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Abstract

Characterization of the error assoclated to sawellite rainfall cstimates is a necessary
component of deterministic and probabilistic frameworks involving space-born passive and
active microwave measurements for applications ranging from water budget studies to
forecasting natural hazards related to extreme rainfall events. We focus here on the error
structure of NASA™s Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar
(PR} quantitative precipitation estimation (QPE) at ground. The problem is addressed by
comparison of PR QPEs with refoerence values derived from ground-based measurements
using NOAA/NSSL ground radar-based National Mosaic and QPE system (NMQ/Q2). A
preliminary investigation of this subject has been carried out at the PR estimation scale
(instantaneous and 5 km) using a three-month data sample in the southern part of US. The
primary contribution of this study is the presentation of the detailed steps required to derive
a trustworthy reference rainfall dataset from Q2 at the PR pixel resolution. It relies on a bias
correction and a radar quality index, both of which provide a basis to filter out the less
trustworthy Q2 values. Several aspects of PR errors are revealed and quantified including
sensitivity 1o the processing steps with the reference rainfall, comparisons of rainfall
detectability and rainfall rate distributions, spatial represemtativeness of error, and separation
of systematic biases and random errors. The methodology and framework developed herein
applies more generally to rainfall rate estimates from other sensors onboard low-carth
arbiting satellites such as microwave imagers and dual-wavelength radars such as with the

Global Precipitation Measurement (GPM) mission.

Key words: satellite-based rain estimation, radar, QPE, conditional bias, random error
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Fisher 2008). Tt impacts rain estimates from polar-orbiting passive microwave measurements
and a number of satellite-based high-resolution precipitation products (Ebert er al. 2007;
Berges ef al. 2009; Ushio er al. 2006). Given the variety of potential sources of error in PR-
based QPE and the impact of correction algorithms, the only practical solution is to evaluate
PR QPE with respect to an external, independent reference rainfall data set. The reference is
derived from high-resolution ground validation measurements using NOAA/NSSL ground
radar-based National Mosaic and QPE system (NMQ; Zhang ef ol 2011). These products
yicld instantancous rainfall rate products over vast regions includir;g regions of the
conterminous US covered by NEXRAD data. While a number of studies have investigated
the quality of PR estimates in various regions of the world (c.g., Adeyama and Nakamura
2003; Wolft and Fisher 2008; 2009; Amitai e o/ 2009; 2011), our aim is to perform a
systematic and comprehensive evaluation for regions over the southern conterminous US
(CONUS).

We will characterize errors in PR estimates at the pixel measurement scale in order to
minimize additional uncertainties caused by resampling. Systematic and stochastic errors of
PR estimates will be documented in terms of bias and spatial structure. One should note that
it is not possible to “validate” the PR estimates in a striet sense because independent rainfall
estimates with no uncertainty do not exist.  Rainfall estimates from low-earth orbiting
satellites suffer from their poor temporal sampling (Wolff and Fisher 2008; 2009; Lin and
Hou 2008). Hence representative samples of direct comparisons between instantancous
coincident measurements from ground and space are difficult to achieve without a sufficient
number of overpasses. This study uses three months (March-May 2011) of satellite
overpasses over the lower CONUS. The data are pixel-matched in both time and space, and

statistics are provided for comparing reference rain intensities to satellite-based estimates.
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L Introduction

Reliable quantitative information on the spatial distribution of rainfall is essential for
hydrologic and climatic applications, which range from real-time flood forecasting to
evaluation of regional and global atmospheric model simulations. Given their quasi-global
coverage, satellite-based quantitative rainfall estimates are becoming widely used for such
purposes. Converting satellite measurements into quantitative precipitation estimates poses
challenges. The link between the observations and surface rain rates depends on the
calibration and operating protocol of the instrument itself, the spatial heterogencity of the
rain fields (e.g., co-existence of convective and stratiform precipitation within a single
instrumental field-of-view and vertical heterogencity of rainfall), the indirect nature of the
measurement, and the retrieval algorithm used. As underlined by the Program to Evaluate
High Resolution Precipitation Products (Turk e ol 2008) led by the International
Precipitation Working Group (IPWG; see hitp/fwww isac.cnr.it/~ipwg/), characterizing the
error structure of satellite rainfall products is recognized as a major issue for thé usefulness
of the estimates (Yang ef al. 2006; Zeweldi and Gebremichael 2009; Sapiano and Arkin
2009; Wolff and Fisher 2009). The error characterization is needed for data assimilation and
climate analysis (Stephens and Kummerow 2007) and more specifically over land in
hydrological modelling of natural hazards and budgeting water resources (Grimes and Diop
2003; Lebel et al. 2009},

In this study, we focus primarily on the TRMM Precipitation Radar (PR) quantitative
precipitation estimation (QPE) at ground. The methodology presented herein would equally
apply to all satellite precipitation products, in particular those onboard low-earth orbiting
satellites. The TRMM-PR is currently the only active instrument measuring rainfall from a
satellite platform conjointly with a radiometer (TMI). PR rainfall cstimates are often

considered as a reference for TMI-based rainfall estimates {e.g., Yang er ol 2006; Wolff and
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where & denotes a satellite pixel and N is the number of pixels covering the domain of
mterest. The reference data R (A) used to evaluate the satcllite estimates should spatially

match the corresponding true rainfall averaged over the same arca A,

a} original grownd-based products

The NOAA/NSSL National Mosaic and Quantitative Precipitation Estimation system
(NMQ/Q2) (nttps g ouedu; Zhang et al. 2011) is a set of experimental radar products
comprising high resolution (0.01°, § min) instantancous rainfall rate mosaics avatlable over
the CONUS. The NMQ systern combines information from all ground-based radars
comprising the National Weather Service's Weather Surveillance Radar ~ 1988 Doppler
(WSR-88D) network (NEXRAD) network, mosaics reflectivity data onto a common 3D
grid, estimates surface rainfall accumulations and types to arrive at accurate ground-based
estimates of rainfall (Zhang er al 2005; Lakshmanan er al. 2007; Vasiloff et al. 2007;
Kitzmiller e of. 2010}, Figure 1 shows an example of the CONUS coverage of Q2 rainfall at
0725 UTC on 11 April 2011 highlighting several rainy systems associated with orography in
the West and a wide frontal system in the central part of the domain.

