power-law model were photon indices f j = 2.10 ± 0.06 (stat) ± 0.10 (sys), 

f 2 = 2.70 ± 0.12 (stat) ± 0.14 (sys), and Ebreak = 2.4 ± 0.6 (stat) ± 1.2 (sys) GeY. 

We also investigated the spectral shape of each source separately. The best-fit spectral 

parameters for Source E were found to be fl = 2.1O±0.11 (stat) ± 0.12 (sys), f2 = 2.47±0.09 
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(stat) ± 0.13 (sys), and Ebreak = 1.8 ± 0.7 (stat) ± 0.7 (sys) GeV, while those for Source W 

were found to be fl = 2.08 ±0.I5 (stat) ± 0.25 (sys), f2 = 5.88 ± 1.67 (stat) ± 1.27 (sys), and 

Ebreak = 4.5 ± 0.3 (stat) ± 0.1 (sys) GeY. Thus, we cannot conclude with the present data that the 

spectral shapes differ significantly since the break energy of Source E and the f 2 of Source W 

have large errors. The smoothly broken power-law models above give detection significances for 

Source E and Source W in the 200 Me V-I 00 Ge V of 28 (J and 16 (J, respectively. 

We investigated the spectral connection between the GeV and TeV energy bands. Here, 

we used a chi-squared test for the spectral fit of the LAT data and the HESS measure-

ments (Aharonian et al. 2006). A fit assuming a broken power-law model yields a null-hypothesis 

probability of less than 1.0 x 10-18 , including the worst-case 1 (J systematic uncertainties. We 

conclude that the GeV spectrum does not connect to the HESS measurements smoothly. 

3.3. Time Variability and Pnlsation Search of the LAT Source 

Source W could not be spatially resolved by our work, so other gamma-ray source candidates 

must be considered. We checked the time variability of Source W to test the hypothesis of a 

background active galactic nuclei. We divided the data into two-month intervals and fit for the 

flux of Source W. The flux showed no significant time variability, indicating a steady source of 

emission for this time scale and making it less likely to be a gamma-ray blazar. 

We also checked for previously undetected gamma-ray pulsars in this region. The 

ATNF database (Manchester et al. 2005)4 lists two nearby radio pulsars with a spin-down 

power E typical of the known gamma-ray pulsars: PSR 11803-2137 (Clifton & Lyne 1986) 

and PSR 11806-2125 (Hobbs et al. 2002) as shown in Figure 2. PSR 11803-2137 has E = 

2.2x 1036 erg S-1 and a nominal distance of 3.88 kpc derived from the Dispersion Measure 

4http://www.atnf.csiro.au/research/pulsar/psrcat 
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(DM) using NE2001 (Cordes & Lazio 2002), while PSR 11806-2125 has Ii = 4.3x1034 

erg S-1 and an estimated distance of 9.85 kpc. Considering the above values, the latter is not 

expected to emit a detectable gamma-ray flux. Using rotational ephemerides provided by the 

Parkes (Weltevrede et al. 2010), Nancay (Theureau et al. 2005), and lodrell Bank (Hobbs et al. 

2004) radio telescopes, we phase-folded the gamma-ray data, but found no evidence for 

gamma-ray pulsations. 

The observed properties of gamma-ray pulsars (Abdo et al. 201Of) suggest that PSR 

11803-2137 could have a flux of 9.1 x 10-8 ph cm-2 S-1 above 100 MeV. To check explicitly 

for the presence of emission from this source, we performed likelihood fits with an additional 

point source modeled at the position of PSR 11803-2137. The spectral model was assumed to 

be a power-law with an exponential cutoff and the normalization was set free while the spectral 

index and cutoff energy were fixed at 1.5 and 2 GeV, the average values in the Fermi 1st Pulsar 

catalog (Abdo et al. 2010f). The likelihood was not improved with the addition of the pulsar to 

the model. In the absence of a detection, we set an upper limit on the flux at the 90% confidence 

level of I.Ox 10-8 ph cm-2 S-1 above 100 MeV and conclude that the pulsar does not significantly 

contribute to the GeV emission. 

