
An algorithm computes the direction of
arrival (both azimuth and elevation angles)
of a lightning-induced electromagnetic sig-
nal from differences among the times of
arrival of the signal at four antennas in a Y-
shaped array on the ground. In the original
intended application of the algorithm, the
baselines of the array are about 90 m long

and the array is part of a lightning-detec-
tion-and-ranging (LDAR) system. The algo-
rithm and its underlying equations can also
be used to compute directions of arrival of
impulsive phenomena other than lightning
on arrays of sensors other than radio
antennas: for example, of an acoustic
pulse arriving at an array of microphones.

The underlying equations express the
differences among the times of arrival as
functions of the inner products of (1) the
unit vector of the direction of arrival and (2)
the unit vectors along the baselines of the
array. To obtain a solution for the unit vec-
tor (and thus, equivalently, the azimuth and
elevation angles) of the direction of arrival,

feature-extraction components. This split
allows BEAM to consider very complex
faults in the system, including interference
faults or miscommunication that escape
univariate detection methods, while retain-
ing robustness in poorly redundant sys-
tems or in the face of gross nonlinerity.
The components of BEAM described in
the figure are summarized as follows:
• The model filter combines sensor data

with predictions from a real-time physical
model. The inclusion of physical models,
where available, is the most efficient way
to incorporate domain knowledge into
signal-based data analysis.

• The symbolic data model interprets sta-
tus variables and commands to provide
an accurate, evolving picture of the sys-
tem mode and requested actions.

• The coherence-based fault detector
tracks the cobehavior of temporally vary-
ing quantities to expose changes in inter-
nal operating physics.

• The dynamical invariant anomaly detec-
tor tracks parameters of individual signals
to sense subtle deviations and predict
near-term behavior.

• The Informed Maintenance Grid (IMG)
studies evolution of cross-channel behav-
ior over the medium- and long-term oper-
ation of the system. It tracks consistent
subthreshold deviations and exposes
deterioration and loss of performance.

• The prognostic assessment yields a
forward projection of individual signals,
based upon their extracted parame-
ters. It also provides a useful short-
term assessment of impending faults
and loss of functionality.

• The causal system model is a rule-based
connectivity model designed to improve
isolation of fault sources and identifica-
tion of actor signals.

• The interpretation layer collates obser-
vations from all separate components
and submits a single fault report in a

format useable by recovery software,
planners or other AI software, and/or
human operators.
This work was done by Ryan Mackey,

Mark James, Han Park, and Michail Zak of
Caltech for NASA’s Jet Propulsion Lab-
oratory. Further information is contained in
a TSP [see page 1].
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Determining Direction of Arrival at a Y-Shaped Antenna Array

The direction is computed from differences among
times of arrival of signals.
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This BEAM Architecture expands upon the original BEAM formulation in the following respects: (1) incorporation of physical models, (2) integration
of symbolic reasoning components, (3) statistical and stochastic modeling of individual signals (augmenting or supplanting prior wavelet-based mod-
eling), (4) trending to failure for individual signals and cross-signal features, and (5) enumeration of results using an expert system.
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Some progress has been made in a
continuing effort to develop mathematical
models of the behaviors of multi-agent
systems known in biology, economics,
and sociology (e.g., systems ranging from
single or a few biomolecules to many
interacting higher organisms). This effort
at an earlier stage was reported in “Char-
acteristics of Dynamics of Intelligent Sys-
tems” (NPO-21037), NASA Tech Briefs,
Vol. 26, No. 12 (December 2002), page
48.

To recapitulate from the cited prior article:
Living systems can be characterized by
nonlinear evolution of probability distribu-
tions over different possible choices of the
next steps in their motions. One of the main
challenges in mathematical modeling of liv-
ing systems is to distinguish between ran-
dom walks of purely physical origin (for
instance, Brownian motions) and those of
biological origin. Following a line of reason-
ing from prior research, it has been
assumed, in the present development, that
a biological random walk can be repre-
sented by a nonlinear mathematical model
that represents coupled mental and motor
dynamics incorporating the psychological

concept of reflection or self-image. The
nonlinear dynamics impart the lifelike ability
to behave in ways and to exhibit patterns
that depart from thermodynamic equilibri-
um. Reflection or self-image has traditional-
ly been recognized as a basic element of
intelligence.

