
Abstract 

Characterization of the error associated to satellite rainfall estimates is a necessary 

component of deterministic and probabilistic frameworks involving space-born passive and 

4 active microwave measurement") for applications ranging from water budget studies to 

tl)rccasting natuml hazards rdated to extreme rainfall events. We focus here on the error 

6 structure of NASA', Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar 
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(PR) quantitative prccipitllion estimation (QPE) at ground. The problem is addressed by >-
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8 comparison of PR QPEs with reference values derived from ground-based measurements 

(instantaneous and 5 km) using a three-month data sample in the southern part of US. The 
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9 NOANNSSL ground radar-based National Mosaic and QPE system (NMQ/Q2). A 

10 preliminary investigation of this subject has been carried out at the PR estimation scale 

12 primary contribution of this study is the presentation of the detailed steps required to derive 

13 trustwOIthy reference rainfall dataset Irom Q2 at the PR pixel resolution. It relics on a bias 

14 correction and a radar quality index, both of which provide a basis to filter out the less 

15 trustworthy Q2 values. Several aspects of PR errors arc revealed and quantified including 

16 sensitivity to the processing steps with the rcfcl\,,'nce rainfall, comparisons of rainfall 

17 detectability and rainfall rate distributions, spatial representativeness of error, and separation 

I ~ of systematic biases and random errors. The methodology and framework developed herein 

19 applies more generally to rainfall rate estimates from other sensors onboard low-earth i 
20 orbiting satellites such /k' microwave imagers and dual-wavelength radars such as with the 

21 Global Precipitation Measurement (GPM) mission. 

23 Key words: satellite-based rain estimation, rauar, QPE, conditional bias, random error 
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200X). It impacts rdin estimates from polar-orbiting passive microwave measurements 1 
2 1. Introduction 

a number satellite-based high-resolution precipitation products (Ebert £'1 al. 2007;' 
Reliable quantitative information on the spatial distribution of rainfall is essential ror 

Berges ef al. 2009; Ush'o el a/. 20(6). Given the variety of potential sources of error in PR-
4 hydrologic and climatic applications, which range from n:al-timc ilood forecasting to 

4 based QPE and the impact of correction algorithms, the only practical solution is to evaluate 
evaluation of regional and global atmospheric model simulations, Given their quasi-global 

PR QPE with respect to an external, independent reference rainfall data set. The reference is 
6 coverage, satellite-based quantitative rainfall estimates are becoming widely used for such 

6 derived from high-r"",lution ground validation measurements using NOAAiNSSL ground 
7 purposes. Converting satellite measurements into quantitative precipitation estimates poses 

radar-based National Mosaic and QPE system (NMQ; Zhang ef al. ZOII). These products 
challenges. Th" link bctween the observations and surtaee rain depends on the 

yield instantancou!:) rainfall rate products over vast regions including regions of the 
9 calibration and op"rating protocol of the instrument itself, the spatial heterogeneity of the 

9 conterminous US covered by NEXRAD data. While a number of studies have investigated 
10 rain fields (e.g., co-cxistenc" of convective and stratiform precipitation within a single 

10 tile quality of PR estimat"s in various regions of the world (e.g., Adeyama and Nakamura 
11 instrumental field-of-view and vertical heterogeneity of rainfall), the indirect nature of the 

11 lOO}; Wolff and Fisher 200S; 200'!; Amitai et 01. 2009; 2011), our aim is to perform a 
12 measurement, and the retrieval algorithm used. As underlined by the Program to Evaluate 

12 systematic and eomprchcnslve evaluation for n:gions over the southern contenninous US 
13 High Resolotion Precipitation Products (Turk et al. 200S) led by the international 

13 (CONUS). 
14 Precipitation Working Group (lPWG; sec http://www.isac.enr.itf.·jpwg!), characterizing the 

14 We will characterize cn-ors in PR estimates at the pixel measurement scale in order to 
15 error structure of satellite rainfall products is recognized as a major issue t"r the usefulness 

J 5 minimize additional uncertainties caused by rcsampJing, Systematic and stochastic errors of 
16 of the estimates (Yang el al. 2006; Zcweldi and Oebrcrniehael 2009; Sapiano and Arkin 

16 PR estimates will be documentcd in terms of bias and spatial ,tmcturc. One should note that 
17 2009; Wolff and Fisher 2009). The error characterization is needed for data assimilation and 

17 it is not possible to "validate" the PR estimates in a strict sense because independent rainfall 
18 climate analysis (Stephens and Kummerow 20(7) and more specifically OVer land in 

1 g estimates with no uncertainty do not exist. Rainfall estimates from low-earth orbitlng 
19 hydrological modelling of natural hazards and budgeting water resources (Grimes and Diop 

19 satellites sufler from their poor temporal sampling (WoUf and Fisher 2008; 2009; Lin and 
20 2003; Lebel el al. 2009). 

10 1I0u 200S). Hence representative samples of direct comparisons between instantaneous 
ZI In this study, we focus primarily on the TRMM Precipitation Radar (PR) quantitative 

21 coincident measurements ti-om ground and space arc difficult to achieve without a sufficient 
22 precipitation estimation (QPE) at ground. The methodology prescnted herein would equally 

number of overpasses. This study uses three months \March-May 2011) of satellite 
23 apply to all sateilite precipitation produels, in particular onboard low-carth orbiting 

overpasses ovcr thc lower CONUS. The data arc pixel-matched in both time and space, and 
24 satellites. The TRMM-PR is eurrently the only active instrument measuring rainlall from a 

24 are provided for comparing reference rain intcnsitk':s to satellite-based estimates. 
25 satellite platform conjointly with a radiometer (TMI). PR rainfall estimates arc often 

26 considered as a reference for TMI-based rainfall estimates Yang ef al. 2006; Wolff and 
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a satellite pixel and N is the number of pixels covering the domain of TIlC quasi-instantaneous matching is performed at the scale of PR measurement scale 

TIle reference data RC.,(A) useo to evaluate the satellite estimates should spatially 
2 (4.5 x 4.5 km). 

