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Brief summary: 

Based on the 20th century atmospheric reanalysis, winters with more frequent blocking, in 

a band of blocked latitudes from Greenland to Western Europe, are found to persist over 

several decades and correspond to a warm North Atlantic Ocean, in-phase with Atlantic 

multi-decadal ocean variability.   



  

  

Atmospheric blocking over the northern North Atlantic, which involves isolation of large 

regions of air from the westerly circulation for 5 days or more, influences fundamentally 

the ocean circulation and upper ocean properties by impacting wind patterns. Winters 

with clusters of more frequent blocking between Greenland and western Europe 

correspond to a warmer, more saline subpolar ocean. The correspondence between 

blocked westerly winds and warm ocean holds in recent decadal episodes (especially, 

1996-2010). It also describes much longer-timescale Atlantic multidecadal ocean 

variability (AMV), including the extreme, pre-greenhouse-gas, northern warming of the 

1930s-1960s.  The space-time structure of the wind forcing associated with a blocked 

regime leads to weaker ocean gyres and weaker heat-exchange, both of which contribute 

to the warm phase of AMV.   



 

The climate of the global oceans undergoes natural variability with many time-

scales, as well as greenhouse-induced change.  We discuss the relationship between 

periods of warm subpolar ocean and patterns of blocking in the atmospheric circulation 

above in the North Atlantic sector.   Blocking occurs when the high-latitude jet stream 

develops large, nearly stationary meanders, essentially breaking Rossby waves with 

precursors upwind, over North America. These trap an air mass equatorward of an 

anticyclonic pressure ridge.  We show here that clusters of frequent blocking over the 

subpolar North Atlantic coincide with warm and saline ocean in the 1960s, late 1970s and 

early 2000s (1).    Further back in time,  a new reconstruction of surface atmospheric 

pressure field for the entire 20th Century (2,3) encompasses the most dramatic climate 

event of the Century: the pre-greenhouse-gas northern warming that began in the 1920s 

and lasted until the 1960s.  Sea-surface temperatures (SST) of the North Atlantic also 

show this wide spread warming while the South Atlantic Ocean is cooler than normal.  

This longer time-scale variability is known as Atlantic Multidecadal Variability (AMV, 

or Atlantic Meridional Oscillation, AMO)(4,5).  AMV has been linked to many multi-

decadal climate processes: Atlantic hurricanes, NE Brazil and Sahel rainfall, North 

American and European summer climate (5-7).   We show below that warm ocean and 

frequent atmospheric blocking coincide, over multidecadal AMV timescales.  More than 

a local response to the atmosphere, invasions of warm ocean water northward from the 

subtropics, extending well below the surface, are involved (1,8). 

Atmospheric blocking involves shifts in Atlantic storm tracks lasting several days.  

Blocking over Greenland is associated with the negative phase of the North Atlantic 



Oscillation (NAO) and a southward shift of the storm track (9) (Fig. S1).  The blocking 

also occurs further east over western Europe with an anticyclone over the northern 

subpolar gyre (Fig. S2).  Such blocking is accompanied with cold winter temperatures in 

western Europe, for example winters 2005/06 (10), and 1963 and 2009/2010 (11).  The 

climatological maximum in winter blocking days is located over western Europe with a 

secondary maximum over Greenland connected by a ridge of increased blocking (Fig. 

S3), if blocking is defined by absolute geopotential height index (12; which is an 

extension of 13; 14).   Thus the east-west location of Atlantic blocking anticyclones 

varies, but in 61 of 110 cases investigated in (9),  European blocks immediately precede 

Greenland blocks.  

Changes in the storm track impact the ocean circulation through surface wind-

stress and wind-stress curl.  Wind-stress curl causes downward (in the subtropics) or 

upward (subpolar) pumping of surface waters,  driving the circulation gyres.  The 

particularly strong episode of subpolar warming and salinization in the early 2000s was 

associated with weakening of wind-stress curl, hence weakened gyre circulation, and 

decreased heat loss over the subpolar Atlantic (1).  And indeed, the long decline of 

subpolar gyre surface currents from 1994 to 2000 revealed by satellite altimetry (15) 

corresponds with a weakening wind-curl field.  