Abdo et al. (201 Of) calculated a 5 (J flux sensitivity for pulsations to be detected by a blind 

search of six months of LAT data. The general upper limit for the Galactic plane of ~ 2.0 x 

10-7 photons cm-2 S-1 above 100 MeV is similar to the flux of Source W. Therefore, we cannot 

completely exclude the possibility that Source W is a gamma-ray pulsar. The above results in 

combination with the observed extension of Source E imply that the bulk of the gamma ray 

emission near the remnant does not come from an undetected gamma-ray pulsar. 
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4. DISCUSSION 

4.1. Origin of the Ge V Emission 

4.1.1. Assumptions for Spectral Modeling 

We have analyzed the GeV gamma rays in the vicinity of G8.7-0.1 and found the emission 

to be significantly extended. The bulk of the emission (Source E) is positionally coincident 

with the synchrotron radio emission from the SNR G8.7-0.1, while a lesser part (Source W), 

located outside the western boundary of G8.7-0.l, has no obvious counterpart within the 95% 

confidence region obtained by a point source model. The Ge V morphology is reasonably 

well represented by the radio emission of the SNR, suggesting a correlation with high-energy 

electrons. There are molecular clouds spatially associated with G8.7-0.l (Blitz et al. 1982) 

and likely to be interacting with the SNR since an OH maser is detected on the eastern 

edge of G8.7-0.l (Hewitt & Yusef-Zadeh 2009). The GeV gamma rays overlap with these 

spatially-connected molecular clouds. This implies a physical connection of the two LAT sources 

although there remains a possibility that Source W is a gamma-ray pulsar undetected at the 

current sensitivity. Here, we assume that the bulk of GeV gamma-rays comes from the interaction 

between particles accelerated by the SNR and gas in the clouds, where the particles are confined 

in the SNR shell. Also, we assume that the molecular clouds uniformly cover the whole surface 

of the SNR since the CO emission is not significantly localized in any part of the SNR. Note that 

since the eastern part of this region dominates the GeV emission, the contribution of the western 

source does not affect any conclusions drawn in this paper. We discuss the possibility that the 

GeV gamma-rays come from other sources in Section 4.l.3. 

The TeV gamma-ray source, HESS ]1804-216, overlaps the GeV gamma rays. However, 

the TeV morphology is not better correlated with the GeV gamma rays than the radio emission 

from G8.7-0.l and the GeV spectrum does not connect smoothly to the TeV spectrum, indicating 
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another emission component, either additional high-energy particles accelerated by G8.7-0.l or 

a high-energy source unrelated to G8.7-0.l. In section 4.l, we focus on the GeV emission and 

reserve discussion of the relation between the TeV and GeV emission for Section 4.2. 

Below, we adopt the simplest assumption, that a population of accelerated protons and 

electrons is distributed in a region characterized by constant density and magnetic field strength 

and the injected electrons have the same momentum distribution as the protons. This assumption 

implies a break in the particle momentum spectrum because the spectral index of the radio data, 

which corresponds to lower particle momenta, is much harder than that of the gamma-rays, which 

correspond to higher particle momenta. We use the following functional form to model the 

momentum distribution of injected particles: 

(2) 

where Pbr is the break momentum, SL is the spectral index below the break and SH above the break. 

Note that here we consider the minimum momenta of protons and electrons to be 100 MeV c- l 

since the details of the proton/electron injection process are poorly known. 

Electrons suffer energy losses due to ionization (or Coulomb scattering), bremsstrahlung, 

synchrotron processes, and IC scattering. The modification of the electron spectral distribution 

due to such losses was calculated according to Atoyan et al. (1995), where electrons are assumed 

to be injected at t = 0 from an impulsive source. Since diffusive shock acceleration theory 

generally predicts particle acceleration in the Sedov phase with a typical duration 103-104 yr, 

the assumption of an impulsive source is a good approximation for G8.7-0.l, which has an age 

of 2.5 x 104 yr. Note that we ignore the radiative cooling of protons since the time scale of the 

energy loss due to nuclear interaction is ~ 6 x 107 (l cm-3/iiH) yr (Aharonian & Atoyan 1996), 

which is much greater than the SNR age unless the environment is very dense. We adopt 4 kpc 

for the distance from the Earth to the SNR since the GeV emission overlaps molecular clouds 

corresponding to a kinematic distance of 3.5-4.5 kpc. The gamma-ray spectrum from 110 decays 
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produced by the interaction of protons with ambient hydrogen is scaled by a factor of 1.84 to 

account for helium and heavy nuclei in the target material and the cosmic-ray composition (Mori 

2009). We also consider the contribution of the emission from secondary e+/e- produced by 

charged pion production and decay in the 'iTo decay model. For the calculation of spectra of the 

secondaries, we use the parametric formulae from Kamae et al. (2006). 