The PR data and steps required to retine the Q2 ground-based rainfall arrive at the 

CQrresponding tmc rainfall averaged over the same area A. 
4 reference rainfall U[)CO tor comparisons arc presented in sect.ion 2. Section 3 the 

4 
ability of PR rain retrievals to represent the rainfall variability derived from the reference 

6 data in terms of rainfall delectability, sensitivity, and spatial structure. Section 4 provides an 

6 NOAAINSSL National Mosaic and Quantitative Precipitation Estimation system 
7 empirical error model of the PR estimates versus reference rainfall and systematic 

(NMQ/Q2) Zhang et al. 20 II) is a set of experimental radar products 
and random error. The paper is closed with concluding remarks ill section 5. 

comprising high resolution (0<0)'\ 5 min) ins.tantaneous rainfall rate mosaics available over 
9 

9 CONUS. The NMQ system combines information from all ground-based radars 
10 2. Data sources 

10 comprising National Weather Service's Weather Surveillance Radar 1988 Doppler 
11 

II (WSR·88D) network (NEXRAD) network, mosaics reflectivity data onto a common 3D 
12 One of the first challenges encountered the lack of knowledge about the true averaged 

12 grid, estimates surface rainfall accumulations and types to arrive at accurate ground-based 
13 rainfall tor the spatial domains considered. One wants to compare instantaneous satellite 

13 estimates of rainfall (Zhang al. 2005; Lakshmanan e/ af. 2007; Vasiloff e/ af. 2007; 
14 rainfall estimates R(A) with reference rainfall R",,(A) for a spatial domain A (which may 

14 Kit/.miller al. 2010). Figure I shows an example of the CONUS coverage ofQ2 rainfall at 
15 be a satellite mesh, watershed, etc.) to characterize the accuracy of the satellite QPEs. The 

15 0725 UTe on II April 20 II highlighting several rainy systems associated with orography in 

16 the West and a wide frontal system in the central part of the domain. 
16 true (and unknown) area-averaged rainfall accumulation, denoted R'N. (A) is written as; 

17 At hourly time step Q2 adjusts radar estimates with automated rain gauge networks 
17 (I) 

I X using a spatially variable bias multiplicative lactor. A radar quality index (RQI) is produced 

19 at the (O.OIQ, Smin) resolution. While the true quality of the Q2 QPEs varies in space and 18 where lS is the location vector. The reference railliall R,.,(A) is a proxy of Rtcu.(A). The 

20 lime due to 1::1 number of complicating factors (e.g., measurements crrors~ non-precipitation 19 Iinal prodncts of the satellite data processing acc gridded rainfall Iields. Satellite QPEs mllY 

21 I;:(.:hocs, uncertainties in Z--R relationships, variability in the vertical profile of reflectivity), 20 then be written as: 

the RQ! represents the radar QPE uncertainty associated with VPRs (Zhang e/ al. 2011). Thc 
21 R(A) '" 1 }:R(a) 

N j",l I 

(2) 

RQI tleld is composed of a static part relative to the radar beam sampling characteristics 

percellt blockage, beam height and width and a dynamic parl accounting tor the 

freezing level height. The static part is illustrated in Fig. I, where the reduced radar coverage 



difference of the temporal resolution between the hourly adjustment factors applied in the western part of US resulLs in lower RQ! values, The dynamic part causes the RQI 

downscale to 5-min Q2 rainrates, Neveltheless. tlley provide the best possible reference at 2 values 10 decrease in cool sc:ason months when the freezing level is lower and the radar 

scale of PR in terms of samphng conditions and unbiased estimates. 3 samples the melting layer and the icc phase at closer range and to increase in the wanl1 

4 season when the freezing level is at higher altitudes, This iIlustf'ated in Fig, I where the 

freezing level is lower hchind a cold fionu,l system, which deteriorates the already limited 

6 In the curre'!lt study, all signifit:ant min liekls obscrved coincidentally by TRMM 6 coverage in the wcstern part of the CONUS, 

oyerpasses and the NEXRAD radar network from March to May 2011 arc collected, The Q2 7 The original Q2 products utilized in this study are (i) the radar-only instantaneous rain-

products do,,"st in time to the TRMM satellite local overpass schedule time arc used, To rate national mosaic updated eyery 5min, (ii) the radar-only rain~rate national mosaic at 

9 compute the reference rainfall, a block-Q2 rainfall pixel is computed to match each PR pixel 9 bourly time step, (iii) the hourly raingauge~correeted national mosaic product and (iv) the 

10 in of TRMM overpasses in a similar manner to Kirstetter et aL (20 I 0, 20 I I), 10 RQL The primary Q2 product used for comparison with PR the radar-only instantaneous 

11 Although the quantitative interpretation of the weather radar signal in tenns of rainfall 11 rainrate mosaic, Current Q2 radar products do not include instantaneous gauge-a(ljustcd 

12 may be complex, radars enable a reliable evaluation of area-averaged rainfall estimates. The 12 minrate mosaic, For this study and similarly to Amitai el aI. (2009; 20 II), a second 

13 spatial variability of rainfall at small scales and the resolution difference between radar and 13 rderence rainfall was derived from the bias-c(mected Q2 product by using the hourly gauge-

14 PR footprint (as ntuch as 2 orders of magnitude in arca) may cause significant discrepancies 14 adjusted and the hourly radar-only products, Pixcl-by-pixel hourly (multiplicative) 

IS in the statistical sampling properties and adds statistical noise in the comparison (sec e,g. 15 adjustment factors arc calculated and applied to the radar-only instantaneous product 

16 Ciach and Krajewski (1999) for a similar issue when comparing point-measurement 16 Extreme adjustment factors (outside the [0,1-10} range) are discarded and no comparison is 

17 mingauge to area-rainf;,ll radar data). In order to estimate PR-pixel-averaged ground rainfall 17 performed with PR for the corresponding Q2 values, 11m" the gauge-adjustment also serves 

18 accumulation (and the associated sampling errors), a weighted mean estimator is considered 18 as a data quality control procedure. A subsequL'!lt refere'!lee is derived from the bias-

19 to determine the reference rainfall Rce,(A) oYer the PR footprint A from Q2 products, As 19 corrected Q2 product filtered using the RQI index. Only the raimat", associated with the 

the representativeness of the rainfall sampled by PR is rdated to the characteristics of the 
20 best RQI values (i,e,. equal to I) were retained, This selection insures that only Q2 estimates 

21 radar beam, the weighting function is given by the PR beam pattem inside a PR f'botprint. 
21 presenting the best measurements conditions (i,e" no beam blockage and radar beam below 

22 The reference rainfall is therefore: 
22 the melting level of rainfall) arc retained, 

23 One should note these incremental improvements of the Q2 products may not SCreL'!l out 

23 (3) 
24 all possible errors in ground-based radar estimates, In particular, the gauge-adjustment may 

25 sufier from representativeness errors fiom scarce raingaugc network density and from Ole 
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to thr: PR resolution preserves the statistical characteristics of the PR product including the 

total rainfall amount, the total rainy area, and the PDF shapes. All of these properties may 

Lhcrdhre be compared to the rcfercm:e at once. 