Indices of wind-related climate variability are based on Empirical Orthogonal 

Function (EOF; (14)) analysis of the winter (December-March) wind-stress curl, using 

the recently produced 20th century reanalysis (and the 60-year NCEP/NCAR Reanalysis 

for comparison). Both datasets give essentially the same spatial EOF patterns and 

amplitudes shown in Fig. 1a.  EOF1 has an extremum west of Ireland, centered on the 



boundary between the subpolar and subtropical ocean gyres,  and its time series (principal 

component, PC, in Fig. 1b) correlates highly with the NAO-index. EOF2 (Fig. 1a) has 

extrema co-located with the ocean gyres and its time series, PC2, is shown Fig. 1b.  

EOF2 represents weakening and strengthening the climatological-mean pattern and hence 

the strength of the gyre circulation. PC time series from NCEP/NCAR reanalysis data for 

the latter half of the century follow closely the 20th century reanalysis results.  

 

For the recent decades, 1960-2005, the PC2 time series of the wind stress curl was 

found to be the key index associated with the saline and warm periods in the northern 

North Atlantic Ocean because it controls the expansion/contraction and strength of both 

subpolar and subtropical gyres (1). With a longer atmospheric reanalysis we can now 

address climate regimes associated with the SST variability such as the AMV focusing on 

the wind stress curl PC2 of the EOF analysis. To highlight the North Atlantic climate 

regimes we computed sea level pressure (SLP), blocking, and turbulent heat-flux 

anomalies based on composited differences between negative and positive events in wind 

stress curl PC2 (>1 standard deviation)  (14).  All analysis results displayed are based on 

the 20th century reanalysis data. 

 

The number of wintertime blocking days (from December to March) was 

determined from the ensemble-mean daily 500hPa height data.  The mean annual 

blocking days over a decade (Fig. 2a)  use the definition (12) based on north-south 

dynamic height gradient at 500hPa over the latitude range 34N-74N at each longitudinal 

grid point in the Atlantic sector, and requiring persistence of  5 or more days (14). The 



20th century reanalysis tends to overestimate blocking days in the latter half of the 

century compared with the NCEP/NCAR in the overlapping period (Fig. S4).  However 

the temporal and spatial fluctuations are similar,  such as wide-spread blocking activity in 

the 1960s and 2000s, weak blocking in the 1980s and 1990s, and two centers of activity 

in the 1950s.   NCEP/NCAR Reanalysis singles out the late 1960s as the most unusual 

period with persistent blocking at every longitude between western Europe and 

Greenland (Fig. S5).  Despite the differences between the reanalyses, some decades 

display more blocking activity than others (Fig. 2a).  The warmest periods occur in the 

North Atlantic Ocean when increased blocking occurs over the Western Europe and has 

an extension towards Greenland,  i.e., 1920-1970, and after 2000.   This association is 

evident in the time series of blocked days in the subpolar Atlantic (Fig. 2b) and AMO-

index of subpolar ocean surface temperature  (as in (7, 14)), with and without the trend 

removed.   The difference between full and detrended AMO-index  shows the importance 

of the global warming signal in the recent years (7). 

 Wind-stress curl, EOF mode 2, has the same spatial pattern as the mean ocean 

gyres; we call EOF2/PC2  the ‘gyre mode’.  It is distinct from the NAO, which more 

resembles EOF1.   Wind-stress curl relates to the vorticity of the winds, hence to the 

Laplacian of SLP which emphasizes smaller-scale features than SLP-based analysis (16-

18): an SLP-composite corresponding to negative minus positive curl PC2 events results 

in a pattern (Fig. 3a) resembling the Eastern Atlantic pattern in SLP-EOF analysis (12, 

19), and also the Atlantic-Ridge pattern found with cluster analysis (16, 17).   This SLP 

pattern has been identified as a blocking signature (12).   This pattern was also recovered 

as an SLP difference-field of warm years 1939-1968 minus cold years of 1900-1929 (20).  



With different binning of the warm (1950-1964) and cold (1970-1984) years the SLP 

pattern resembles more the negative NAO pressure anomaly (21).  The multidecadal 

depth-dependent AMV temperature mode found in the zonal average is also linked to the 

Eastern Atlantic SLP pattern (8). There is no spatial similarity between the NAO pattern 

and the wind curl EOF2, and the PC2 is not strongly correlated with the NAO index, but 

the PC2 time series shows remarkably close relationship with the subpolar SLP anomaly 

(Fig. 3b) and, less significantly, with the subtropical Azores SLP center. The relationship 

between the low frequency Azores SLP and ocean gyre variability has been found from 

analysis of the sea level variability along the European coast (22).  

