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Abstract. Generating accurate three dimensional planetary models and albedo maps is becoming

increasingly more important as NASA plans more robotics missions to the Moon in the coming
years. This paper describes a novel approach for separation of topography and albedo maps

from orbital Lunar images. Our method uses an optimal Bayesian correlator to refine the stereo

disparity map and generate a set of accurate digital elevation models (DEM). The albedo maps
are obtained using a multi-image formation model that relies on the derived DEMs and the Lunar-

Lambert reflectance model. The method is demonstrated on a set of high resolution scanned

images from the Apollo era missions.

1. Introduction

High resolution, accurate topographic and albedo maps of planetary surfaces in general and Lunar
surface in particular play an important role for the next NASA robotic missions. More specifically
these maps are used in landing site selection, mission planing, planetary science discoveries and as
educational resources. This paper describes a method for topographic and albedo maps reconstruc-
tion from the Apollo era missions. The Apollo metric camera flown on an orbit at approximately
100km above the Lunar surface was a calibrated wide field (75◦) of view orbital mapping camera
that photographed overlapping images (80%). The scans of these film images recently made avail-
able [1, 2] capture the full dynamic range and resolution of the original film resulting in digital
images of size 22,000 × 22,000 pixels representing a resolution of 10 m/pixel. Figure 1 shows the
images of one Lunar orbit captured by the Apollo 15 mission. Our method for geometric stereo

Figure 1. Apollo Metric images from Orbit 33.

reconstruction and photometric albedo reconstruction is illustrated in Figure 2. Each component of
our system will be described in more detail in the following sections.

2. Bundle Adjustment

The Apollo-era satellite tracking network was highly inaccurate by today’s standards with errors
estimated to be 2.04-km for satellite station positions and 0.002 degrees for pose estimates in a typical
Apollo 15 image [3]. Such errors propagate through the stereo triangulation process, resulting in sys-
tematic position errors and distortions in the resulting DEMs ( Figure 3). These errors are corrected
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Figure 2. The overall system for albedo reconstruction.

Figure 3. Bundle adjustment is illustrated here using a color-mapped, hill-shaded
DEM mosaic from Apollo 15 Orbit 33 imagery. (a) Prior to bundle adjustment,
large discontinuities exist between overlapping DEMs. (b) After bundle adjustment,
DEM alignment errors are no longer visible.

using bundle adjustment techniques. Our bundle adjustment solution uses SURF feature points [4].
Our bundle adjustment approach follows the method described in [5] and determines the best camera
parameters that minimize the projection error given by ε =

∑
k

∑
j(Ik − I(Cj , Xk))2 where Ik are

feature locations on the image plane, Cj are the camera parameters, and Xk are the 3D positions
associated with features Ik. I(Cj , Xk) is an image formation model (i.e. forward projection) for a
given camera and 3D point. The optimization of the cost function uses the Levenberg-Marquartd
algorithm. Speed is improved by using sparse methods described in [6]. Outliers are rejected using
the RANSAC method and trimmed to 1000 matches that are spread evenly across the images. To
eliminate the gauge freedom inherent in this problem, we add two addition error metrics to this cost
function to constrain the position and scale of the overall solution. First, ε =

∑
j(C

initial
j − Cj)2

constrains camera parameters to stay close to their initial values. Second, a set of 3D ground control
points are added to the error metric as ε =

∑
k(Xgcp

k − Xk)2 to constrain these points to known
locations in the lunar coordinate frame. In the cost functions discussed above, errors are weighted
by the inverse covariance of the measurement that gave rise to the constraint. Figure 3 shows a
Lunar orbital DEM before and after the bundle adjustment processing.

3. Dense Disparity Maps

Apollo images are affected by two types of noise inherent to the scanning process: (1) the presence
of film grain and (2) dust and lint particles. The former gives rise to noise in the DEM values that
wash out real features, and the latter causes incorrect matches or hard to detect blemishes in the
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DEM. Attenuating the effect of these scanning artifacts while simultaneously refining the integer
disparity map to sub-pixel accuracy has become a critical goal of our system, and is necessary for
processing real-world data sets such as the Apollo Metric Camera data.

We investigated a large number of stereogrammmetric systems that can provide dense stereo
matching from orbital imagery [7, 8, 9, 10, 11, 12]. A common technique in sub-pixel refinement is
to fit a parabola to the correlation cost surface in the 8-connected neighborhood around the integer
disparity estimate, and then use the parabola’s minimum as the sub-pixel disparity value. This
method is easy to implement and fast to compute, but exhibits a problem known as pixel-locking:
the sub-pixel disparities tend toward their integer estimates and can create noticeable ”stair steps”
on surfaces that should be smooth [12], [11]. One way of attenuating the pixel-locking effect is
through the use of a symmetric cost function [8] for matching the “left” and “right” image blocks.