.\ Figure 1 an example of i,;ontinuous mapping of the weighted mean estimator tor 

the refercnce rainfall R'd(A). The estimator is a smoother ofule original Q2 rain Ileld. The 

6 maximum of the rainfall rate decreases Irom 145 mm h" to 130 mm h". The total rainfall 

increases, mainly at the edges of the rainfic1d, In order to avoid a contamination of the 

PR-rcfercncl: comparison by the uncertainty on the ground rderence, the reference pixels 

9 into "robust" (Rrer > (lrootVfmt) and "non robust" (Rref < o(Ootprif1t) 

10 estimators. This procedure illustrated in Fig. I filters out the reference values at the edges of 

11 rain n~lds, Non-robust reference values arc discarded for quantitative comparison. The 

robustness check is applied to the three Q2 products considered for reference (native Q2, 

corrected 02, RQI-tbias corrected Q2). As an example for the "RQl+bias corrected Q2" 

14 averaged relative error ) of the reference decreases from 832% to 16%. The 

15 mtio oflhe mcan error to the standard deviation of the rcference (o",/o(R",,)) decreases 

16 slightly trom to 5.4%, This method of reference selection therefore increases the 

J 7 reliability and representativeness of Ihe block-Q2 values that constitute our ground 

19 

20 Precipitation Radar (PRJ based rain/ill! 

21 The PR mcasure~ ret1ectivity profiles at Ku band, Surface rain rates arc estimated over 

southern US up to a latitude of 37"N (Fig. I). Artifacts such as contamination by surface 

23 attenuation and extinction of the signal, brightband effceLs and accuracy of the 

Z-R relationship (Wolff and Fisher, 2(08) must be accounted thr. In the present study, tlle 

to 

where notations have been simpliiicd for the sake of convenience. Q2 denotes the Q2 rain 

2 rate productl'" the mesh a, The value R",(A) depends on the Humber n of Q2 meshes 

inside the PR footprint; the weights OJ arc derived from the two-way normalized power-gain 

4 function of the radar antenna f (assumed to be Gaussian) and bcamwidth 6
0

; each m, is 

5 computed over the domain Om.," corresponding to the Q2 mesh a,. It is assumed the PR 

6 iootprint remains constant (circle of approximately SkIll) whatever the radar beam oftcnadir 

7 inclination angle. Additional rcsenreh may he needcd to take into account the aethrrnation of 

8 the footprint with offcnadir angle (Takahashi er aI, 2006). 

9 Two weighted standard enors arc computed with the reference rainf"ll. The tlrst one is 

10 the weighted sample standard deviation, which represents the variability of the Q2 rainfall 

II (at native resolution) inside the PR footprint: 

12 " ~ footprint v i",,(Q2(a)-R,.,(A»)' with Vi 
:2 1~1 

V, (4) 

13 It is used to select the PR-reference pairs for which the Rro,{A) is trustworthy. The second 

14 one is the standard deviation relative to the weighted mean R",,(A): 

15 °ref i(Q2(a,>-R",(A»), (5) 
,-1 

16 It allows us to assess Ihe R,e,(A) estimation quality. 

17 Matching PR and R",,(A) estimates only exist at locations where both the PR and 

18 ground radars have taken actual observations. This technique the minimum number 

19 of Q2 meshes needed to produce spatially coincident sample Rev, (A) estimates. Thc 

20 advantages of the current technique over gridded approaches are that there is no 

21 interpolation, extrapolation, smoothing or ovcrsampling of PR data. Bringing the Q2 product 



deviation from the 1: I degree line compared to the whole distributjon. The reference 

distributions arc fairly stable given the different censoring levels with the mean of the PR-

rcsampled distrlbutions being \vithin of the onc for the whole dataseL Wc may thcrefore 

consider each reference dataset to be quite representative of the correspondjng whole rainfall 

distrihution. 

Similarly we compared the differcnt PR datasets to assess thc impact of censoring on 

represcntativeness. Figure 4 shows quantilc-quantile plots between (i) the complete 

("Native") PR data set (x-axis) and (ii) the censored subsets according to (he "Bias 

9 corrected" and "Bias+RQI corrected" samples. Table 3 provides valucs of the conditional 

10 mean and standard deviation f')f each scI. The different PR rainfall distributions do not show 

I I a clear deviation from the I: I degree line compared to the "Native" PR rainfall distribution. 

12 means and standard deviations of the "Bias corrected"-censored and "Bias+RQI 

13 eorreetcd"-eensored distrihutions arc less than 1% and around 10% higher respectively. We 

14 

15 

16 

may then::fore consider representativeness of each PR dataset, followlng censoring steps, 

to be quite comparable to each otheL 

17 3. Rainfall data analysis 

18 

19 This section reviews the ability of PR rain retrievals to represent the rainfall variability 

20 derived from the Q2 data, First, contingency tables provide information on the reference 

21 rainfall reliability and on the influence of PR sensitivity to detect rainfall occurrence. The 

PDF of rainfall estimates provide in-depth information on the sensor's global ability to 

23 capture raIn regimes given the influence of l1S sensitivity and the attenuation of the radar 

24 signal. Another feature to compare is the spatial structure of rainfall fields. 

t2 

surface rain rate at each PR footprint location is a standard TRMM product (2A25 v6) 

deseribcd in Iguchi er aL (2000). The scan geometry and sampling rate of PR lead to 

footprints spaced appro;<imatcly 43 km and along-track (5.1 after TRMM boost), over 

4 a 215~km-wide swath. The minimum theoretical detIJctable rain rate by the PR is lixed by its 

sensitivity and is about 17 dBZ, or --05 mm 

6 

7 d) Comparison samples 

Several factors including rainfall intermittency, discrete temporal sampling of TRMM 

9 and ccnsoring of reference values for required quality reduce the number of comparison 

10 samples for refcrence and PR estimates over the comparison period. Table I provides the 

II number of these samples for (he referenec values, inclusive and exclusive of non-rainy 

12 pixels. The comparison sample sizes in Table I arc primarily drivel! by the number of rain 

13 events and the overpass frequency ofTRMM, (hen by censoring of reference values. The 

14 

15 

quality control in the bias adjustment discarded of original Q2 values and an additional 

34% wcrc iiltcred using RQL Notc that aller two levels of processing and censoring, the 

16 comparison samplc size for the "RQHbias corrected Q2" remains significant at 393 347. 