At hourly time step Q2 adjusts radar estimates with automated rain gauge networks
using a spatially variable bias multiplicative factor. A radar quality index (RQY) is produced
at the (0.01°, Smin) resolution. While the true quality of the Q2 QPEs varies in space and
time due to a number of complicating factors (c.g., measurements errors, non-precipitation
echoes, uncertainties in Z-R relationships, variability in the vertical profile of reflectivity),
the RQI represents the radar QPE uncertainty associated with VPRs (Zhang ef af. 2011). The
RQI field is composed of a static part relative to the radar beam sampling characteristics
such as percent blockage, beam height and width and a dynamic part accounting for the

freezing level height. The static part is illustrated in Fig. 1, where the reduced radar coverage

[

The quasi-instantaneous matching is performed at the scale of the PR measurement scale
(4.5 x 4.5 km).

The PR data and steps required 1o refine the Q2 ground-based rainfall to arrive at the
reference rainfall used for comparisons are presented in section 2. Section 3 assesses the
ability of PR rain retrievals 1o represent the rainfall variability derived from the reference
data in terms of rainfall detectability, sensitivity, and spatial structure. Section 4 provides an
empirical error model of the PR estimates versus reference rainfall and segregates systematie

and random error. The paper is closed with concluding remarks in section 5.
2. Data sources

One of the first challenges encountered is the lack of knowledge about the true averaged

rainfall for the spatial domains considered. One wants to compare instantancous satellite
rainfall estimates R(A) with reference rainfall R (A} for a spatial domain A (which may
be a satellite mesh, watershed, ete.) to characterize the accuracy of the satellite QPEs. The

true (and unknown) area-averaged rainfall accumulation, denoted R m‘a(A) is written as:

Ry (8) = [ RO ' M

where X is the location vector, The reference rainfall R_ ef(/-‘\) is a proxy of R__(A). The

e
final products of the satellite data processing are gridded rainfall fields. Satellite QPEs may
then be written as:

R(A) = i YR(a) @

[



difference of the temporal resolution between the hourly adjustment factors applied
downscale to S-min Q2 rainrates. Nevertheless, they provide the best possible reference at

the scale of PR in terms of sampling conditions and unbiased estimates.

b} Q2-based reference rainfall

In the current study, all significant rain fields observed coincidentally by TRMM
overpasses and the NEXRAD radar network from March to May 2011 are collected. The Q2
products closest in time to the TRMM satellite local overpass schedule time are used. To
compute the reference rainfall, a block-Q2 rainfall pixcl is computed to match cach PR pixel
in case of TRMM overpasses in a similar manner to Kirstetter et al, (2010, 2011).

Although the quantitative interpretation of the weather radar signal in terms of rainfall
may be complex, radars enable a reliable evaluation of arca-averaged rainfall estimates. The
spatial variability of rainfall at small scales and the resolution difference between radar and
PR footprint (as much as 2 orders of magnitude in area) may cause significant discrepancies
in the statistical sampling properties and adds statistical noise in the comparison (see e.g.
Ciach and Krajewski (1999) for a similar issuc when comparing point-measurement
raingauge to area-rainfall radar data). In order to estimate PR-pixel-averaged ground rainfalf
accumulation (and the associated sampling errors), a weighted mean estimator is considered

to determine the reference rainfail chc(A) over the PR footprint A from Q2 products. As

the representativeness of the rainfall sampled by PR is related to the characteristics of the
radar beam, the weighting function is given by the PR beam pattern inside a PR footprint.

The reference rainfall is therefore:

B
R (A)=—-YoQ2a) wih o~ [ £(0,6)d ®
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in the western part of US results in lower RQI values. The dynamic part causes the RQI
values to decrease in cool season months when the freezing level is lower and the radar
samples the melting layer and the ice phase at closer range and to increase in the warm
seasont when the freczing level is at higher altitudes. This is illustrated in Fig. | where the
freezing level is lower behind a cold frontal system, which deteriorates the already lmited
coverage in the western part of the CONUS,

The original Q2 products utilized in this study are (i) the radar-only instantancous rain-
rate national mosaic updated every Smin, (ii) the radar-only rain-rate national mosaic at
hourly time step, (iii) the hourly raingauge-corrected national mosaic product and (iv) the
RQL The primary Q2 product used for comparison with PR is the radar-only instantancous
rainrate mosaic. Current Q2 radar products do not include an instantancous gauge-adjusted
rainrate mosaic. For this study and similarly to Amitai et ol (2009; 2011), a second
reference rainfall was derived from the bias-corrected Q2 product by using the howrly gauge-
adjusted and the hourly radar-only products. Pixel-by-pixel hourly (multiplicative)
adjustment factors are calculated and applied to the radar-only instantancous product.
Extreme adjustment factors (outside the [0.1-10] range) are discarded and no comparison is
performed with PR for the corresponding Q2 values. Thus, the gauge-adjustment also serves
as a data quality control procedure. A subsequent reference is derived from the bias-
corrected Q2 product filtered using the RQI index. Only the rainrates associated with the
best ROT values (i.¢., equal to 1) were retained. This selection insures that only (2 estimates
presenting the best measurements conditions (i.e., no beam blockage and radar beam below
the melting level of rainfall) are retained.

One should note these incremental improvements of the Q2 products may not screen out
all possible errors in ground-based radar estimates. In particular, the gauge-adjustment may

suffer from representativeness errors from scarce raingauge network density and from the
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to the PR resolution preserves the statistical characteristics of the PR product including the
total rainfall amount, the total rainy area, and the PDF shapes. All of these propertics may
therefore be compared to the reference at once.