To avoid the high computational complexity of these methods another class of approaches based on
the Lucas-Kanade algorithm [13] proposes an asymmetric score where the disparity map is computed
using the best matching score between the left image block and an optimally affine transformed
block from the right image. For example, the sub-pixel refinement developed by Stein et. al. [12]
lets IR(m,n) and IL(i, j) be two corresponding pixels in the right and left image respectively, where
i = m+ dx, j = n+ dy and dx, dy are the integer disparities. They develop a linear approximation
based on the Taylor Series expansion around pixel (i, j) in the left image

IL(i+ δx, j + δy) ≈ IL(i, j) + δx
dIL
dx

(i, j) + δy
dIL
dy

(i, j)(1)

where δx and δy are the local sub-pixel displacements. Let e(x, y) = IR(x, y) − IL(i + δx, j + δy)
and W be an image window centered around pixel (m,n). The local displacements are not constant
across W and they vary according to:

δx(i, j) = a1i+ b1j + c1

δy(i, j) = a2i+ b2j + c2.(2)

The goal is to find the parameters a1, b1, c1, a2, b2, c2 that minimize the cost function

E(m,n) =
∑

(x,y)∈W

(e(x, y)w(x, y))2(3)

where w(x, y) are a set of weights used to reject outliers. Note that the local displacements δx(i, j)
and δy(i, j) depend on the pixel positions within the window W . In fact, the values a1, b1, c1, a2, b2, c2
that minimize E can be seen as the parameters of an affine transformation that best transforms the
right image window to match the reference (left) image window.

The shortcoming of this method is directly related to the cost function that it is minimizing,
which has a low tolerance to noise. Noise present in the image will easily dominate the result of the
squared error function, giving rise to erroneous disparity information. Recently, several statistical
approaches (e.g. [7]) have emerged to show how stochastic models can be used to attenuate the
effects of noise. Our sub-pixel refinement technique [14] adopts some of these ideas, generalizing the
earlier work by Stein et. al. [12] to a Bayesian framework that models both the data and image
noise.

In our approach the probability of a pixel in the right image is given by the following Bayesian
model:

P (IR(m,n)) =
∏

(x,y)∈W

N(IR(m,n)|IL(i+ δx, j + δy),
σp√
gxy

)P (z = 0) +(4)

+ N(IR(m,n)|µn, σn)P (z = 1)
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The first mixture component (z = 0) is a normal density function with mean IL(i+ δx, j + δy) and
variance σp√

gxy
:

P (IR(m,n)|z = 0) = N(IR(m,n)|IL(i+ δx, j + δy),
σp√
gxy

)(5)

The 1√
gxy

factor in the variance of this component has the effect of a Gaussian smoothing window
over the patch. With this term in place, we are no longer looking for a single variance over the
whole patch; instead we are assuming the variance increases with distance away from the center
according to the inverted Gaussian, and are attempting to fit a global scale, σp. This provides
formal justification for the standard Gaussian windowing kernel.

The second mixture component (z = 1) in Equation 5 models the image noise using a normal
density function with mean µn and variance σn:

P (IR(m,n)|z = 1) = N(IR(m,n)|µn, σn)(6)

Let IR(m,n) be a vector of all pixels values in a window W centered in pixel (m,n) in the right
image. Then,

P (IR(m,n)) =
∏

(x,y)∈W

P (IR(x, y))(7)

The parameters λ = {a1, b1, c1, a2, b2, c2, σp, µn, σn} that maximize the model likelihood in Equa-
tion 7 are determined using the Expectation Maximization (EM) algorithm. Maximizing the model
likelihood in Equation 7 is equivalent to maximizing the auxiliary function:

Q(θ) =
∑
k

P (k|IR, λt) logP (IR, k, δ|λ)

=
∑
k

∑
x,y

P (k|IR(x, y), λt) logP (IR(x, y)|k, λ)P (k|λ)(8)

Note that the M step calculations are similar to the equation used to determine the parameters
a1, b1, c1, a2, b2, c2 in the method presented in [12], except here the fixed set of weights is replaced
by the a posteriori probabilities computed in the E step. In this way, our approach can be seen as a
generalization of the Lucas-Kanade method. The complete algorithm is summarized in the following
steps:

• Step 1: Compute dIL

dx
(i, j), dIL

dy
(i, j) and the IR(x, y) values using bilinear interpolation.