17 This is crcdited to the large number of samples offered by high-resolution. gridded Q2 

18 product 

19 To assess (he repre'"lttativcness of our spatially and temporally limited samples, we 

20 compared the statistics of the reference rainfall resampled to the PR-pixcl resolution with 

21 respect to the wbole reference dataset (CONUS-wide below 38"N which don't necessary 

22 match a TRMM overpass). Figure 3 shows quantile-quantile plots between (i) the whole 

23 reference data set (x-axis) and (ii) the subset of pixels that matched to PR-pixcl resolution 

24 for the different relerencc datasets. Table 2 provides values of conditional mean and 

25 standard deviation, The PR-resampled rclerenee rainfall distribution docs not a clear 

tt 



volume. Note the lowest valucs (less than 8%) arc obtained with the "Bias·' RQI conected a) CotltingenG), tables 

Q2" rcfcrenct;, 2 Table 4 shows the contingency tables for PR rainlno rain occurrence relative to the 

The impact of reference minfall on the contingency scores is shown in Figure 5. references with percentile of hits (H; both Q2 and PR detect rain), misses (M; PR does not 

4 values arc used to compute probability of detection (POD), false alarm rates 

(FAR), and critical index (CSI). Scores arc generally better for the robust reference 

for the non-robust one. Within this category CSl shows a general increase with 

sequential Q2 data quality steps, while the FAR shows the lowest values with additional 

processing of the Q2 l"cf~rencc. A general convergence between the Q2 reference and PR 

9 therefore acknowledged as a function of the reference accuracy. 

10 Considering that SOIVO of the rderence rain rates, that arc not detected by the PR are lower 

11 0.3 mmh·', the sensitivity of PR is close to this value. The misses are probably 

12 associated with high intermittency and/or the "rainlno rain" limits of rain fields. These 

13 features arc missed by the PI{ because the rainrates arc close to the detection threshold. This 

14 that PR can indeed capture the main rain regions but loses the weaker echoes 

IS (Schumacher and Houze 2000), probably due to its sensitivity. 

16 

17 h) Pr()babi!i~)! dL,/n1mlio,", by occurrence ond rain volume 

18 

1'1 

20 

21 

Hereafter, the PR ruin estimates are the conditional ones (positive rainfall) coincident 

and collocated with nonzero reterence estimates. Two POl's lor PR versus reference rainfall 

arc computed and shown in Fig. 6: (il the PDF by occurrence (PDF,) and (ii) thc PDF by 

rain volume (PDF,.) (Wolff and Fisher, 2009; Amitai et aI., 2009-20 II). The PDF, provides 

statistical intbmlution on the rain rate distribution and highlights the estimate's sensitivity as 

a function of rainrntc; it is computed as a ratio between the number of the rainratcs inside 

each bin and the total number of rainratcs, The PDF, represenLs the relative contribution of 

rainratc bin to tOlal rainfall volume; it is computed a,<;; a mtlo between the sum of the 

14 

4 detect rain while Q2 docs), false alarms (I'; PR detects raill while Q2 docs not), and concet 

rejections (C; both Q2 and PR do not detect rain). The reference data arc separated into three 

6 sub-samples: the non-robust set (R"" °footpnnt' section 2b), the robust 

7 and the "whole" Q2 scI, Relerence null values arc considered as robust All 

8 coincident and collocated PR values are considered and sorted according to the reference 

9 samples. Table 5 provides the mean rainfall values according to the same contingency tables 

10 with PR on the len hand side of the sign and the reference right hand side. 

II The false detections (M ·1 F) of PR arc mainly associated with the non,robust reference 

12 data; Illore than 80% for all "non-robust sets" while around are improperly classified 

13 when using the "valid" reterence data scI. The Misses (M) arc the main contributors to the 

14 false detection population (;'e., approximately for the "whole" data set). These Misses 

15 of PR arc coincident with low reference values (less than O. IS mm h·' for the non-robust set 

16 for all references; see Table 5). By comparison, the coneet detections (II C) of PR arc 

17 mainly associated with the robust reference set trom to For the same robust 

18 reference sets, the Hits of PR arc coincident with the higher reference values with mean 

19 rainfall rates more than 6 mm h·'. One should note for all references that (i) the mean PR (F) 

20 values arc significantly luwer than the PR (H) values, and (ii) the mean reference (M) values 

21 arc significantly lower than the mean reference (ll) values. Finally both mean reference and 

22 PR values are highcr for the robust Q2 than for the non-robust Q2 scI. Table 6 shows the 

23 discarded rain volumes in question; the Misses of PR represent less than 12% of the 

24 reference rainfall volume, while False Alanns represent less than 16% of the PR rainfall 

lJ 



simple fUD(,,;tion, we usc a normalized variogram, which represents the spatial correlation of 

tile rain field (Joumcl and Huijbrcgts 197X; Lebel ef af. 1987; Kirsteller ef of. 2010; 2011). 

An appropriate model is fit to the empirical normalized variogram. Among the set of 

4 classical models, the exponential model wa::, found most suitable. It is expressed as: 

(6) 

6 the pammeters are the nugget (Co), the sill (C) and the variogram range 

7 parameter (d), The exponential model rcaches its sill asymptotically as h ~ 00. The 

"effective range" corresponds to the mean dccorrclation distance of the estimates. It is the 

distance where the variogram reaches 95% of its maximum and com.:sponds to 3d for the 

10 exponential model. The nugget parameter can be u~cd to describe a possible discontinuity of 

II variogmm at the origjn which may be due to (I) the process variability at scales poorly 

l2 resolved by the observation system andlor (1i) measurement errors. In the following, these 

I j parameters arc used to characterize the structure of rainflllL 

14 Spatially normalized variograms of references and PR estimates arc displayed in Fig. 7. 

15 Table summarizes the parameters of these variograms. The variogn.un ranges of PR are 

16 quite similar to the throe references' (approximately 18km). The nugget values, however, arc 

17 more distinct. While it is 32~YO for the Q2 references, it is significantly higher 10r PR 

18 (approximately 45% of the sill). These deeorrelations of spatial structure at short 

19 interdiatanccs sugge~t the resolution of the PR measurements may be limited when sampling 

20 variability of small, disorganized rainfall stmctures associated with localized convection. 

21 smaller reference nugget is an indication of the better sampling of the rain field by the 

22 rcrer\'~ncc rainfall, an issue previously discllssed in section 2b, The comparatively higher 

nugget with PR may be caused by the rain intermittency, contamination by surface 

backscatter, attenuation of the signal, brightband eftects or inaccuracy of the Z-R 

t6 

rainratcs inside each bin and the total sum of rainralcs. It is therefore an important 

2 characteristic of the instantaneous products from the perspective of building merged rainfall 

accumulations; it enables a comparison of PDFs based on estimates derived from 

4 instJUments characterized by different detection limits (in particular at weak intensities). 