4.1.2. SNR GS.7-0.1 

First, we consider a 'iTo-decay model to account for the broadband gamma-ray spectrum. We 

use an electron-to-proton ratio of Kep = 0.01, which is the ratio found in the local cosmic-ray 

abundance. Here the ratio is defined at a particle momentum of 1 GeV c-1
• The spectral 

index of proton momentum in the high-energy regime is constrained to be SH ~ 2.7 from the 

gamma-ray spectral slope. The index below the break is determined to be SL ~ 2.0 by the 

observed radio spectrum due to synchrotron radiation by relativistic electrons (Kassim & Weiler 

1990). Note that we do not account for the spectral turnover at radio frequencies which is due to 

absorption by localized thermal gas associated with one or more of the H II regions near the W30 

complex (Kassim & Weiler 1990). The observed gamma-ray luminosity requires the gas density 

to be much larger than nH ~ 1 cm-3 averaged over the entire SNR shell in order not to exceed 

the typical kinetic energy of a supernova explosion (rv 1051 erg). We assume nH = 100 cm-3 

which is a typical value in molecular clouds. This is consistent with CO observations because 

the mass of a shell of radius 26 pc5 and thickness 7 pc6 with density nH is 1.9 x 105 Ms which 

5This is estimated with the apparent diameter of the SNR and the distance of G8.7-0.l to the 

Earth. 

6This is constrained by the apparent distance from the edge of the radio emission to the position 

of Source W. 
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is smaller than the value of 5.9 x 105 Me:) estimated from the CO data taken by the NANTEN 

telescope (Mizuno & Fukui 2004; Takeuchi et al. 2010). 

Using the parameters summarized in Table 2, we calculated radiation model curves as shown 

in Figure 4 (a). The resulting total proton energy, Wp rv 2.8 X 1049 . (102 cm-3 /iiH)' (d/4 kpc)2 erg, 

is less than 10% of the typical kinetic energy of a supernova explosion and quite reasonable. 

Note that Wp is not the total energy of accelerated protons but that of the in-situ protons in the 

molecular clouds. Wp is changed up to a factor of rv 2 within the uncertainty of its distance 

(3.2-6 kpc) , which does not affect our conclusion. It is difficult to derive the break point of the 

proton momentum spectrum from the break in the gamma-ray spectrum since it lies in the region 

where we expect a gamma-ray spectral curvature due to the kinematics of 71° production and 

decay. The gamma-ray spectrum gives an upper bound for the momentum break at rv 10 GeV c-1. 

The momentum break cannot be lower than rv 3 GeV c-1 to avoid conflict with the radio data. 

Here we adopt 3 GeV c-1
• The magnetic field strength is constrained to be B rv 100 p,G, which is 

plausible since a magnetic field can be amplified up to several hundred p,G by the compression of 

gas by the shock of a middle-aged SNR in molecular clouds (Chevalier 1999). The emission from 

secondary e+/e- does not significantly contribute to the emission from G8.7-0.1 in this modeling 

given the above iiH. 

To consider the situation when the synchrotron emission from the secondaries dominates 

in the radio band, we model the GeV emission with iiH = 1000 cm-3 . Although the mass of the 

molecular clouds with the assumed shape exceeds the value estimated by using the NA]\''TEN data 

in this case, that iiH is possible if the clouds responsible for the GeV emission have nonuniform 

structure. The modeling results are shown in Table 2 and Figure 4(b) , respectively. The range of 

the momentum break changes slightly to 3-15 GeV c-1 and the magnetic field is constrained to 

be rv 400 p,G. From the above considerations, the 71° decay model can explain the GeV emission 

although the magnetic field and the momentum break depend on iiH' 
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Leptonic models struggle to match the GeV gamma-ray spectrum. The electron­

bremsstrahlung dominated model (Figure 4(c)) cannot explain the GeV gamma rays unless Kep of 

the accelerated particles is much larger than rv 0.01, as found in the local cosmic-ray abundance. 