 

 To establish the linkage between the wind stress curl variability and blocking we 

form composited difference fields using the wind-stress curl PCs.  The composite of 

anomalous blocking activity based on PC1 (Fig. S6, as negative minus positive PC1 

events) corresponds to Greenland blocking known to be associated with the negative 

NAO phase (18).   On the other hand, the PC2 composites (again as negative minus 

positive PC2 events, Fig. 4a) show simultaneously increased activity of the western 

European blocking and a weaker Greenland blocking, flanked by decreased blocking over 

Scandinavia and Southern Europe.  This specific blocking anomaly reaching from 

Greenland to western Europe represents fluctuations of the climatological-mean blocking 

pattern (Fig. S3) with contributions from positive and negative NAO index, where the 

NAO-positive contributions occur over the eastern side of the North Atlantic and western 

Europe.   Extending the classic NAO description of North Atlantic atmospheric 



variability, by allowing east-west displacement of centers of action in this way, is 

suggested in earlier work (9, 17). 

 

The active blocking band from Greenland to the western Europe was also seen in 

decadal variability of the extended early-midcentury warm period (Fig. 2). Using the 

same years as in (20) to define warm period (1939-1968) and cold period (1900-1929), 

the resulting difference in blocking days (Fig. 4b) has an anomaly of increased blocking 

from Greenland to Europe very similar to that corresponding to the curl PC2 (Fig. 4a).  

The areas of significance (95% or higher, 58 degrees of freedom) are stippled.  Using the 

AMO index (with no detrending) to form a composite (positive minus negative) of the 

blocking events (Fig. S7) gives the same band of increased blocking as the wind stress 

curl PC2 although with somewhat less significance. 

 

 In addition to the association of warm, saline ocean with weakening of the wind-

stress curl and subpolar and subtropical gyre circulation, air-sea heat flux influences SST. 

The composite difference of turbulent (sensible and latent) heat flux corresponding to 

(negative minus positive) curl PC2 (Fig. 4c) shows the heat flux anomaly associated with 

the climate regimes which have weak circulation gyres and high blocking activity.  This 

heat flux anomaly favors heating in large part of the North Atlantic including the 

Equatorial region with weak cooling in a narrow band in the mid-latitudes.  This heating 

anomaly pattern differs from that corresponding to the NAO index, where the subpolar 

heating/cooling is centered over the Labrador Sea (instead of the central subpolar gyre) 



and the cooling/heating over the Gulf Stream region is of the same order of magnitude as 

in the Labrador Sea.   

 

Fig. 4 shows that a similar blocking activity can be recovered whether using the 

gyre index (wind stress curl PC2) or multidecadal SST variability as the compositing 

index. This is an implication that the particular blocking anomaly is fundamental part of 

the forcing of the gyre variability at low frequencies.  Moreover it is associated with 

surface heat exchange which supports heat content variability, in turn amplifying the 

effects of expanding and contracting ocean gyres.  

 

In summary, variability of atmospheric blocking over years to several decades 

shows correlation with the ocean surface temperature and with significant changes in 

Atlantic Ocean circulation, mediated by wind-stress curl and air-sea heat exchange. The 

wind-stress curl variability of most importance for the subpolar gyre represents 

weakening/strengthening of the climatological-mean curl pattern (1). This same mode of 

variability is associated with a major shift in the upper ocean currents after year 2000 and 

warming and salinization of the subpolar gyre (1, 23). Wind-stress curl variability 

represents changes in the Atlantic storm track, storm frequency and intensity, and 

particularly persistent events, i.e. blocking, where storm tracks are shifted, have a large 

impact on the curl.  For example with negative NAO-index, a block over southern 

Greenland forces the existence of single upper level mid-latitude jet crossing the Atlantic 

(18). However, the index of our wind stress curl pattern, the gyre mode, is not correlating 

strongly with NAO, nor projects purely on Greenland blocking but contains a large 



component of blocking centered on western Europe. Increased activity of both Greenland 

and western Europe blocking centers has occurred when the North Atlantic has been in a 

warm state.  The gyre mode also supports atmosphere-ocean heat exchange, which 

sustains a warm state of the North Atlantic, from the subpolar region through most of the 

subtropics to the Equator.  This suggests that blocking activity is more fundamental than 

the NAO-index in describing climatic changes in the Atlantic Ocean. 