The rainrates of PR e"hibit similar PDF, lor all references. Compared to rcierenccs' 

6 

7 

PDF" PR tends to overestimate light 'din rates (~l0.3-0.51 mill h"). But, PR demonstrates 

poor detection of the lightest rain rates (below mm h") compared to the two bias 

corrected references. This is coherent with the COili..:Cpt of rain area that might be 

9 only partially detected by PR, resulting in misses associated with low rain rates previous 

IO section). PR PDF, presenls similar features with references lor rain rates -I mm 11". One 

II may note the improved convergence between PR and reference rainfall PDF, in the rain rates 

12 interval [0.5,1.01 mm h' with the sequential Q2 data quality steps. 

13 Despite the low oecun'enee of relatively high rain rates 10 mm.h·'), their contribution 

14 to the total rainfall volume is significant (greater than 60 %). As a consequence, the mode of 

15 PDF, for PR is shilled toward lower minrates (~18 mill h") compared to the rclerence's 

16 mode (-60 mm h'), in agreement with the results found in Amitai et al. (2006, 20(9). This 

17 is attributed to high rainlllli rates 10 mm.lf'), which are evidently underestimated by PR 

18 because insufficient correction due to attenuation losses as by Wolfl and Fisher 

19 (2008) for the 2A25 version 6. 

20 

21 c) Space structure ~(es{imated rain(allfields 

22 For hydrological applications, the total amount of water over a basin as well as the 

23 location and spatial con-elation within the catchment migbt be important. It is therefore 

24 relevant to assess the ability of space-based estimates to retrieve the spatial structure of 

25 rainfall ficlds as seen by the reterenee. In order to describe the structure by a relatively 

15 



radar} The gauge-based bias correction of the native Q2 product decreases the mean 

reference values. so the negative bias of PR is apparenlly improved, The additional RQI 

liileIing underestimation of Q2 at far range so tile bias of PR is degraded, The 

4 reference shows higher standard deviation than the PR in coherence with the PDF features 

prt,~senled in section 3b. 

6 The correlation coenicients between PR and Q2 referencc estimates arc moderate 

(around (),6), One could note the best eotTelation between the two sensors is achieved with 

the "Bias+RQI coneeted" reference, The differences between the two products on a pOill1-

9 to-point comparison basis can be allributed to sample volume discrepancies, timing and 

10 navigation mismatches and the uncertainties in the respective rainfall estimates. Thc 

II significantly greater nugget in the PR variogram than in the reference variogram is also an 

12 indication of the greater level of noise in the PR rain field spatial structure, which may limit 

13 the con-elation between the two series on a point-to-point comparison. 

14 

15 b) error model 

16 The departures of PR estimates from the references an.: analyzed in this section on a 

) 7 POll1t-to-point basis. The uncertainties associated with satellite estimates of rainfall include 

18 

19 

20 

21 

systematic etTors as well as random effects trom sevcral sources (Yang ef ai" 2006; 

Kirstetlcr aI., 20 II), There is a timdamental issue in segregating the proportion of the 

scatter due to purely random elTor and the proportion due to conditional biases of the PR 

c-:;:timatcs that may be either positive or negative, producing additional scatter. 

With the true rainfall being unknown, the residuals arc defined as the difference 

=(R-R"fl between the relerenee rainfall (Reef) and the satellite estimates (R), Only 

24 pairs for which and R arc both nonLcro arc considered in the calculations in order to 

cmplmsizc PR ability to qllantily precipitation where it is raining, The sets of c 

]X 

relationship, An interesting feature is that both present a slighlly decreasing nugget 

2 with the sequential Q2 data quality steps, Tbis feature could be attributed to the censoring of 

the referenee, which filters out complicated sampling situations for ground-based radars, 

4 

4. Quantitative error modelling 

6 

7 oj Correlalions and biases 

Scattcrplots of PR versus refcrenee rainfall arc presented lor the three sets of Q2 

9 reference ill Fig, 8, Classical pertormanee criteria of satellite,based rainfall estimation 

10 compared to reference values arc listed in Table 8: correlation coeflicicnt and mean relative 

II error (MRE), expressed in perccntage and defined as MRli (PR mean ' 

12 Rcfmean)!Refmean, The comparisons between the PR and rcf'crenee estimates arc 

13 assessed on a point,to,point basis, A rainy pixel is included in the statistics if both PR and 

14 the reference are nonzero to emphasize the PR ability to quantify precipitation when it is 

15 raining, This is particularly significant given the signitieant misses ofPR, 

16 The two sensors present coherent mean and standard deviation values as long as the 

17 represcntativeness of the comparison samples are kept in mind, expected, tile means of 

18 

19 

20 

21 

the three PR scts are quite similar, In all cases thc PR underestimates the reference mean 

values by -17%, This is once again attributed to the significant underestimation of the higher 

raiorates in the 2A25-v6 products, presumably due to attenuation The variations of 

the reference mean for the three sets ""plain in large part the variations in the apparent bias 

22 of PI{ relative to the reference, The native reference is afleeted by (iJ a global 

23 overestimation of rain rates, which could be due to the inaccuracy of the Z-R relationship 

24 and (ii) all' underestimation of rain rates linked to partial beam blockage and vertical protllo 

25 of reflectivity efTccts (i.e" overshooting above the melting layer by the radar beam far from 

]7 



6 

9 

10 

II 

12 

13 

14 

15 

16 

17 

I~ 

19 

11 

Several two··parametcr density functions (log normal, normal, reverse gumbel, logistic, 

gamma. etc.) have been tested to tit the data. The distributions of residuals (not shown here) 

were generally found to be unimodal and asymmctJic. The goodness-of-fit on the whole 

dataset been checked by investigating the Akaike intormation criteria (AlC) tor the each 

semi-parametric.' density fits. The reverse Gumbel distribution 

where f' is the mean and " the standard deviation 

of the residual population) was found to be the most appropriate. Figure 9 shows the 

residuals a function of R,,, as well as the titted GAM model for PR in the representative 

case of the "Bias1 RQI corrected" reference. The conditional PDF of residuals r present a 

conditional shill versus the (J Jine and a high conditional spread. Note that for R'ef '> 

~5()mm.h~', the model is quite undetennined because of the lack of obscrved residuals. All 

models show that PR pn.:scnt it tendency to overestimate 1ight rain rates (the median of 

residuals is positive) and undcrc~timate higher rain rates (negative median of residuals): e.g, 

PR underestimates R
ref 

20 mm.h"l rain rales with an occurrence of 70(% and with a 

representative bias of -7 mm.h'] and underestimates R
ref 

40 mm.h-1 with an occurrence of 

and with a representative bias of -24 mm.h·'. This is likely to be once again due to the 

insuOicient com::ction ofPR attenuation for heavier rain rates. 