For the inverse Compton (IC) dominated model (Figure 4(d)), the total energy in electrons is 

calculated to be We ~ 9.9 X 1050. (d/4 kpc)2 erg, for an energy density of rv 2.9 eV cm-3 for 

the interstellar radiation field7, which is comparable to the typical kinetic energy of a supernova 

explosion (rv 1051 erg). Therefore, the IC dominated model is not plausible unless the radiation 

field is at least 10 times more intense than expected. 

Assuming the ?To-decay model, our observations of the LAT source in the vicinity of 

GS.7-0.1 when combined with the radio data constrain the proton momentum break to be in the 

range 3-15 GeV c-1. This spectral feature might indicate the escape of the accelerated particles 

confined around the blast waves propagating into the dense clouds (e.g., Uchiyama et al. 2010). 

On the other hand, Gabici & Aharonian (2007) discussed the time evolution of non-thermal 

emission from molecular clouds illuminated by cosmic rays from a nearby SNR and predicted a 

steep gamma-ray spectrum for an old SNR due to energy-dependent diffusion of cosmic rays. The 

two models do not produce the emission at the same place. In the former, the gamma-ray emission 

comes from the cloud shock, which can be traced by non-thermal radio filaments. However, the 

spatial difference is too small to be resolved by the LAT. Therefore, we cannot say which model is 

favorable for the GeV emission. 

7The interstellar radiation field (see Table 2) for non cosmic microwave background at the 

location of GS.7-0.1 is estimated from the GALPROP code (Porter et al. 200S) with approximation 

of two infrared and two optical blackbody components. 
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4.1.3. Other Sources 

First, we consider the possibility that the GeV gamma rays come from pulsar wind nebulae 

(PWNe). The Ie emission from relativistic electrons is the most plausible process for the gamma­

ray emission from PWNe (Abdo et al. 201Oa,e,g; Slane et al. 2010; Grondin et al. 2011). A PWN 

nearer to the Earth than the location of GS.7-0.l is a possible candidate since the smaller distance 

loosens the constraint on energetics derived from an Ie dominated model. There are several known 

or suspected PWNe in this field, one associated with PSR 11S03-2137 (Kargaltsev et al. 2007) 

and another a PWN candidate found with Suzaku, 11S04-2140 (Bamba et al. 2007), which were 

found only in the X-ray band. If the Ie emission contributes significantly to such a bright GeV 

source, then the synchrotron emission in the radio band due to the corresponding electrons would 

be detectable unless the magnetic field is weaker than rv I f-LG. Magnetic fields in PWNe with 

GeV emission are estimated to be at least rv 3 fiG using the Fermi LAT observations (Abdo et al. 

20l0a,e,g; Slane et al. 2010; Grondin et al. 2011). Thus, we suppose that the bulk of the GeV 

emission does not come from a PWN. 

Next, we consider the contribution of SNR GS.31-0.09, which has a small size of 

5'x4' (Brogan 2006). This SNR is not located at the bright portion of the GeV emission. 

Therefore, we conclude that gamma-ray emission from GS.31-0.09 cannot significantly contribute 

to the GeV emission. From these considerations, the bulk of the GeV gamma rays is most 

naturally explained by the decay of 1TOS produced by the interaction of GS.7-0.1 with molecular 

clouds. 
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4.2. Origin of the TeV Emission 

4.2 .J. Pulsar Wind Nebula 

We consider the relation between the TeV gamma-ray source, HESS Jl804-216, and 

the GeV emission. One possibility is that the TeV emission arises via the IC scattering of 

the relativistic electrons in a PWN. The sizes of the PWNe found in the X-ray, which have 

extension of at most rv2' (Kargaltsev et al. 2007; Bamba et al. 2007), are rv 40 times smaller 

than the extension of the TeV gamma-ray source. TeV emission from the IC process can be 

more extended than synchrotron X-ray emission from a PWN due to differences in radiative 

cooling times for the electrons generating the emission in those bands (de Jager & Djannati-Ata"i 