Figure 1 shows an example of continuous mapping of the weighted mean estimator for
the reference rainfall R (A). The estimator is a smoother of the original Q2 rain ficld. The

maximum of the rainfall rate decreases from 145 mm b to 130 mm h. The total rainfall
arca increases, mainly at the edges of the rainfield. In order to avoid a contamination of the
PR-reference comparison by the uncertainty on the ground reference, the reference pixels
were segregated into “robust” (RW >

- o <
) and “non robust” (R, < O ooiprint)

Ofootpv int
estimators. This procedure illustrated in Fig. 1 filters out the reference values at the edges of
the rain ficlds. Non-robust reference values are discarded for quantitative comparison. The
robustness check is applied to the three Q2 products considered for reference (native Q2,
bias corrected Q2, RQI+bias corrected Q2). As an example for the “RQI+bias corrected Q27

the averaged relative error (0, / Rmf) of the reference decreases from 832% to 16%. The

ratio of the mean error to the standard deviation of the reference (O / (1(Rmf)) decreases
slightly from 5.6% to 5.4%. This method of reforence selection therefore increases the
reliability and representativeness of the block-Q2 values that constitute our ground

reference.

¢l Precipitation Radar (PR) based rainfall

The PR measures reflectivity profiles at Ku band. Surface rain rates are estimated over
the southern US up to a latitude of 37°N (Fig. 1). Artifacts such as contamination by surface
backscatter, attenuation and extinction of the signal, brightband effects and aceuracy of the

Z-R relationship (Wolff and Fisher, 2008) must be accounted for. In the present study, the
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where notations have been simplified for the sake of convenience. Q2 denotes the Q2 rain
rate product for the mesh & . The value R(ex(A) depends on the number N of Q2 meshes
inside the PR footprint; the weights w are derived from the two-way normalized power-gain
function of the radar antenna f (assumed to be Gaussian) and the beamwidth 8 ; each @, is

computed over the domain 6 corresponding to the Q2 mesh &. It is assumed the PR

mesh
footprint remains constant (circle of approximately Skm) whatever the radar beam off-nadir
inclination angle. Additional research may be needed to take into account the deformation of
the footprint with off-nadir angle (Takahashi ct al, 2006).

Two weighted standard errors are computed with the reference rainfall. The first one is
the weighted sample standard deviation, which represents the variability of the Q2 rainfall

(at native resolution) inside the PR footprint:

\

Cootprint = 4| T v
vy -

i"’i (QZ(q)-Rw(A)r with V, = gw’ v, ni mf 4
et

7 (5

It is used to select the PR-reference pairs for which the R (A) is trustworthy. The second

one is the standard deviation relative to the weighted mean R_(A):

Oref =t Q‘(Q2<ai)-Rvel(A))2 (5)

sl

<<
9

It allows us to assess the R (A) estimation quality,

ref

Maiching PR and R _(A) estimates only exist at locations where both the PR and
ground radars have taken actual observations. This technique averages the minimum number
of Q2 meshes needed to produce spatially coincident sample R (A) estimates. The
advantages of the current technique over gridded approaches are that there is no

interpolation, extrapolation, smoothing or oversampling of PR data. Bringing the Q2 product



deviation from the 1:1 degree line compared to the whole distribution. The reference
distributions are fairly stable given the different censoring levels with the mean of the PR-
resampled distributions being within 7% of the one for the whole dataset. We may therefore
consider each reference dataset to be quite representative of the corresponding whole rainfall
distribution,

Similarly we compared the different PR datasets to assess the impact of censoring on
their representativeness. Figure 4 shows quantile-quantile plots between (i) the complete
(“Native™) PR data set (x-axis) and (i) the censored subsets according to the “Bias
corrected” and “Bias+RQI corrected” samples. Table 3 provides values of the conditional
mean and standard deviation for each set. The different PR rainfall distributions do not show
a clear deviation from the 1:1 degree line compared to the “Native” PR rainfall distribution.
The means and standard deviations of the “Bias corrected”-censored and “Bias+RQI
corrected”-censored distributions are less than 1% and around 10% higher respectively. We
may therefore consider the representativencss of each PR dataset, following censoring steps,

to be quite comparable to each other.

3. Rainfall data analysis

This section reviews the ability of PR rain retrievals to represent the rainfall variability
derived from the Q2 data. First, contingency tables provide information on the reference
rainfall rebiability and on the influence of PR sensitivity to detect rainfall occurrence, The
PDF of rainfall estimates provide in-depth information on the sensor’s global ability to
capture rain regimes given the influence of its sensitivity and the attenuation of the radar

signal. Another feature to compare is the spatial structure of rainfall fields.

surface rain rate at each PR footprint location is a standard TRMM product (2A25 v6)
described in Iguchi et al. (2000). The scan geometry and sampling rate of the PR lead to
footprints spaced approximately 4.3 km cross and along-track (5.1 after TRMM boost), over
a 215-km-wide swath. The minimum theoretical detectable rain rate by the PR is fixed by its

sensitivity and is about 17 dBZ, or ~0.5 mm h''.

d) Comparison samples

Several factors including rainfall imermittency, discrete temporal sampling of TRMM
and censoring of reference values for required quality reduce the number of comparison
samples for reference and PR estimates over the comparison period. Table 1 provides the
number of these samples for the reference values, inclusive and exclusive of non-rainy
pixels. The comparison sample sizes in Table | are primarily driven by the number of rain
events and the overpass frequency of TRMM, then by the censoring of reference values, The
quality control in the bias adjustment discarded 26% of original Q2 values and an additional
34% were filtered using RQL Note that after two levels of processing and censoring, the
comparison sample size for the “RQI+bias corrected Q27 remains significant at 393 347.
This is credited to the large number of samples offered by the high-resolution, gridded Q2
product.