 

The blocking events (lasting 5 days or more) provide an example of high-

frequency atmospheric variability projecting on lower frequency variability of the wind-

stress curl.  Winters with frequent blocking appear to persist for decades, and are 

evidence of a highly disturbed hemispheric jet stream system. We speculate that the 

westerly wind-stress directed along the Gulf Stream/North Atlantic Current system is less 

intense and less coherent in such conditions.  Our analysis cannot separate cause and 

effect between high blocking activity and warm ocean surface but the existing theory of 

the mid-latitude atmosphere-ocean interaction supports increased persistence of 

atmospheric anomalies that created oceanic anomalies in the first place (24).  Warm-

ocean/cold-land anomaly-pattern has been linked to a dynamical environment favorable 

for blocking (25-26).  Blocking has also been shown to be sensitive to a warmer subpolar 

Atlantic in a reconstruction of the cold European winter of 2005-6 (10).  The possibility 

of coupled interaction of atmosphere with Atlantic Multi-decadal Variability seems 

likely, given the long-period variability of blocking reported here, and in the even longer 

paleo-climate time series (27).  AMV has been attributed to changes in the Atlantic 

Meridional Overturning Circulation (AMOC) in some numerical model experiments (28, 



29).   Also, based on hydrographic data, AMV exhibits vertical structure, which could 

signal AMOC variability (8).  Clearly, feedbacks between the hemispheric jet-stream 

waveguide, tropical and extra-tropical ocean temperatures and the AMOC itself are 

possible and even likely.  
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Figure Captions 

Figure 1.  The winter (December-March) wind stress curl variability from the 20th 

century atmospheric reanalysis based on EOF analysis. 

 (a) spatial pattern of wind stress curl EOF1 and EOF2.   EOF1 (top) represents 22.3% of 

the wind stress curl variability, and has its centers of  action displaced north-south 

relative to the subpolar ocean gyre. EOF2 (bottom panel) with 15.6% of the variance has 

centers of action coinciding with the subpolar and northern subtropical ocean gyres. 

(b)  Principal components of wind stress curl EOFs  from the 20th century reanalysis.  

PC1 (red), PC2 (blue), and from NCEP/NCAR Reanalysis PC1(dashed black), and PC2 

(dashed purple).  The standard deviation of the PC2 from the 20th century reanalysis is 

8.9 10-8 Nm-3 (includes interannual variability). Time series are smoothed by 10 binomial 

filters. 

Figure 2.   (a) Mean winter (DJFM) blocking days by decade from the 20th century 

reanalysis.  (b)  DJFM Blocking days in the region 10°E-70°W, 45°N-75°N from the 20th 

century reanalysis (black curve) and from NCEP/NCAR Reanalysis (blue curve). The 

two blocking time series have a correlation of 0.85 over the overlapping time period 

1949-2008.   The AMO-index (dashed pink curve) is an area-averaged SST from 0°N-

60°N, 10°E-80°W.  The AMO index with global surface temperature evolution removed 

(as in (7))  shown as a solid red curve. The SST curves are smoothed by 3 binomial 

filters. 

Figure 3. Relationship between the gyre index and SLP. Analysis period is 1901-2008. 

(a) Composite difference of SLP based on negative minus positive wind stress curl PC2 

events stronger than one standard deviation shows the SLP anomaly associated with a 



weakened subpolar gyre. Color denotes SLP anomaly in hPa.  Stippling denotes 

significance of difference at 95% level. 

(b)  Subpolar SLP (blue)  (average over 20W-50W, 50N-65N) and  curl PC2 (red)  from 

the 20th century reanalysis smoothed by 10 binomial filters. 

Figure 4. Anomaly patterns of blocking activity. Analysis period is 1901-2008. 

(a) Composite difference of blocking days based on negative minus positive curl PC2 

events stronger than one standard deviation shows the increased blocking occurring from 

Greenland to western Europe when the subpolar gyre is weak. Stippling denotes 

significance of difference at 95% level.  