2008). In the case of the PWN associated with PSR Jl803-2137, the extended TeV gamma-ray 

emission (rv 30 pc8) can be explained if the transporting velocity for the TeV-emitting electrons 

averaged over the age of the pulsar (15.6 kr; Brisken et al. (2006)) is larger than rv 1900 km 

S-I. Diffusion parallel to a magnetic field, or convection might explain such a large propagation 

velocity (de Jager & Djannati-Ata12008). On the other hand, the Suzaku Jl804-2140 PWN is 

not well-studied and its origin remains unclear. Therefore, we cannot rule out the possibility of a 

PWN origin for the TeV emission. 

4.2.2. Cosmic Rays Accelerated in GS.7-0.1 

Another possibility is that the TeV emission also originates in the particles accelerated in 

G8.7-0.1. It is predicted that TeV gamma-ray emission can arise from the interaction of cosmic 

rays that have escaped from an SNR with nearby molecular clouds, say within rv 100 pc (e.g, 

8The extension is estimated by the apparent size and the distance of 3.88 kpc from the Earth to 

the pulsar 
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Aharonian & Atoyan 1996). On the other hand, we argue in Section 4.1 that the GeV emission 

comes from the interaction of particles confined in the shell of GS.7-0.1 with molecular clouds. 

A combined scenario can explain the concave spectral shape in the GeV-TeV band, i.e., the 

molecular clouds distant from GS.7-0.1 along the line of sight emit the TeV gamma rays, while 

the molecular clouds responsiblefor the GeV emission are located adjacent to the SNR. The 

spectral index of 2.72 ± 0.06 for the TeV gamma rays (Aharonian et al. 2006) is consistent with 

the particle spectral index predicted by a theory assuming the energy-dependent diffusion of 

particles accelerated in an SNR (e.g., Aharonian & Atoyan 1996), supporting the above scenario. 

If this is correct, we can constrain the diffusion coefficient. 

We performed the modeling for the GeV and TeV gamma-ray spectra considering the above 

scenario. Again, we treat GS.7-0.1 as an impulsive source injecting the accelerated particles at 

t = O. In addition, we assume that the accelerated particles do not escape into interstellar space 

until the SNR enters the Sedov phase at tSedov' Under the above assumptions, the density spectrum 

of diffused protons is derived by Gabici et al. (2009) as: 

NoE-S (R2 ) 
f(E, R, t) = 3/2 3 exp --2-

IT Rdiff Rdiff 

where R is the distance from the center of the SNR and the injection spectrum is assumed to 

be a power-law, Q ex E-S 6(R)6(t). We also adopt Eq. (3) for electrons. The energy losses for 

protons and electrons are considered as described in Section 4.1.1. No is the normalization 

and proportional to the total proton energy W tot injected at t = 0 from the source. Rliff is the 

(3) 

diffusion radius represented by 2yD(E)(t-X(E». D(E) is the diffusion coefficient described by 

the following equation, 

D(E) = DlO(E/IO GeV)" cm2 
S-l, (4) 

where DlO is the value of the diffusion coefficient at E = 10 GeV X(E) represents the confinement 

of the particles until , where X(E) = (E / Emaxrl/E. E determines the release time of the 
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particles with energy E. In the case of t- X(E) ::; 0, Eq. (3) becomes 0, i.e., particles are not 

released from the shell. We assume tSedov = 200 yr and Emax = 5 PeV, where Emax is the highest 

energy of the accelerated particles in the SNR. These values vary depending on the environment 

of an SNR. However, this does not significantly affect our results. 

For the formalism of Eq. (3), the injected particles below the threshold energy defined by 

t - X(E) = 0 remain completely within the SNR shell, while the rest are entirely released. This 

is not consistent with the particle spectrum obtained by the modeling of the GeV spectrum as 

described before; therefore, we extrapolate the particle spectrum above the threshold energy by 

using the broken power-law model. The index above the threshold is the same as the particle 

momentum spectrum used in Figure 4(a). This requires that the momentum break energy (rv 3 

GeV c-1
) is consistent with the energy threshold of the escaped particles at the SNR age. Thus, E 

is obtained to be 3.0. This approximation for the GeV spectrum reduces the amount of escaped 

particles just above the threshold compared to Eq. (3), but it does not greatly affect the modeling 

of the TeV emission since the energies of the contributing particles are much higher than the 

threshold. 