To assess the representativeness of our spatially and temporally limited samples, we
compared the statistics of the reference rainfall resampled to the PR-pixel resolution with
respect to the whole reference dataset (CONUS-wide below 38N which don't necessary
match a TRMM overpass). Figure 3 shows quantile-quantile plots between (1) the whole
reference data set (x-axis) and (ii) the subset of pixels that matched to PR-pixel resolution
for the different reference datasets. Table 2 provides values of the conditional mean and

standard deviation. The PR-resampled reference rainfall distribution does not show a clear



volume. Note the lowest values (less than 89%) are obtained with the “Bias+RQI corrected
Q2" reference.

The impact of the reference rainfall on the contingency scores is shown in Figure 5.
Contingency values are used to compute probability of detection (POD), false alarm rates
(FAR}, and critical success index (CSI). Scores are generally better for the robust reference
than for the non-robust one. Within this category CSI shows a general increase with
sequential Q2 data quality steps, while the FAR shows the lowest values with additional
processing of the Q2 reference. A gencral convergence between the Q2 reference and PR
estimates 1s therefore acknowledged as a function of the reference accuracy.

Considering that 80% of the reference rain rates that are not detected by the PR are lower
than 03 mmh’, the sensitivity of PR is close to this value. The misses are probably
associated with high intermittency and/or the “rain/no rain” limits of rain fields. These
features are missed by the PR because the rainrates are close to the detection threshold. This
suggests that the PR can indeed capture the main rain regions but loses the weaker echoes

(Schumacher and Houze 2000), probably due to its sensitivity.

b) Probability distributions by occurrence and rain volume

Hereafter, the PR rain estimates are the conditional ones (positive rainfall) coincident
and collocated with nonzero reference estimates. Two PDFs for PR versus reference rainfall
are computed and shown in Fig. 6: (i) the PDF by occurrence (PDF.) and (ii) the PDF by
rain volume (PDF.} (Wolff and Fisher, 2009; Amitai e o, 2009-2011). The PDF, provides
statistical information on the rain rate distribution and highlights the estimate’s sensitivity as
a function of minrate; it is computed as a ratio between the number of the rainrates inside
¢ach bin and the total number of rainrates. The PDF, represents the relative contribution of

each rainrate bin to the total rainfall volume; it is computed as a ratio between the sum of the

6

a) Contingency lables

Table 4 shows the contingency tables for PR rain/no rain occurrence relative to the
references with percentile of hits (H; both Q2 and PR detect rain), misses (M; PR does not
detect rain while Q2 does), false alarms (F; PR detects rain while Q2 does not), and correet
rejections (C; both Q2 and PR do not detect rain). The reference data are separated into three

sub-samples: the non-robust set (R, < o see scction 2b), the robust set (R . >

footprist ©

(T,ompnm) and the “whole™ Q2 set. Reference null values are considered as robust. All

coincident and collocated PR values are considered and sorted according to the reference
samples. Table 5 provides the mean rainfall valucs according to the same contingency tables
with PR on the left hand side of the /" sign and the reference on the right hand side.

The false detections (M + F) of PR are mainly associated with the non-robust reference
data; more than 80% for all “non-robust sets™, while around 50% are improperly classified
when using the “valid” reference data set. The Misses (M) are the main contributors to the
false detection population (e, approximately 85% for the “whole” data set). These Misses
of PR are coincident with low reference values (less than 0.15 mm b for the non-robust set
for all references; sce Table 5). By comparison, the correct detections (H + C) of PR are
mainly associated with the robust reference set from 45% to 52%. For the same robust
reference sets, the Hits of PR are coincident with the higher reference values with mean
rainfall rates more than 6 mm h™. One should note for all references that (i) the mean PR (F)
values are significantly lower than the PR (H) values, and (i1) the mean reference (M) values
are significantly lower than the mean reference (H) values. Finally both mean reference and
PR valucs are higher for the robust Q2 set than for the non-robust Q2 set. Table 6 shows the
discarded rain volumes in question; the Misses of PR represent less than 12% of the

reference rainfall volume, while False Alarms represent less than 16% of the PR rainfall
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simple function, we use a normalized variogram, which represents the spatial correlation of
the rain field (Journel and Huijbregts 1978; Lebel ef ol 1987; Kirstetter ef al. 2010; 2011).
An appropriate model is fit to the empirical normalized variogram. Among the set of

classical models, the exponential model was found most suitable. It is expressed as:
v{h)=¢, +(c-C,)|1-exp| -1 ©
d

where the three parameters are the nugget (C0 ), the sill (C) and the variogram range

parameter (d). The exponential model reaches its sill asymptotically as h —»w. The
“effective range™ corresponds to the mean decorrelation distance of the estimates. It is the
distance where the variogram reaches 95% of its maximum and corresponds to 3d for the
exponential model. The nugget parameter can be used to describe a possible discontinuity of
the variogram at the origin which may be due 1o (i) the process variability at scales poorly
resolved by the observation system and/or (it) measurement crrors, In the following, these
parameters are used to characterize the structure of rainfall.

Spatially normalized variograms of references and PR estimates arc displayed in Fig. 7.
Table 7 summarizes the paramcters of these variograms, The variogram ranges of PR are
quite similar to the three references” (approximately 18km). The nugget values, however, are
more distinet. While it is ~ 32% for the Q2 references, it is significantly higher for PR
(approximately 45% of the sill). These decorrelations of spatial structure at short
interdistances suggest the resolution of the PR measurements may be limited when sampling
the variability of small, disorganized rainfall structures associated with localized convection.
The smaller reference nugget is an indication of the better sampling of the rain field by the
reference rainfall, an issue previously discussed in section 2b. The comparatively higher
nugget with PR may be caused by the rain intermittency, contamination by surface

backscatier, attenuation of the signal, brightband effects or inaccuracy of the Z-R
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rainrates inside each bin and the total sum of rainrates. It is therefore an important
characteristic of the instantaneous products from the perspective of building merged rainfall
accumulations; it cnables a comparison of PDFs based on estimates derived from
instruments characterized by different detection limits (in particular at weak intensities).