(b) Warm (1939-1968) minus cold years (1900-1929) (as defined in (20)) difference in 

blocking days. Stippling denotes significance of difference at 95% level assuming 58 

degrees of freedom. 

(c) Anomaly of the surface heat exchange associated with the gyre index.  Composite 

difference of turbulent heat flux (positive upward; color denotes flux magnitude in units 

of Wm-2) based on negative minus positive curl PC2 events stronger than one standard 

deviation shows the wide spread heat input to the ocean when the gyre circulation is also 

weak. Stippling denotes significance of difference at 95% level. 
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Figure 1.  The winter (December-March) wind stress curl variability from the 20th 
century atmospheric reanalysis based on EOF analysis.  
 (a) spatial pattern of wind stress curl EOF1 and EOF2.   EOF1 (top) represents 22.3% of 
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(dashed purple). The standard deviation of the PC2 from the 20th century reanalysis is 8.9 
10-8 Nm-3 (includes interannual variability).  Time series are smoothed by 10 binomial 
filters. 
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Figure 2.   (a) Mean winter (DJFM) blocking days by decade from the 20th century 
reanalysis.  (b)  DJFM Blocking days in the region 10°E-70°W, 45°N-75°N from the 20th 
century reanalysis (black curve) and from NCEP/NCAR Reanalysis (blue curve).  The 
two blocking time series have a correlation of 0.85 over the overlapping time period 
1949-2008.  The AMO-index (dashed pink curve) is an area-averaged SST from 0°N-
60°N, 10°E-80°W.  The AMO index with global surface temperature evolution removed 
(as in (7))  shown as a solid red curve. The SST curves are smoothed by 3 binomial 
filters. 
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Figure 3. Relationship between the gyre index and SLP. Analysis period is 1901-2008. 
(a) Composite difference of SLP based on negative minus positive wind stress curl PC2 
events stronger than one standard deviation shows the SLP anomaly associated with a 
weakened subpolar gyre. Color denotes SLP anomaly in hPa. Stippling denotes 
significance of difference at 95% level. 
(b)  Subpolar SLP (blue)  (average over 20W-50W, 50N-65N) and  curl PC2 (red)  from 
the 20th century reanalysis smoothed by 10 binomial filters. 
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Figure 4. Anomaly patterns of blocking activity. Analysis period is 1901-2008. 



(a) Composite difference of blocking days based on negative minus positive curl PC2 
events stronger than one standard deviation shows the increased blocking occurring from 
Greenland to western Europe when the subpolar gyre is weak. Analysis period is 1901-
2008.   Stippling denotes significance of difference at 95% level. 
(b) Warm (1939-1968) minus cold years (1900-1929) (as defined in (20)) difference in 
blocking days. Stippling denotes significance of difference at 95% level assuming 58 
degrees of freedom. 
(c) Anomaly of the surface heat exchange associated with the gyre index.  Composite 
difference of turbulent heat flux (positive upward; color denotes flux magnitude in units 
of Wm-2) based on negative minus positive curl PC2 events stronger than one standard 
deviation, showing wide-spread heat input to the ocean when the gyre circulation is 
weak. Stippling denotes 95% significance-level. 
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Materials and Methods 
Data sets utilized: 
The 20th Century Reanalysis (2,3)which is an ensemble mean of 56 realizations of 
an experimental version of NCEP global forecast model assimilating only surface 
pressure reports and using observed monthly sea-surface temperature and sea-ice 
distributions as boundary conditions. It is available at: 
http://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2.html 
We also used NCEP/NCAR Reanalysis which is available at: 
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html 
Hadley SST (HadISST = Hadley sea ice and sea surface temperature) used to 
compute AMO Index as an area weighted average over (0-60N, 10E-70W).  Hadley 
surface temperatures (HadCRUT3) averaged over (60S to 60N) were used to 
compute the forced temperature (‘global warming’) signal contributing to the AMO 
variability as suggested in (7) :  First AMO is regressed onto the global average 
surface temperature; then the Atlantic multidecadal variability arises as a residual 
after the global warming contribution is subtracted off.  Both data sets are available 
from:       http://www.hadobs.org/  . 
 