We calculate the radiation model curves for the GeV emission with the same parameters 

as those of Figure 4(a). For the TeV emission, the radiation curves are calculated assuming 

Kep = 0.01 and the typical values in a molecular cloud for the magnetic field of 10 fLG and 

nH = 100 cm-3 . The obtained radiation curves are shown in Figure 5. The amount of secondary 

e+/e- in the TeV-emitting clouds depends on nH of gas in which protons, i.e., parent particles of the 

secondaries, propagate, which is uncertain. If the gas is much denser than nH = 100 cm-3 , then the 

emission from secondary e+/e- can contribute significantly to the radio spectrum. However, the 

resulting parameters from the modeling with the extremely dense gas are not largely affected with 

the exception of the magnetic field. Therefore, we neglect the contribution of emission from the 

secondaries in the TeV emission. To simplify the electron energy losses during the propagation, 
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we use the constant magnetic field and nH of the TeV-emitting clouds. This assumption affects 

only the peak energy of synchrotron emission, which is not constrained by any observations. 

The value of r5 is constrained to be 0.6 by fitting the particle spectrum to the TeV gamma-ray 

spectral slopes above the SEO peak. 010 is constrained by the cutoff energy of the particle 

spectrum corresponding to the SEO peak of the TeV emission since the cutoff energy is 

proportional to R¥ev/R~iff = R¥ev/[40 1O(E /10 GeV)" (t - X(E»], where RTeV is the distance to 

the TeV-emitting clouds. A lower limit on RTeV can be provided by the radius of the radio 

shell of:::::::: 26 (d/4 kpc) pc since the TeV-emitting clouds should be located further from the 

remnant than the GeV-emitting clouds. As a result, the lower limit on 010 is obtained to be 

7.5 x 1025 (d/4 kpc)2 cm2 S-l. The observed differential flux of the TeV emission is described by 

FTeV ex WtotO~~/2103"/2MTev/47fd2 using Eq. (3) and (4), where MTeV is the mass of the clouds 

responsible for the observed TeV emission. Using the above relation, we can obtain an upper 

limit on 010 from the mass obtained by the CO(J = 1-0) data with NANTEN. We searched 

for the TeV-emitting clouds in the velocity range from 10 to 40 km S-l, corresponding to the 

distance to GS.7-0.1 and found molecular clouds with the mass of about 2.0 x 106 M8 for the 

velocity range from 10 to 30 km S-l. Thus, an upper limit on 010 is 5.4 X 1026,[(WtotIl050 erg)· 

(4 kpc!d)2 f/3 ·(10(0/0.6) 110) cm2 S-l . In this case, RTeV comes to rv 70 pc. The constrained range for 

010 is much smaller than that obtained by Oelahaye et al. (200S), where r5 and 010 were estimated 

to be 0.46-0.70 and 0.6-6.7 x 1028 cm2 S-l by using the observed ratios of secondary to primary 

nuclei. However, our results probably represent an environment of dense interstellar gas since a 

lower 010 rv 1026 cm2 S-l is expected in that case (Ormes et al. 19S5). 

We also consider other possible scenarios: 1) both the GeV and TeV gamma rays originate 

from the interaction escaped particles accelerated in GS.7-0.1 with molecular clouds, 2) the 

GeV emission arises from the mechanism predicted by Uchiyama et aI. (2010). To examine the 

possibility of scenario 1), we pelform the modeling for the GeV and TeV emission using Eq. (3). 
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As a result, DIO is constrained to be 4.0 x 1027 (d/4 kpc)2 cm2 S-1 by the cutoff energy of the 

particle spectrum corresponding to the SED peak of the GeV emission, while S is constrained to 

be 0.6 by fitting the particle spectra to the gamma-ray spectral slopes above the SED peaks. The 

model of the TeV emission using the obtained diffusion coefficient gives MTev = 4.4 X 107 MG , 

which is much larger than the observed value. Therefore, this scenario is unlikely. In the case 

of scenario 2), Uchiyama et al. (2010) state that TeV emission would not be explained by this 

mechanism and may instead arise from the interaction of particles that escaped from SNR shocks 

at earlier epochs with the molecular clouds. Thus, DIO does not change. 