[n I.;I1SC of a non-symmetric density for residuals or in case of extreme values, the median 

i~ preferred to lhe expcctalinn f()f a better reprcs(,,'lltativencss of the systematic component of 

residuals. The systematic error component (i.e. conditional bias) is therefore described 

by condItional median of these distributions. For the same reason we consider the 

interqual1tilc ('190-'110) value to assess the random part of the error. It is computed after 

having applied the error separation variance correction to the c,onditional standard deviation 

20 

distributions arc studied using the generalized additive models tor location. SJ:ale and shape 

2 (GAMLSS, Rigby ,md Stasinopoulos Z005) technique. As a preliminary step, R,., is 

considered as the main driving (explanatory) variable conditioning the departures of PR 

4 estimates from references. 

Generalized linear models for location, scale and shape aim at modeling the parameters 

6 of a response variable-'s distribution. Two main assumptions arc made: (l) the response 

7 variable £ is a random variable following a known parametric distribution with density 

feE 11',0) conditional on the parameters (I"U); (2) the observations arc mutually 

9 independent given the parameter vectors (f',")' Each parameter is modeled as a tunction of 

10 

II 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Rmf (the explanatory variable) using monotonic (linear/non-linear or smooth) link 

functions. Morc details arc provided by Rigby and Stasinopoulos (200 I, Z005), 

Akantziliotou, Rigby, and Stasinopoulos (2002) and Stasinopoulos and Rigby (2007). A 

wide variety of distributional lorms arc available, but fbr sake of simplicity and to 

distinguish between systematic and random errors, a number of conditional densities with 

the first two moments (the location I' - mean, to be linked On to systematic errors and tbe 

scale () - standard deviation representative of random errors) as parameters arc considered 

here. For a given conditional distribution of the response variable, the conditional quantile, 

can be expressed as a function of the location and scale. CiAMLSS best litted using th" 

package gamlss in R (Stasinopoulos and Rigby 2007). The rainfidl trends for each parameter 

arc titted using locally weighted seattcrplot smoothing (loess), which arc more flexible than 

21 polynomials or tractional polynomials for modelling complex nonlinear relationships. It is a 

22 polynomial curve detClmined by R,.f' which is titted locally by weighted polynomial 

23 regression, giving more weight to points near the point whose response is being estimated 

24 and less weight to points further away (sec Cleveland, Grosse, and Shyn 1993). 

]9 



conditional bias is less significant), which could be seen as a sign of a better convergence o "Ktraeted from the GAM model. The error separntion variance concept (ei"eh and 

between PR estimates and this Q2 reference. This is confirmed when considering the mndom 2 Krajewski, 1999; Teo and Grimes, lO()7; Kirstetter ef al. 2010) makes it possible to evaluate 

part of errOL The "Bias+RQI corrected" curve shows the lowest random errors up to R
ref 

the variance of the PR with respect to the tn,e unknown rainlall. We assume the errors on the 

4 mm h'] (more than 65%, orthe reference rain rates arc under this value). The random error 
4 reference rainlal! and on the PR estimates to be uneorrelated. Introducing the tme rainlall 

consistently with . It is systematically higher lor the "Bias corrected" than for 
R

true 
in the expression of the variance of the residuals between the PR and reference values 

6 the "Native" reference, a rt,~sult consistent when applying a bias correction (Ciach et al. 
6 leads to (sec Kirstet!er ef al. 20 I 0 for details): 

7 20(0). It f1.'prcscnts a significant part of error, suggesting that other factors than R,,, could o(R' -R ) true 
(7) 

be considered to evaluate the error of PR rain rate estimates at ground, Fortunately as can be seen in Figurc 10, the reference estimation standard deviations arc 

9 lower than the standard deviations of the PR-rcfercnce residuals, indicating the reference 

10 5, Conclusions 10 values to be comparatively reliable to evaluate PR. The standard deviation of the PR 

11 11 residuals with respect to the true rainfllll is significantly reduced compared with the PR·· 

12 Tn preparation for NASA's future Global Precipitation Measurement (GPM) mission, a 12 reference residual standard deviation. One may note the standard deviations increase up to a 

13 three-month data sample of TRMM-PR-bascd rainfall products have been compared to 13 reference value (··,50 mm.h·') beyond which we believe sampling issues lead to a 

14 surface rainfall derived from Q2 over the lower conterminous US. The major advantage of 14 stabilisation or a decrease of the standard deviations. We therefore apply the modelling up to 

15 the Q2 ground-bascd reference dataset is its resolution in both time and space commensurate 15 this limit only. As ~98% of the reference values arc under his limit, this choice won't lead to 

16 with rainfall estimates derived from sensors onboard low-earth-orbitjng satellites. The 16 any significant lack of representativeness. 

17 comparisons have been performed at the PR-pixel resolution. A Iramework is proposed 17 Figure 10 shows the conditional biases and random errors of PR relative to the three Q2 

18 herein to addn.:ss methodological issues so as to provide a prc1iminary version of an errOl" 18 references. The global bias (sec previous section and Table 8) of PR resulLs from a balance 

19 model lor satellite QI'Es. The error model is empirically derived and is thus prone to be 19 between overestimation of light rainrates and underestimation of high rainrates. TIle 

20 speciJic to the dataset considered and the PRfQ2 data processing implemented. However, the 20 underestimation is more frequent, inducing a global negative bias. The eonditional biases of 

21 results show simIlarities w-ith previous rainfall comparisons over West Africa (Benin and 21 PR relative to the reterenecs are quite similar. Note the "Bias corrected" conditional bias is 

Niger) and thus give credence to the developed framework (Kirstetter ef al. 2011). Results 22 shilled to the right compared to the "Native" one, so overestimation of light rainrates is mme 

from the enor model presented herein provide insights into the most significant 23 significant and the underestimation of higher raimates pronounced, cOl15istently with the 

24 reduccd negative global bias for this specific reterenee (see Table 8). Note als" the negative 

25 slope of the "Bias+ RQT corrected" conditional bias is lower than for the two other (the 

22 21 



onboard low-earth-orbiting satellites (i.e., TMI, AMSR-E, SSMI. MADRAS). 