The rainrates of PR exhibit similar PDE, for all references. Compared to references’
PDF,, PR tends to overestimate light rain rates (~[0.3-0.5] mm h'). But, PR demonstrates
poor detection of the lightest rain rates (below ~0.3 mm by compared to the two bias
corrected references, This is coherent with the concept of rain area “edges™ that might be
only partially detected by PR, resulting in misses associated with low rain rates {se¢ previous
section). PR PDF, presents similar features with references for vain rates ™ ~1 mm b One
may note the improved convergence between PR and reference rainfall PDF, in the rain rates
interval [0.5-1.0] mm h™' with the sequential Q2 data quality steps.

Despite the low occurrence of relatively high rain rates (> 10 mm.h™, their contribution
1o the total rainfall volume is significant (greater than 60 %). As a consequence, the mode of
PDF, for PR is shifted toward lower rainrates (~18 mm h) compared to the reference’s
mode {(~60 mm h™"), in agreement with the results found in Amitai e al. (2006, 2009). This
is attributed to high rainfall rates (> 10 mm.h™), which are evidently underestimated by PR
because insufficient correction due tw attenuation losses as suggested by Wolff and Fisher

(2008) for the 2A25 version 6,

¢} Space structure of estimated rainfall fields

For hydrological applications, the total amount of water over a basin as well as the
location and spatial correlation within the catchment might be important. It is therefore
relevant to assess the ability of space-based estimates to retrieve the spatial structure of

rainfall fields as seen by the reference. In order to describe the structure by a relatively
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the radar). The gauge-based bias correction of the native Q2 product decreases the mean
reference values, so the negative bias of PR is apparently improved. The additional RQI
filtering removes the underestimation of Q2 at far range so the bias of PR is degraded. The
reference shows higher standard deviation than the PR in coherence with the PDF features
presented in seetion 3b.

The correlation coefficients between PR and Q2 refercnce estimates are moderate
(around 0.6). One could note the best correlation between the two sensors is achieved with
the “Blas+RQI corrected” reference. The differences between the two products on a point-
to-point comparison basis can be attributed to sample volume discrepancies, timing and
navigation mismatches and the uncertainties in the respective rainfall estimates. The
significantly greater nugget in the PR variogram than in the reference variogram is also an
ndication of the greater fevel of noise in the PR rain field spatial structure, which may limit

the correlation between the two series on a point-to-point comparison.

b} error model

The departures of PR estimates from the references are analyzed in this section on a
poini-to-point basis. The uncertainties associated with satellite estimates of rainfall include
systematic errors as well as random effects from several sources (Yang et al., 2006
Kirstetter et ¢4, 2011). There 15 a fundamental issue in segregating the proportion of the
scatter due to purely random error and the proportion due to conditional biases of the PR
estimates that may be either positive or negative, producing additional scatter.

With the true rainfall being unknown, the residuals are defined as the difference
e ={R~R_) between the reference rainfail ‘(R

} and the satellite estimates (R ). Only

raf ref

pairs for which Rmf and R are both nonzero are considered in the calculations in order to

emphasize the PR ability to quantify precipitation where it is raining. The sets of ¢
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relationship. An interesting feature is that both sensors present a slightly decreasing nugget
with the sequential Q2 data quality steps. This feature could be attributed to the censoring of

the reference, which filters out complicated sampling situations for the ground-based radars.

4. Quantitative error modelling

a} Correlations and biases

Scatterplots of PR versus reference rainfall are presented for the three sets of Q2
reference in Fig. 8. Classical performance criteria of satcllite-based rainfall estimation
compared to reference values are listed in Table 8: correlation coefficient and mean relative
error  (MRE), expressed in percentage and  defined as MRE = (PR _mean -
Ref mean)yRef mean. The comparisons between the PR and reference estimates are
assessed on a point-to-point basis. A rainy pixel is included in the statistics if both PR and
the reference are nonzero to emphasize the PR ability to quantify precipitation when it is
raining. This is particularly significant given the significant misses of PR

The two sensors present coherent mean and standard deviation values as long as the
representativeness of the comparison samples are kept in mind. As expeeted, the means of
the three PR sets are quite similar. In all cases the PR underestimates the reference mean
values by ~17%. This is once again attributed to the significant underestimation of the higher
rainrates in the 2A25-v6 products, presumably due to attenuation losses. The variations of
the reference mean for the three sets explain in large part the variations in the apparent bias
of PR relative 1o the reference. The native reference set is affected by (i) a global
overestimation of rain rates, which could be due to the inaccuracy of the Z-R relationship
and (ii) an underestimation of rain rates linked to partial beam blockage and vertical profile

of reflectivity effects (i.c., overshooting above the melting laver by the radar beam far from
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Several two-parameter density functions (log normal, normal, reverse gumbel, logistic,
gamma, eic.} have been tested to fit the data. The distributions of residuals (not shown here)
were generally found to be unimodal and asymmetric. The goodness-of-fit on the whole

dataset has been checked by investigating the Akaike information criteria (AIC) for the each

semi-parametric density fits. The reverse Gumibel distribution
1} {e~n TS . .

(f(e)ﬂ et L @XP{ =] e 1), where e is the mean and o the standard deviation
&4 o ¢

of the residual population) was found to be the most appropriate. Figure 9 shows the

residuals as a function of R, as well as the fitted GAM model for PR in the representative

3
case of the "Blas+RQI corrected” reference. The conditional PDF of residuals & present a
high conditional shift versus the 0 line and a high conditional spread. Note that for R >
~50mm.b7, the model is quite undetermined because of the lack of observed residuals. All
models show that PR presemt a tendency to overestimate light rain rates (the median of
residuals is positive) and underestimate higher rain rates (negative median of residuals): e.g.
PR underestimates R = 20 mmb' rain rates with an occurrence of 70% and with a

representative bias of -7 mmh™ and underestimates R =40 mm.h”' with an occurrence of

92% and with a representative bias of -24 mm.h™'. This is likely to be once again due to the
msufficient correction of PR attenuation for heavier rain rates.