Initialize the model parameters λ.
• Step 2: Compute iteratively the model parameters λ using the EM algorithm (see [14] for

details).
• Step 3: Compute δx(i, j) and δy(i, j) using Equation 2.
• Step 4: Compute a new point (x′, y′) = (x, y) + (δx, δy) and the IR(x′, y′) values using

bilinear interpolation.
• Step 5: If the norm of (δx, δy) vector falls below a fixed threshold the iterations converged.

Otherwise, go to step 1.
Like the computation of the integer disparity maps, we adopt a multi-scale approach for sub-pixel
refinement. At each level of the pyramid, the algorithm is initialized with the disparity determined
in the previous lower resolution level of the pyramid. Figure 4 shows an example of a stereo image
pair captured by the Apollo Metric Camera and used to generate a DEM of the Apollo 15 landing
site.

4. Photometric Reconstruction

Each pixel of the Apollo Metric Camera images was formed by a combination of many factors,
including albedo, terrain slope, exposure time, shadowing, and viewing and illumination angles.
The goal of albedo reconstruction is to separate contributions of these factors. This is possible in
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Figure 4. Apollo Metric Camera stereo pair showing Hadley Rille and the Apollo
15 landing site: (left) left image, (middle) right image, (right)oblique view of the
resulting DEM.

part because of redundancy in the data; specifically, the same surface location is often observed in
multiple overlapping images.

To do the albedo reconstruction, we include all of the factors in a image formation model. Many
of the parameters in this model such as digital terrain slopes, viewing angle, and sun ephemeris
are known. To reconstruct albedo, we first model how the Metric Camera images were formed as a
function of albedo, exposure time, illumination and viewing angles, and other factors. Then we can
formulate the albedo inference problem as a least-squares solution that calculates the most likely
albedo to produce the observed image data.

Starting with the first images from the Apollo missions a large number of Lunar reflectance models
were studied [15, 16, 17]. In this paper the reflectance is computed using the Lunar-Lambertian
model [15, 18]. As shown in Figure 5, we define the following unit vectors: n is the local surface
normal; l and v are directed at the locations of the Sun and the spacecraft, respectively, at the time
when the image was captured. We further define the angles i separating n from l, e separating n
from v, and the phase angle α separating l from v . The Lunar-Lambertian reflectance model is
given by

F = AR = A

[
(1− L(α)) cos(i) + 2L(α)

cos(i)
cos(i) + cos(e)

]
(9)

where A is the intrinsic albedo and L(α) is a weighting factor between the Lunar and Lambertian
reflectance models [19] that depends on the phase angle and surface properties. R is a photometric
function that depends on the angles α, i and e. The image formation model begins as follows. Let

l

n
v

α
ie

Figure 5. Illumination and viewing angles used by the Lunar-Lambertian re-
flectance model.
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Iij , Aij , Rij be the pixel value, albedo and R function at image location (i, j), and T be a variable
proportional to the exposure time of the image. Then

Iij = TAijRij .(10)

Note that the image formation model described in Equation 10 does not take into consideration the
camera transfer function since the influence of the non-linearities of the camera transfer function
plays a secondary role in the image formation model [19]. From Equation 10 it can be seen that
when the observed pixel value, exposure time, and R value are known, the image formation model
in Equation 10 provides a unique albedo value. However, these values are subject to errors arising
from measurement (exposure time), scanning (image value) or stereo modeling errors (reflectance),
resulting in imprecise albedo calculations. The method proposed here mitigates these errors by
reconstructing the albedo of the Lunar surface from all the overlapping images, along with their
corresponding exposure times and DEM information. The albedo reconstruction is formulated as
the least squares problem that minimizes the following cost function Q:

Q =
∑
k

∑
ij

[
(Ikij −AijT kRkij)2Skijwkij

]
(11)

where super script k denotes the variables associated with the kth image and Skij is a shadow binary
variable. Skij = 1 when the pixel is in shadow and 0, otherwise. The weights wkij are chosen such that
they have linearly decreasing values from the center of the image (wkij = 1) to the image boundaries
(wkij = 0). The choice of these weights insures that the reconstructed albedo mosaic is seamless.
As shown by Equation 11 and illustrated in Figure 2 the steps of our photometric reconstruction
method are the computation of the shadow and relief map followed by albedo reconstruction. These
steps are described next.

Figure 6. Orbital image: (left) input image, (middle) binary shadow map with
shadow regions shown in white, (right) DEM confidence map (brighter areas have
higher estimated error).

4.1. Shadow map computation. Discarding unreliable image pixels that are in shadow and for
which the DEM and the reflectance models are unreliable plays an important role in accurate albedo
estimation [20, 21]. Figure 6(left, middle) shows an input image together with its binary shadow
map; shadowed areas are indicated in white.