5. CONCLUSIONS 

We have investigated the GeV gamma rays in the vicinity of the SNR GS.7-0.1 and found 

that they are extended. Most of the emission (Source E) is positionally coincident with the SNR 

GS.7-0.1, while a lesser portion (Source W), located outside the western boundary of G8.7-0.1, 

has no evident counterpart in other wavelengths within the 95% confidence region obtained using 

a point source model. The GeV gamma rays coincide with spatially-connected molecular clouds, 

implying a physical connection between the two sources. The decay of 1IoS produced by particles 

accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray 

spectrum since a direct interaction between GS.7-0.1 and the molecular clouds is supported by 

the detection of an OH maser, although electron bremsstrahlung cannot be ruled out. 

On the other hand, the GeV morphology is not well represented by the TeV emission from 

HESS Jl804-216. The GeV gamma-ray spectrum has a break around 2 GeV and falls below 

the extrapolation of the TeV gamma-ray spectrum of HESS JlS04-216. The TeV spectral index 

is most naturally explained by a theory assuming the energy-dependent diffusion of particles 

accelerated in the SNR, although the possibility that the TeV emission might come from a PWN 

cannot be ruled out. Under the assumption that the bulk of the TeV gamma rays comes from 
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the interaction between distant molecular clouds and cosmic rays released and diffused from 

GS.7-0.1, we can constrain the diffusion coefficient of the particles. 
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Fig. 1.- Fermi LAT 2-10 GeV counts map around the SNR G8.7-0.1. The count map is smoothed 

by a Gaussian kernel of (J = O?225, with the pixel size of O?075. The green pluses indicate the 

sources in the IFGL catalog (Abdo et al. 201Od). The yellow boxes indicate the regions that are 

used to evaluate the energy dependence for the systematic errors of the Galactic diffuse model. 

The white line from top left to bottom right indicates the Galactic plane. 
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Fig. 2.- Close up views of the LAT 2-10 GeV counts map around G8.7-0.1 subtracting a fitted 

diffuse emission model including the isotropic component. The counts map has a pixel size of 

0;0075 and is smoothed by a Gaussian kernel of (J' = 0:225. The inset of each figure shows the 

effective LAT PSF for a photon spectral index of 2.5. A black circle in the east of each figure 

indicates the best-fit disk size for Source E. A black cross indicates the position of Source W. A 

blue and a magenta plus indicate PSR 11803-2l37 and PSR 11806-2125, respectively. A red plus 

indicates the PWN candidate Suzaku 11804-2140. A blue ellipse indicates the radio extension of 

SNR G8.31-0.09 (Brogan 2006). Green contours in (a) show the VLA 90 cm image (Brogan 2006) 

at 5,15, and 25% of the peak intensity. Green contours in (b) give CO (J = 1-0) line intensity taken 

by NANTEN (Mizuno & Fukui 2004; Takeuchi et aI. 2010) at 25, 50, 75% levels, for the velocity 

range from 20 to 30 km S-l, corresponding to kinematic distances of approximately 3.5 to 4.5 kpc. 

Green contours in (c) indicate the subtracted TeV photon counts of HESS J1804-216 at 25, 50 and 

75% levels (Aharonian et al. 2006), 
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Table 1: Likelihood ratios for the different spatial models compared with the null hypothesis, no 

emission from G8.7-0.1 

Model -2In(Lo/L)a Additional degrees of freedom 

Null hypothesis o 0 

3 point sourcesb 433.4 

VLA 90 cme + Source W 436.5-462.4 

HEsse 404.8-408.0 

Uniform disk and point source 477.8 

PSR J1803-2137d 477.8 

12 

6 

2 

9 

10 

a-2In(LoIL), where Land Lo are the maximum likelihoods for the model with/without the source component, respec­

tively. 

bThree point sources listed in the IFGL source catalog in the vicinity of the SNR G8.7-0.1. which their positions were 

free in the optimization. 

cThe values are obtained by using the spatial templates from the various extracted regions. where the regions were 

determined by changing a lower limit from 0 to 15% of the peak emission. 

d A point source model which is added to the Uniform disk and point source model. 
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Fig. 3.- Spectral energy distribution of the Fermi LAT sources associated with G8.7-0.l. The 

blue and green squares with statistical error bars are the LAT fits for Source E and Source W, 

respectively. The red squares in the GeV regime are the total flux of the LAT data for both sources. 