In case of a non-symumetric density for residuals or in case of extreme values, the median
1s preferred to the expectation for a better representativeness of the systematic component of
the residuals. The systematic error component (i.e. conditional bias) is therefore described
by the conditional median of these distributions. For the same reason we consider the
interquantile (g90-q10) value to assess the random part of the error. It is computed after

having applied the error separation variance correction to the conditional standard deviation
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distributions are studied using the generalized additive models for location, scale and shape
(GAMLSS, Rigby and Stasinopoulos 2005) technique. As a preliminary step, R o 18
considered as the main driving (explanatory) variable conditioning the departures of PR
estimates from references.

Generalized lincar models for location, scale and shape aim at modeling the parameters
of a response variable’s distribution. Two main assumptions are made: (1) the response

variable ¢ is a random variable following a known parametric distribution with density
f(e |1, o) conditional on the parameters (u,0); (2) the observations & are mutually
independent given the parameter vectors (u, o). Each parameter is modeled as a function of

Rref (the explanatory variable) using monotonic (linear/non-lincar or smooth) link

functions. More details are provided by Rigby and Stasinopoules (2001, 2005),
Akantziliotou, Rigby, and Stasinopoulos (2002) and Stasinopoulos and Rigby (2007). A
wide variety of distributional forms are available, but for the sake of simplicity and to
distinguish between systematic and random errors, a number of conditional densities with
the first two moments (the location p - mean, to be linked on to systematic errors - and the
scale o - standard deviation representative of random errors) as parameters are considered
here. For a given conditional distribution of the response variable, the conditional quantiles
can be expressed as a function of the location and scale. GAMLSS is best finted using the
package gamlss in R (Stasinopoulos and Rigby 2007). The rainfall trends for each parameter
are fitted using locally weighted scatterplot smoothing (Joess), which are more flexible than

polynomials or fractional polynomials for modelling complex nonlincar relationships. It is a

polynomial curve determined by R, which is fitted locally by weighted polynomial

ref
regression, giving more weight to points near the point whose response is being estimated

and less weight to points further away (sec Cleveland, Grosse, and Shyu 1993).
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conditional bias is less significant), which could be seen as a sign of a better convergence
between PR estimates and this Q2 reference. This is confirmed when considering the random
part of error. The “Bias+RQI corrected” curve shows the lowest random errors up to R =
4mm b’ (more than 65% of the reference rain rates are under this value). The random error
increases consistently with Rmf . It is systematically higher for the “Bias corrected” than for
the “Native™ reference, a result consistent when applying a bias correction (Ciach er al.
2000). Tt represents a significant part of error, suggesting that other factors than Rref could

be considered 1o evaluate the error of PR rain rate estimates at ground.

5. Conclusions

In preparation for NASA's future Global Precipitation Measurement (GPM) mission, a
three-month data sample of TRMM-PR-based rainfall products have been compared to
surface rainfall derived from Q2 over the lower conterminous US. The major advantage of
the Q2 ground-based reference dataset is its resolution in both time and space commensurate
with rainfall estimates derived from sensors onboard low-carth-orbiting satellites. The
comparisons have been performed at the PR-pixel resolution. A framework is proposed
herein to address methodological issucs so as to provide a preliminary version of an error
model for satellite QPEs. The error model is empirically derived and is thus prone to be
specific to the dataset considered and the PR/Q2 data processing implemented. However, the
resulis show similaritics with previous rainfall comparisons over West Africa (Benin and
Niger) and thus give eredence to the developed framework (Kirstetter ef of. 2011). Results

from the error model presented herein provide insights into the most significant

22
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o extracted from the GAM model. The error separation variance concept (Ciach and
Krajewski, 1999; Teo and Grimes, 2007, Kirstetter ef al. 2010) makes it possible to evaluate
the variance of the PR with respect to the true unknown rainfall. We assume the errors on the

reference rainfall and on the PR estimates to be uncorrelated. Introducing the true rainfall

Rhw in the expression of the variance of the residuals between the PR and reference values

feads to (see Kirstetter ef al. 2010 for details):

oRR,,,) = Jvar) -, %)
Fortunately as can be seen in Figure 10, the reference estimation standard deviations are
lower than the standard deviations of the PR-reference residuals, indicating the reference
values 0 be comparatively reliable to evalvate PR. The standard deviation of the PR
residuals with respect to the true rainfall is significantly reduced compared with the PR~
reference residual standard deviation. One may note the standard deviations increase up to a
reference value (~50 mm.h™) beyond which we believe sampling issues lead to a
stabilisation or a decrease of the standard deviations. We therefore apply the modelling up to
this Himit only. As ~98% of the reference values are under his limit, this choice won't lead to
any significant lack of representativeness.

Figure 10 shows the conditional biases and random errors of PR relative to the three Q2
references. The global bias (sec previous section and Table 8) of PR results from a balance
between overestimation of light rainrates and underestimation of high rainrates. The
underestimation is more frequent, inducing a global negative bias. The conditional biases of
PR relative to the references are quite similar. Note the “Bias corrected” conditional bias is
shified to the right compared to the “Native™ one, so overestimation of light rainrates is more
significant and the underestimation of higher rainrates less pronounced, consistently with the
reduced negative global bias for this specific reference (see Table 8). Note also the negative

slope of the “Bias+RQI corrected” conditional bias is lower than for the two other (the

21



other sensors onboard low-carth-orbiting satellites (i.e., TMI, AMSR-E, SSMI, MADRAS).
This framewaork will also be applied to GPM rainfall estimates following its launch in 2013.
Another important issue to study is how the various error sources in PR, which is ofien used
as a calibrator, propagate when merging with geostationary infrared data for a number of

satcllite-based, high-resolution precipitation products.
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characteristics of PR rainfall retrieval errors that need to be taken into account when such
data are used in applications.

A consistent result poted throughout each analysis was the increased consistency
between PR and the Q2 reference following sequential data quality control steps including
bias correction using rain gauges and filtering using the radar guality index (RQI) product,
This finding, alone, highlights the importance of matching the scales and refining the
accuracy of the reference dataset as much as possible before reaching meaningful
conclusions about the PR accuracy.