This framework will also be applied to GPM rainfall estimates following its launch in 20l3. 

import.'1nt issue to study is how the various error sources in PR. which is often used 

4 as a calibrator, propagatt..~ when merging with geostationary jnfrared datu for a number of 

satellite-based, high-resolution pnxipitation products, 

6 

9 

characteristics of PR rainfall retrieval errors that need to be taken into account when such 

2 data arc used in applications. 

A consistent result noted throughout each analysis increased consistency 

4 between PR and the Q2 reference following sequential data quality control steps including 

bias correction using rain gauges and filtering using the radar quality index (RQI) product 

6 This finding, alone, highlights the impartance of matching and refining the 

7 accuracy of the reference dataset as much as possible before reaching meaningful 

g conclusions about the PR accuracy. 

9 Different error sources were identified and quantified for I'R rainrate estimates. The 

10 most Significant error is most likely due to the attenuation of the PR radar signal. It is not yet 

II known ifthis error is due to inadc'quate correction Ibr allenuation losses or complete loss of 

12 the signaL Segregating rain from no-rain boundaries is also a driving contributor to the PR 

13 minrate errors, probably linked to the lack of scnsitivity in the most inhomogeneous and 

14 light parts of the edges of rainy regions. Nevertheless, the variogram analysis showed that 

15 the PR adequately represents the spatial structure of the rain fields. The >eaHerplots revealed 

16 PR-cstimated rainrates arc only moderately correlated (I'carson correlation coefficient of 

17 0.6) to the best reference rainfall on a paint-to-point basis. 

18 The statistical model developed here quantifies the relation betwecn instantaneous I'R 

19 rainfall and the COlTcsponding reference rainfall. It consists of a deterministic additive 

20 function and a random uncertainty component, both conditioned on given reference values, 

21 11,e contribution of systematic PR errors is confirmed to be quite large due to the 

22 aforementioned signal attenuation issue. 

23 In tenns of perspectives. the relative contributions of linked to rainfall type and 

24 oft~nadir angle need to be evaluated, as well as intluence of the underlying terrain. The same 

25 framework and reference rainfall datasets can be readily applied to rainfall retrievals from 
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Table captions 

4 Table 1. Comparison samples It,r dillerent reference datasets. 

Table Conditional mean and standard deviation of "whole" and "PR-rcsamplcd" 

references 

Table 3. Conditional mean and standard deviation ofPR estimates for different references. 

Table 4. Contingency tabIc for PR relative to the three references. The results arc provided 

~ for robust / non robust reference data according to a criterion based on the variabillty of the 

10 Q2 rainfall (at native resolution) inside the PR footprint (Reef O'ootP,,,,,). 

II Table 5. Mean rainfall values associated to the contingency table for PR! references. 

12 Table 6. Discarded rain volumes from PR dUl! to misses relative to references and rain 

13 volume implied in the false alarms relative to robust references. 

14 Table 7. Parameters of the normalized valingrams (exponential model) tor references and 

15 PR. The "effective range" values arc indicatt::d. The nugget is expressed as a percentage of 

16 the normalised sill. 

17 Table 8. Pcrfol1nancc criteria values for PR estimates: mean, standard deviation, mean 

IS relative error (MRE) and correlation (R) witb respect to references. Only the reliable Q2 dIlta 

19 arc kept (s\"~c s~"'(;lion 2.h) for references. 
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Figure 8: Scattergraphs of PR versus native (a), bias corrected (b) and Bias+RQI 

correeted(c) reference rainfall (mm h~l). The first bisectors (solid lines) are displayed. 

Figure 9: PR residuals represented venms "Bias I RQI corrected" reference (left) and the 

GAM model tltted is represented by [5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95] conditional 

quantile lines (right). 

6 tlg\l[e .. JO: Standard deviation of PR·rctCfC'l1Ce residuals (dashed line), estimated standard 

deviation of tbe reference rainfall (dotted line) and standard deviation of PR~true rainfall 

residuals (solid line) as functions of tile "Bias+RQI corrected" reference. The vertical line 

9 (50 indicates the ljrnil of the good sampling conditions. 

10 t!Jll.l.[e.JL Conditional bias (median) of residuals (left) and conditional random error 

II (interquantile 90%-10%) of residuals (right) for PR as a function of "Native" (dotted line), 

12 "Bias corrected" (dotted line) and "Biasf RQI corrected" rdi::rcl1ces~ 

13 

14 

15 

16 

17 

18 

Figure captions 

3 

4 Eoo!!c.l.: Map of eONUS area witb NMQIQ2 instant'll1eous raimates at 0725 UTe un 07 

April 2011. Tbe red area shows thc good quality radar coverage corresponding tu Radar 

6 Quality Index equal to I. The shaded arca is not samplcd by the TRMM·PR, 

Figurc 2: Maps of instantaneous raiurates at 0725 UTe on 07 April 2011: thc NMQ·Q2 

product (top lcft), thc equivalent reference rainfall R", (top right), the "robust" reference set 

9 (bottom left) and thc "non robust" rcference set (bottom right). 

10 Eil!l!!"lL;!; Quantile·quantile plots fl)r refercnce "PR·samplcd" and "Whole" rainfall 

II distribution comparison, for native (a), bias canceled (b) and Bias+RQI corrected (c) 

12 rcfercnccs~ The positions of 10, 50 and 95 percentiles arc showed for each distribution. 

13 EiguI"lL4; Quautile-quantilc plots for refercnce "PR-samplcd" and "Whole" rainfall 

14 distribution comparison, for native (a), hias correctcd (b) and Bias+RQI corrected (c) 

15 references. The positions of 10,50 and 95 percentiles arc showed for each distribution, 

16 f.ig!![c.5,~ Critical success index (CSI), probability of detection (POD) and lalse alann mtes 

17 (FAR), and thr the thrcc rderences and partitioned as a function of robustness. 

18 Eigllf'U); Probability distributions of rain rates the PR rainfall and fhr tbe native (a), bias 

19 coneeted (b) and Bias+RQI corrected (e) reference rainfall. The solid and dashed·dotted 

20 lines represent the distribution by volume PDF, and the distribution by occurrence PDF, 

21 respectivcly, while the grey and black lines represent the distributions thr references and PR 

22 respectively. Note that the x·axis is in log·scale. 