Vertical bars in red and in black in the GeV band show the statistical errors and systematic errors 

of the total flux, respectively. Upper limits are obtained at the 90% confidence level in energy bins 

in which the likelihood test statistic is < 9 or the number of photons predicted by the best-fit model 

is less than 10. The black line shows the best-fit broken power-law model for the total spectrum. 

The black circles represent data points for HESS 11804-216 (Aharonian et al. 2006). 
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Fig.4.- Multi-band spectra of the Fermi LAT emission associated with SNR GS.7-0.l. The red 

squares in GeV regime are the LAT data, where the red and black bars are the statistical and system-

atic errors, respectively. The radio emission from the entire region of GS.7-0.1 (Kassim & Weiler 

1990) is modeled by synchrotron radiation, while the gamma-ray emission is modeled by different 

combinations of ]To-decay (long-dashed curve), bremsstrahlung (dashed curve), and inverse Comp­

ton (IC) scattering (dotted curve). In the panel of (a), (b) and (c), the blue curves show the emission 

from the secondary e+/e-, and the dot-dashed lines in the radio band show the emission from the 

primary electrons and secondary e+ /e-. Details of the models are described in the text. 
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Table 2: Parameters of the models for the Fermi LAT sources. 

Model Kepa SL
b 

Pb
c 

SH
d B - e Wf W/ nH p 

(GeV c- I ) (fLG) (cm-3 ) (1049 erg) (1049 erg) 

(a) Pion (nH = 100 cm-3
) 0.01 2.0 3 2.7 100 100 2.8 4.6 x 10-2 

(b) Pion (nH = 1000 cm-3
) 0.01 2.0 3 2.7 400 1000 0.30 7.2 x 10-4 

(c) Bremsstrahlung 1 2.0 5 2.7 25 100 0.22 0.36 

(d) Inverse Comptong 1 2.0 15 3.5 1 0.1 48 99 

aThe ratio of electron and proton distribution functions at 1 GeV c-1 . 

bThe momentum distribution of particles is assumed to be a broken power-law, where the indices and the break mo­

mentum are identical for both accelerated protons and electrons. SL is the spectral index below the momentum break. 

CPb is the momentum break for the particle distribution. 

liThe spectral index for the broken power-law function above the momentum break. 

e Average hydrogen number density of the ambient medium. 

JThe distance is assumed to be 4 kpc. The total energy is calculated for particles> 100 MeV c-1 . 

gSeed photons for inverse Compton scattering of electrons include the cosmic microwave background, two 111-

frared (TiR = 37,4.7 X 102 K, UIR = 1.1,0.23 eV cm-3 • respectively). and two optical components (Topt = 3.3 X 103 ,9.5 x 

! 03 K, Uopt = 1.2,0.32 eV cm-3 , respectively) in the vicinity of GS.7-0.!, assuming a distance of 4 kpc. 
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Fig. 5.- Comparison of the model results for the GeV and TeV gamma-rays with the ob­

served spectra. The red squares in GeV regime are the LAT data, where the red and black 

bars are statistical and systematic errors, respectively. The black triangles show the radio emis-

sion from the entire region of G8.7-0.1 (Kassim & Weiler 1990). The TeV emission from 

HESS 11804-216 (Aharonian et al. 2006) is shown by the black circles. The solid black curve 

shows the total emission of the gamma-rays. The blue curves show the emission from the molec­

ular clouds responsible for the GeV emission, which is a sum of emission from primary e- and 

secondary e-/e+. The green curves show the emission from the TeV-emitting clouds. The ra­

dio emission is modeled by synchrotron radiation (solid curves), while the gamma-ray emission 

is modeled by different combinations of ito-decay (long-dashed curve), bremsstrahlung (dashed 

curve), and inverse Compton (IC) scattering (dotted curve). 