Different error sources were identified and quantified for PR rainrate estimates. The
most significant error is most likely due to the attenuation of the PR radar signal. It is not yet
known if this error is due to inadequate correction for attenuation losses or complete loss of
the signal. Segregating rain from no-rain boundaries is also a driving contributor to the PR
rainrate errors, probably linked to the lack of sensitivity in the most inhomogencous and
light parts of the edges of rainy regions. Nevertheless, the variogram analysis showed that
the PR adequately represents the spatial structure of the rain fields. The scatterplots revealed
PR-cstimated rainrates are only moderately correlated (Pearson correlation coefficient of
0.6) to the best reference rainfall on a point-to-point basis,

The statistical model developed here quantifies the relation between instantaneous PR
rainfall and the corresponding reference rainfall. 1t consists of a deterministic additive
function and a random uncertainty component, both conditioned on given reference values,
The contribution of systematic PR errors is confirmed to be quite large due to the
aforementioned signal attenuation issue.

In terms of perspectives, the relative contributions of errors linked to ramfall type and
off-nadir angle need to be evaluated, as well as influence of the underlying terrain, The same

framework and reference rainfall datasets can be readily applied to rainfall retrievals from
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Table captions

Table 1. Comparison samples for different reference datasets.

Table 2. Conditional mean and standard deviation of “whole” and *“PR-resampled”
references datasets.

Table 3. Conditional mean and standard deviation of PR estimates for different references.
Table 4. Contingency table for PR relative to the three references. The results are provided
for robust / non robust reference data according to a criterion based on the varfability of the

)

Q2 rainfall (at native resolution) inside the PR footprint (Rref P O rorint

Table 5. Mean rainfall values associated to the contingency table for PR / references.

Table 6. Discarded rain volumes from PR due to misses relative to references and rain
volume implied in the false alarms relative to robust references,

Table 7. Parameters of the normalized variograms (exponential model) for references and
PR. The “effective range™ values are indicated. The nugget is expressed as a percentage of
the normalised sill,

Table 8. Performance criteria values for PR cstimates: mean, standard deviation, mean
relative error (MRE) and correlation (R) with respeet to references. Only the reliable Q2 data

are kept (sce section 2.b) for references.
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Figure % Scattergraphs of PR versus native (a), bias corrected (b) and BiastRQI
corrected(c) reference rainfall (mm h™"). The first bisectors (solid lines) are displayed.

Figure 9; PR residuals represented versus “BiastRQI corrected” reference (left) and the
GAM model fitted s represented by [5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95] conditional
quantile lines (right).

Figure 10: Standard deviation of PRereference residuals (dashed line), estimated standard
deviation of the reference rainfall (dotted line) and standard deviation of PR-true rainfall
residuals (solid line) as functions of the “Bias+RQI corrected” reference. The vertical line
(50 mm.b") indicates the limit of the good sanpling conditions.

Figure 11 Conditional bias (median) of residuals (left) and conditional random error
(imerquantile 90%-10%) of residuals (right) for PR as a function of “Native” {dotted line),

“Bias corrected” (dotted line) and “Bias+RQI corrected” references.
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Figure captions

Figure 1: Map of CONUS area with NM(Y/Q2 instantancous rainrates at 0725 UTC on 07
April 2011. The red area shows the good quality radar coverage corresponding to Radar
Quality Index equal to 1. The shaded area is not sampled by the TRMM-PR.

Figure 2: Maps of instantancous rainrates at 0725 UTC on 07 April 2011: the NMQ-Q2
product (top left), the equivalent reference rainfall R (top right), the “robust” reference set
(bottom left) and the “non robust” reference set (bottom right), ‘

distribution comparison, for native (a), bias corrected (b) and Bias+RQl corrected (c)
references. The positions of 10, 50 and 95 percentiles are showed for each distribution.

+

Figure 4; Quantile-quantile plots for reference “PR-sampled” and “Whole” rainfall
distribution comparison, for native (4), bias corrected (b) and Bias+RQI corrected (¢)
references. The positions of 10, 50 and 95 percentiles are showed for each distribution.
Figure 5; Critical success index (CSI), probability of detection (POD) and falsc alarm rates
(FAR), and for the three references and partitioned as a function of robustness.

Figure 6: Probability distributions of rain rates the PR rainfall and for the native (&), bias
corrected (b) and Bias+RQI corrected (¢) reference rainfall. The solid and dashed-dotted
lines represent the distribution by volume PDF, and the distribution by occurrence PDF.
respectively, while the grey and black lines represent the distributions for references and PR
respectively. Note that the x-axis is in log-scale.

Figure 7: Spatial variograres for reference (lefty and PR (right) for the native (top), bias
corrected (middle) and Bias+RQI corrected (bottom) reference. The empirical variograms

are plotted with crosses, and the models fitted are represented by the thick black Iines.
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caf footprint

TABLE 4. Contingency table for PR relative to the three references. The results are provided

for robust / non robust reference data according to a criterion based on the variability of the

).

PR Native Q2
Estimates =0 =0 £ estimates
| wholeset | g, 6% 320715
E A robust 45 % 15% 251175
non robust 12% 0% 69340
whole sct 67 % 0.% 664220
={J, robust 40 % 0. % 167986
non robust 88 % 0. % 496234
whole set 921758 63177 984935
X reference robust 355984 63177 419161
. 545774 0 565774
non robust
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TABLE 1. Comparison samples for different reference datasets.

non-rain

Including

Ommh™)

Rainy only

Native Q2

35349900 | 984 598

Bias corrected Q2

35 342 653 723 495

Bias+RQI corrected Q2

35342653 | 393347

TABLE 2. Conditional mean and standard

references datasets.

deviation of “whole” and “PR-resampled”

PR resampled dataset | Whole reference data set
Mean St. dev. Mean St. dev.
Native Q2 1.64 6.55 1.57 6.30
Bias corrected Q2 2.00 6.99 1.95 6.84
Bias + RQI
1.98 7.26 213 7.37
correctd Q2

TABLE 3. Conditional mean and standard deviation of PR estimates for different references.