Methods: 
Empirical Orthogonal Function (EOF) analysis  (28).  EOFs analysis separates the 
space-time data fields into a set of spatial functions and their time series (or 
principal components, PCs).  Time series of various modes are not correlated at lag 0 
by the definition. 
 
Computation of the blocking days: 
Here we follow (12) to compute two geopotential height gradients at 500hPa for 
each latitude and longitude grid point in the Atlantic sector: 
GHGN = (Z(λ,φN) – Z(λ,φ0)) / (φN – φ0)  <  -10 (m/ degrees of latitude) ,  
GHGS = (Z(λ,φ0) – Z(λ,φS)) / (φ0 – φS)   >  0, 
Z is the 500hPa height, λ is longitude, φ0, φ N and φS are the center, northern and 
southern latitudes respectively,  and | φ0 –φN/S |= 16 degrees (the 20th century 
analysis has 2 degree resolution).   With this choice we can compute blocking days 
for latitude range 34ºN to 74ºN.  We require that these gradient conditions are 
fulfilled at least for 5 days in a grid point to qualify as a blocked grid point. 
 
Composite analysis of SLP, blocking days and heat flux.  We chose to create 
composited differences instead of correlations because compositing includes 
nonlinearities present in the data sets.  The events (winters here) chosen to the 
composite are based on an index time series such as the wind stress curl PC2 where 
we search PC2 values, which exceed one standard deviation of both negative and 
positive sign.  We then group e.g. the SLP fields corresponding to the negative and 
positive PC2 extremes.  We form a composite by subtracting the fields associated 
with the positive extremes of PC2 from the fields associated with the negative 
extremes of PC2 (we chose the negative – positive PC2 because it reflects the weak 

http://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2.html�
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html�
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gyres and increased blocking).  The significance of the difference field is tested using 
t-distribution with (n1+n2-2) degrees of freedom where n1 and n2 are number of 
fields corresponding to the negative and positive PC2 extremes with sample means 
of x1 and x2.  The population variance is estimated based on  
s2 =      [ Σ  (x1- x1)2  +  Σ (x2 – x2)2 ] / (n1+n2-2),  finally 
the t-test statistic to be computed is  
[  (x2 – x1) – 0 ]  /  [ s  √ (1/n1 + 1/n2)  ]  
We chose to use 95% significance to shade the composited difference fields. 
 



 

 

 
Fig. S1. The 500hPa wind (magnitude given in color;  units in m/s) composites 
corresponding to positive (top) and negative (bottom) wind stress curl PC1 (a proxy 
to positive and negative NAO).   The upper figure shows the unblocked regime 
dominated by the subpolar jet, i.e. storm track.  The lower figure shows the blocked 
regime with a continuous jet crossing at subtropical latitudes and with a non-
existent subpolar jet. Analysis period is 1901-2008. 



 

 
 
Fig. S2.   Example of western European blocking from NCEP  analysis.  500hPa 
geopotential height (contours; m), and its anomalies (color; m) show the anticyclone 
over the northern Atlantic and the reversals of the geopotential height gradient 
between the longitudes 40W and 0.  The atmospheric flow is diverted around it with 
an intense flow from north bringing cold air to Europe.  From 
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/blocking/background/atl
antic_case.shtml 



 
 
 

 
Fig. S3.  Climatological number of blocking days in December-March season from 
the 20th century reanalysis for analysis period of 1901-2008. 



 
 

 
 
Fig. S4. Mean winter (DJFM) blocking days per decade from the NCEP/NCAR 
reanalysis. 



 
 
 

 
 
Fig. S5. Mean winter (DJFM) blocking days per pentad from the NCEP/NCAR 
reanalysis. 
 
 



 
Fig. S6.  Composite of anomalous winter blocking days based on negative minus 
positive wind stress curl PC1 (proxy for negative NAO minus positive NAO) events 
stronger than one standard deviation.  Pattern shows the increased blocking over 
the Greenland associated with negative NAO and weaker blocking over the western 
Europe. Analysis period is 1901-2008.  Stippling denotes significance of difference 
at 95% level. 
 



 
 

 
Fig. S7.  Composite of  anomalous blocking days based on positive minus negative 
AMO-index events  (includes the global warming signal, the dashed curve in Fig. 2b) 
stronger than one standard deviation.  Analysis period is 1901-2008.  Stippling 
denotes significance of difference at 95% level. 
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