The nonlinear mathematical models of the
present development are denoted self-
supervised dynamical systems. They
include (1) equations of classical dynamics,
including random components caused by
uncertainties in initial conditions and by
Langevin forces, coupled with (2) the corre-
sponding Liouville or Fokker-Planck equa-
tions that describe the evolutions of proba-
bility densities that represent the uncer-
tainties. The coupling is effected by fictitious
information-based forces, denoted super-
vising forces, composed of probability den-
sities and functionals thereof.

The equations of classical mechanics
represent motor dynamics — that is,
dynamics in the traditional sense, signi-
fying Newton’s equations of motion. The
evolution of the probability densities rep-
resents mental dynamics or self-image.
Then the interaction between the physi-

cal and metal aspects of a monad is
implemented by feedback from mental
to motor dynamics, as represented by
the aforementioned fictitious forces. This
feedback is what makes the evolution of
probability densities nonlinear. The devi-
ation from linear evolution can be char-
acterized, in a sense, as an expression
of free will.

It has been demonstrated that probability
densities can approach prescribed attrac-
tors while exhibiting such patterns as shock
waves, solitons, and chaos in probability
space. The concept of self-supervised
dynamical systems has been considered
for application to diverse phenomena,
including information-based neural net-
works, cooperation, competition, decep-
tion, games, and control of chaos. In
addition, a formal similarity between the
mathematical structures of self-supervised
dynamical systems and of quantum-
mechanical systems has been investigated.

This work was done by Michail Zak of
Caltech for NASA’s Jet Propulsion Lab-
oratory. Further information is con-
tained in a TSP [see page 1].
NPO-30634

the underlying equations are combined
and modified into a matrix formulation that
is amenable to a least-squares solution.

The value of the inner product calculat-
ed from the measured difference between
the times of arrival of the signal at the two
antennas on each baseline specifies a cir-
cle in the sky upon which nominally lies
the apparent point in the sky from which
the signal came. Thus, from the time-of-
arrival measurements on all three base-
lines of the Y-shaped array, it is possible to
specify three circles in the sky, all of which
nominally contain the apparent point in
the sky from which the signal came.
Nominally, all three circles would intersect
at a single point in the sky corresponding
to the direction of arrival. In practice, ran-
dom measurement errors prevent the
three circles from intersecting at a single

point; instead, they intersect to define a
small trianglelike patch of sky. The least-
squares-error solution corresponds to a
point near the triangle, such that sum of
squares of distances between the solution
point and each circle in the sky is the least
possible value.

This algorithm has been verified on both
synthetic data and measurement data
recorded by a prototype short-baseline
LDAR system. An analysis of errors revealed
that the azimuth error depends only on ele-
vation and that the elevation error is small
except near the horizon. Further analysis
showed that the addition of a vertical base-
line (two additional antennas mounted on
the top and bottom of a tower) would add lit-
tle of value to the measurements and calcu-
lations since the LDAR source points are
typically above 20° elevation.

The primary source of error in the algo-
rithm is the simplifying assumption that the
signal originates at an infinite distance.
While this assumption is never strictly true,
it provides an acceptable approximation
as long as the distance of the signal
source is much greater than the length of
the baselines. The least-squares approach
also reduces this error.

An additional equation that takes account
of the curvature of a wavefront arriving from
a source at a finite distance has been
derived and found to be accurate at close
range. An algorithm that would solve itera-
tively for azimuth, elevation, and range of the
source has been proposed but not tested.

This work was done by Stan Starr of
Kennedy Space Center. Further infor-
mation is contained in a TSP [see page 1].
KSC-12059
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Self-Supervised Dynamical Systems

Mathematical models describe coupled motor and
mental dynamics.
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