Optimal Feedback Control of Thermal Networks

A systematic approach to design
has been devised.

An improved approach to the mathemat-
ical modeling of feedback control of thermal
networks has been devised. Heretofore
software for feedback control of thermal net-
works has been developed by time-con-
suming trial-and-error methods that depend
on engineers’ expertise. In contrast, the pre-
sent approach is a systematic means of
developing algorithms for feedback control
that is optimal in the sense that it combines
performance with low cost of implementa-
tion. An additional advantage of the present
approach is that a thermal engineer need
not be expert in control theory.

Thermal networks are lumped-parameter
approximations used to represent complex
thermal systems. Thermal networks are
closely related to electrical networks com-
monly represented by lumped-parameter
circuit diagrams. Like such electrical circuits,
thermal networks are mathematically mod-
eled by systems of differential-algebraic
equations (DAEs) — that is, ordinary differ-
ential equations subject to a set of algebraic
constraints. In the present approach,
emphasis is placed on applications in which
thermal networks are subject to constant
disturbances and, therefore, integral control
action is necessary to obtain steady-state
responses.

The mathematical development of the
present approach begins with the derivation
of optimal integral-control laws via mini-
mization of an appropriate cost functional
that involves augmented state vectors.
Subsequently, classical variational argu-
ments provide optimality conditions in the
form of the Hamiltonian equations for the
standard linear-quadratic-regulator (LQR)
problem. These equations are reduced to
an algebraic Riccati equation (ARE) with
respect to the augmented state vector. The
solution of the ARE leads to the direct com-
putation of the optimal proportional- and
integral-feedback control gains.

In cases of very complex networks, large
numbers of state variables make it difficult to
implement optimal controllers in the manner
described in the preceding paragraph.
Therefore, another important element of the
present approach is consideration of decen-
tralized control (that is, the use of nominally
suboptimal controllers, each affecting only
part of the network). Numerical tests of an
algorithm that computes feedback gains for
decentralized control have shown that the
performances of the decentralized con-
trollers are comparable to the performances
of the corresponding optimal controllers (see
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The Time-Dependent Offsets of Four Nodes of a 9-node network were computed in a numerical
test of optimal- and decentralized-control laws. Both control laws yield smooth temperature histories,
without oscillations or large overshoots, and both require about the same amount of time to achieve
nearly zero offset (where offset as used here signifies the difference between the actual and desired

temperatures of a given node).

figure). In particular, it was observed that
decentralized controllers might require a little
more energy than their optimal counterparts;
however, this is a small price to pay for the
simpilification of controller structures that can
be achieved. Further, the lower cost of
implementation of much simpler feedback
loops in decentralized control outweighs the
extra amount of energy that decentralized
controllers might require.

This work was done by Miltiadis
Papalexandris of Caltech for NASA’s Jet
Propulsion Laboratory. further infor-
mation is contained in a TSP [see page 1].

This software is available for commer-
cial licensing. Please contact Don Hart of
the California Institute of Technology at
(818) 8393-3425. Refer to NPO-30354.
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