4.2. Relief map computation. The geodetically aligned local DEM determine multiple values
for the same location on the Lunar surface. A simple average of the local DEM value determines
the value used in computing the local slopes and the reflectance value. The average DEM has the
following benefits for albedo reconstruction:
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• It is essential to the computation of a coherent “R map”, since each point of the Lunar
surface must have a unique DEM value.

• The statistical process produces more accurate terrain models by reducing the effect of
random errors in local DEMs and without blurring the topographical features. Figure 7
shows the R map of a subregion of the orbital image in Figure 6 before and after the DEM
averaging and denoising process. It can be seen that the noise artifacts in the original DEM
are reduced in the denoised DEM while the edges of the large crater and mountain regions
are very well preserved.

• The statistical parameters of the DEM values at each point are instrumental in building
a confidence map of the Apollo coverage DEM. Figure 6(right) shows the error confidence
map for the orbital image illustrated in Figure 6(left). The values shown in this error map
are the 0.05×the variance values of the DEM expressed in meters.

This step of the algorithm computes the values of the photometric function R described by
Equation 9 corresponding to every pixel in the image. We denote the set of R values as the “R
map” of the image. The accurate DEM calculation influences the R values through the effect of
surface normals on the angles i and e that appear in Equation 9.

Figure 7. R maps generated using (left) single local DEM and (right) denoised
DEM derived from multiple overlapping local DEM. Our denoising approach pre-
serves structure while reducing the artifacts shown in the insets.

Figure 8. Albedo reconstruction: (left) R map, (middle) reconstructed albedo,
(right) albedo confidence map (brighter areas have higher estimated error).
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Figure 9. Albedo reconstruction of orbit 33 of the Apollo 15 mission.

4.3. Albedo Reconstruction. The optimal albedo reconstruction [22] from multi view images and
their corresponding DEM is formulated as a minimization problem of finding

{Ãij , T̃ k} = arg min
Aij ,Tk

Q(12)

for all pixels ij and images k, where Q is the cost function in Equation 11. An iterative solution to
the above least square problem is given by the Gauss Newton updates described below.

• Step 1: Initialize the exposure time with the value provided in the image metadata. Ini-
tialize the albedo map with the average value of the local albedo observed in all images.

Aij =
∑
k

Ikijw
k
ij

RkijT
k

(13)

• Step 2: Re-estimate the albedo and refine the exposure time using

Ãij = Aij +

∑
k(Ikij − T kAijRkij)T kRkijSkijwkij∑

k(T kRkij)2S
k
ijw

k
ij

(14)

T̃ k = T k +

∑
ij(I

k
ij − T kAijRkij)AijRkijSkijwkij∑

ij(AijR
k
ij)2S

k
ijw

k
ij

(15)

• Step 3: Compute the error cost function Q (Eqn. 11) for the re-estimated values of the
albedo and exposure time.

• Convergence: If the convergence error between consecutive iterations falls below a fixed
threshold then stop iterations and the re-estimated albedo is the optimal reconstructed
albedo surface. Otherwise return to step 2.

Figure 8 shows the R map, the albedo map and the albedo reconstruction error map, respectively,
for the original orbital image in Figure 6. The albedo reconstruction error map is computed as
the absolute difference between the original image Ikij and the reconstructed image T kAijRkij . For
display, the error values were multiplied by a factor 10 in Figure 8(right). Figure 9 illustrates the
reconstructed albedo for one orbit of the Apollo mission data overlayed over previous low resolution
Clementine imagery. The Clementine mission images were captured under incidence and emission
angles close to zero, therefore capturing images that describe the relative Lunar albedo. It can be
seen that the reconstructed albedo de-emphasizes the brightness variations shown in the original
imagery (Figure 1) between images and produces a seamless albedo mosaic.

5. Conclusions

This paper presents a novel approach for topographic and albedo maps generation from orbital
imagery. The method for sub-pixel disparity maps uses a novel statistical formulation for optimally
determining the stereo correspondence and reducing the effect of image noise. Our approach out-
performs existing robust methods based on Lucas Kanade optical flow formulations at the cost of a
higher computational complexity. The derived topographic maps are used to determine the albedo
maps from an image formation model that incorporates the Lunar-Lambertian reflectance model.
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The optimal values of albedo and exposure time are learned from multiple image views of the same
area on Luna surface. Further research will be directed towards a joint estimation of the topgraphic
and albedo information using shape from shading techniques specific for the Lunar reflectance model
and scanned image properties.
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