23 EiJlllLe...I; Spatial variograms tor reference (Iell) and PR (right) for the native (top), bias 

24 corrected (middle) and Bias+RQI corrected (bottom) rderence. The empirical variograms 

25 arc plotted with crosses, and the models fitted arc represented by the thick black Iinc'S. 
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TABLE 4, Contingency table for PR relative to the three references, The results are provided 2 TABLE 1, Comparison samples for dillerent reference datasets, 

for robust I nOll robust relerence data according to a critcrion based on the variability ofthe 

4 Q2 rainfall (at native resolution) inside the PR footprint (Reef> 0'00,""0')' 

PR NativeQ2 

ESlimates 
0, 0, ~ estimates 

whole sct 
26% 6% 320715 

4 

robust 45 {~lr~ 15% 251175 

non robust 12% Oo/t) 69540 6 references datasets, 

whole set 
67% 0.% 664220 

robust 40% 0,% 167n6 

non robllst 88 '% O. (% 496234 

whole set 921758 63177 984935 

robust 355984 63177 419161 

non robtist 
545774 0 565774 

-----
6 7 

8 

9 TABLE 3, Conditional mean and standard deviation of PR estimates fur different references, 

9 Mean deviation 

10 Native Q2 4.21 6,91 

II 4.24 6,94 

12 4,65 7,47 

13 10 

14 11 

12 



4 

6 

9 

10 

TABLE 5. Mean rainlal! values associated to the contingency table for PR 1 references. 

PR 

Estimates 

o. 

>0. 

o. 

o. 

Native Q2 

o. 

2.41/0.00 

2.41/0.00 

Bias corrected Q2 

> 0, 

4.83/4.71 

5.3816.07 

3.61/1.73 

0.00/0.38 

0.001 L05 

0.00/0.14 

36 

o. 

2.28/0.00 

2.28/0.00 

2 

4 

l'R 

o. 

reference 

35 

Bias corrected Q2 

O. L estimates 

10 

21 

0 

O. 

O. 

0.% 

72984 

72526 

0 

316941 

240223 

76260 

4()6610 

108218 

298392 

723551 

348441 

374652 

1; estimates 

137978 

94533 

431n 

254921 

64620 

190301 

3928'19 

159153 

233479 



6 

TABLE 7. Pammeters of the nomlalized variograms (exponential model) for references and 

PR, The "effcc:tivt.! range" valueti are indicated. The nugget is expressed as a percentage of 

nOl1nalised silL 

Native 

Rcfcn::nee 

Nugget Range 

(%8ill) (km) 

34% 17 

32% 15 

corrected 31.5 % 15.5 

PR 

9 TABLE 8. Pcrfonnancc criteria values for PR estimates: mean, standard deviation, mean 

! 0 relative error (MRE) and correlation (R) with respect to references. Only thc reliable Q2 data 

II are kept (sec section 2.b) for references. 

13 

14 

35 

PR 

5.38 

8.03 

-11% 

0.6 

Bias+RQI 

corrected 

Reference PR 

7.27 5.6 

13.76 8.26 

-23% 

0.64 

PR Bias+RQI corrected Q2 
f----~ .. --.~-, 

Estimates o. O. 

15.45 2.0710.00 

o. 727 207/0.00 

12.01 

10.28 

10.74 

0.12 

2 

4 TABLE 6. Discarded rain volumes Irorn PR due to misses relative to references and rain 

6 

9 

10 

II 

12 

13 

volume implied in the false alarms relative to robust reiefences. 
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figt[[c .. L Map of CONUS arca with NMQ/Q2 instantaneous raimatcs at 0725 UTC on 07 

April 2011. The red arca shows the good quality radar coverage corresponding to Radar 

Quality Index equal to 1. The ,haded area is not sampled by the TRMM-PR. 
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Figure 3: Quantile-quantile plots for reference "PR-sampled" and "Whole" rainfall 

distribution comparison, for native (a), bias corrected (b) and Bias+RQI corrected (e) 

rderences, The positions of 10, 50 and 95 percentiles arc showed for each distribution, 
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"robust" reference 

Q2 @ PR pixel resolution 
"whole set" reference 

"non robust" reference 

Eilll!rp~;,:, Maps of instantaneous rainratcs at 0725 UTe on 07 April 20 II: the NMQ-Q2 

product (top left), the equivalent reference rainfall R'.f (top right), the "robust" reference set 

(bottom lell) and the "non robust" reference set (bottom right), 
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I'1!l!JXf,o): Critical ,ueees, index (CS1), probability of detection (POD) and false alarm rates 

(FAR), and for the three, references and partitioned as a function of robustness. 
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Figl!f£" ,,1: Quantile-quantile plots for reference "PR-sanlplcd" and "Whole" rainfall 

distribution comparison, fllr native (8), bia, corrected (b) and Bias+RQI corrected (e) 

references, The positions of 10, 50 and 95 percentiles arc showed it" each distribution, 
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Eig\lrs ~Q~< Probability distributions of rain rates the PR rainfall and f()r the native (a), bias 
I ) + ± ± 

corrected (b) and Bias+RQI corrected (c) reference rainialL The solid and dashed-dotted hnes 

represent the distribution by volume PDF, and the distribution by occurrence PDF, 

respectively, while the grey and black lines represent the distributions for references and PR 

Figure 7: Spatial v"ringrams for reference (left) and PR (right) ii)r the native (top), bias respeetivcly< Note that the x-axis is in log-scalc< 

corrected (middle) and Bias+RQI corrected (bottom) rcfercnec< The empirical variograms are 

plotte,<-I with crosses, and the models litted arc reprcsented by the thick black lines< 
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Figure 9: PR residuals represented versus "Biasi RQT corrected" reference (left) and the 

GAM modcllltted is represented by [5, 10,20,30,40,50,60,70, gO, 90, 95] conditional 

quantile (right), 
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1'!gur5,:~5; Scatterplots ofPR versus native (a), bias eOITCcted (b) and Bias+RQI corrected(c) 

reference rainfall (mm,h'I), The lirst bisectors (solid lines) arc displayed, 



rigl,lrLLL: Conditional bias (median) of residuals (lell) and conditional random error 

(intcrquantilc 90'!!,,-IO%) of residuals (right) for PR as a function of "Native" (dotted 

Iinc), "Bias corrected" (dotted line) and "BiastRQI corrected" references. 
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Figure 10: Standard deviation of PR-rcference residuals (dashed line), estimated standard 

deviation of the reference rainfall (dotted line) and standard deviation of PR·"true rainfall 

residuals (solid line) as hmetions of the "Bias+RQI corrected" reference. TIle vertical line 

(50 mm.h l) indicates the limit of the good sampling conditions. 
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