Mean Standard deviation |
Native Q2 4.21 6.91
Bias corrected Q2 4.24 6.94
Bias+ROI corrected Q2 4.65 7.47
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TABLE 5.

Mean rainfall valucs associated 10 the contingency table for PR / references.

PR Native Q2
Estimates =0,
whole set |4 65/5.06 2.41/0.00
> Q. robust 5.07/6.21 2.41/0.00
non robust 350197 °
wholeset | 0.00/0.31
={). robust 0.00/0.92 -
non robust 0.0070.10
PR Bias corrected Q2
Estimates >0, = 0.
| wholeset | 4837471 2.28/0.00
> Q. robust 538/607 2.28/0.00
non robust 3.61/1.73 h
| wholeset 1 0007038
=), robust 0.00/1.05 -
non robust | 0.0070.14
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PR Bias corrected Q2
Estimates >0 = {}, X estimates

whole set 34% 10% 316941

>0, rabust 48 % 21 % 240223
i 20% 0% 76260

non robust

whole set 56 % 0% 406610

0. robust 31 % 0. % 108218
4, 4, <@ 24

ron robust 80 % 0.% 298392

whole set 650567 72984 723551

¥ reference robust 275915 72526 348441
o robust 374652 0 374652

PR Bias+RQI corrected Q2
Estimates >0 = . X estimates

whole set 32% 3% 137978

> 0. robust 52 % 7% 94533

N ;

non robust 18% 0% 43178

whole set 65% 0.% 254921

=), robust 41 % 0. % 64620
on robust 81 % 0. % 190301
whole set 380087 12812 392899
T reference robust 146608 12545 159153

2

o robust 233479 0 233479
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PR BiastRQI corrected Q2
TABLE 7. Parameters of the normalized variograms (exponential model) for references and Estimates - 0. = Q.
PR. The “effective range” values are indicated. The nugget is expressed as a percentage of ol
whole set
the normalised sill. 49273545 207/0.00
>0, robust 5.60/7.27 2.07/6.00
non robust 3637201 N
Reference PR
whole set 94
Nugget | Range | Nugget | Range 0007028
(Y sill) | (km) | (%sill) | (km) =(, robust 0.60/0.74 -
non robust 0.00/0.12 J
Native 34 % 17 48 % 16 i
B 2
Bias corrected 32% 5 48 % 16
3
Bias+RQI corrected | 31.5 % 15.5 45 % 15

4 TABLE 6. Discarded rain volumes from PR due to misses relative to references and rain

5 volume implied in the false alarms relative 1o robust references,

TABLE 3. Performance criteria values for PR estimates: mean, standard deviation, mean Nai R Bias corrected Bias + RQIL
relative error (MRE) and correlation (R) with respect to references. Only the reliable Q2 data Hasive Q2 @ correetd Q2
are kept (see section 2.b) for references. Exc‘;;?;l(;fdr ?:‘“g;;‘:m‘e 1370 % 15.45 % 5.36 %
Alarms
PR Native Bias corrected Bias RQL Discarded rain volume
corrected due to Misses 11.70 % 10.07 % 7.46 %
Reference PR Reference PR Reference PR 6
Mean 6.20 3.07 6.07 5.38 7.27 5.6 7
N standard deviation 12.53 7.80 12.04 8.03 13.76 8.26 8
MRE / reference (%) - -18 % - -1 % - -23% 9
Correlation / reference - 0.61 - 0.6 - 0.64 10
11
12
13
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130'W 120'W 110°W 100'W  80'W 80'W  70'W  60'W

Figure 1: Map of CONUS area with NMQ/Q2 instantancous rainrates at 0725 UTC on 07
April 2011, The red area shows the good quality radar coverage corresponding to Radar

Guality Index equal to 1. The shaded area is not sampled by the TRMM-PR.
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Figure 3: Quantile-quantile plots for reference “PR-sampled”

distribution  comparison, for native
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and “Whole” rainfall

(a); bias corrected (b) and Bias+RQI corrected (c)

references. The positions of 10, 50 and 95 percentiles are showed for each distribution.
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Figure 2: Maps of instantancous rainrates at 0725 UTC on 07 April 2011: the NMQ-Q2

product (top left), the equivalent reference rainfall R, (top right), the “robust” reference set

(bottom lefl) and the “non robust” reference set (bottom right).
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Figure 4; Quantile-quantile plots for reference “PR-sampled” and “Whole” rainfall
distribution comparison, for native (a), bias corrected (b) and BiastRQl corrected (c)

references. The positions of 10, 50 and 95 percentiles are showed for cach distribution.
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Figure 7; Spatial variograms for reference (left) and PR (right) for the native (top), bias
corrected (middle) and Bias+RQT corrected (bottom) reference. The empirical variograms are

plotted with crosses, and the models fitted are represented by the thick black lines.
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Figure 6; Probability distributions of rain rates the PR rainfall and for the native (a), bias
corrected (b) and Bias+RQI corrected (¢) reference rainfall, The solid and dashed-dotted lines
represent the distribution by volume PDF, and the distribution by occurrence PDF.
respectively, while the grey and black lines represent the distributions for references and PR
respectively, Note that the x-axis is in log-scale.
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Figure 9: PR residuals represented versus “Bias+RQI corrected” reference (left) and the

GAM model fitted is represented by [5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95] conditional

quantile lines (right).
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reference rainfall (mm.h™). The first bisectors (sohid lines) are displayed,
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Figure 11: Conditional bias (median) of residuals (left) and conditional random error

(interquantile 90%-10%) of residuals (right) for PR as a function of “Native” (dotted

line), “Bias corrected” (dotted line) and “Bias+RQI corrected” references.
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. Standard deviation of PR-reference residuals (dashed line), estimated standard
deviation of the reference rainfall (dotted line) and standard deviation of PR-true rainfall
residuals (solid line) as functions of the “Bias+RQI corrected” reference. The vertical line

(50 mm.h") indicates the limit of the good sampling conditions.
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