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We have investigated the physical characteristics of greenhouse gases (GHGs) to assess 

which properties are most important in determining the efficiency of a GHG.  

Chlorofluorcarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), 

nitrogen fluorides, and various other known atmospheric trace molecules have been 

included in this study.  Compounds containing the halogens F or Cl have in common very 

polar X-F or X-Cl bonds, particularly the X-F bonds.  It is shown that as more F atoms 

bond to the same central atom, the bond dipoles become larger as a result of the central 

atom becoming more positive.  This leads to a linear increase in the total or integrated X-

F bond dipole derivatives for the molecule, which leads to a non-linear (quadratic) 

increase in infrared (IR) intensity.  Moreover, virtually all of the X-F bond stretches 

occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in 

the atmospheric window.  It is concluded that molecules possessing several F atoms will 

always have a large radiative forcing parameter in the calculation of their global warming 

potential.  Some of the implications for global warming and climate change are 

discussed.
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Introduction 

Global climate change is regarded as one of the most significant scientific 

challenges to address in the coming decades. Temperature equilibrium in the Earth’s 

atmosphere is maintained by a balanced absorption and emission of all the 

electromagnetic radiation reaching the surface of the Earth. Over the last few decades an 

increasing trend in the global surface temperature has been caused, at least in part, by an 

increased concentration of greenhouse gasses (GHG). Gases in the atmosphere play a 

vital role in maintaining this delicate temperature balance. 

Carbon dioxide, methane, nitrous oxide, hydroflurocarbons (HFC), 

chlorofluorocarbons (CFC), and perfluorocarbons (PFC) are the most common 

anthropogenic greenhouse gases.  Carbon dioxide gets wide attention due to its rapidly 

increasing concentration in the atmosphere. Methane, although a trace gas which having a 

relatively short average lifetime of 9 years in the atmosphere, is a much more potent 

greenhouse gas compared to CO2. The concentration of CH4 in the atmosphere has been 

on the rise at an average rate of 8.9 ppbv/year for the last two decades.1 Nearly 45% of 

the methane released into the atmosphere is done so by anthropogenic activities. The rest 

comes from natural sources such as wasteland decomposition, termites, agriculture, and 

domestic activities. With increasing global temperatures, the methane release rate is 

expected to increase causing a positive feedback loop for global warming. When all 

effects are included, it is estimated that 0.9 Wm-2 radiative forcing comes from the 

methane, which is more than half that for CO2.2 Likewise, another naturally occurring 

greenhouse gas, nitrous oxide is about 400 times more potent compared to CO2. N2O is 

produced during the burning of fossil fuels and is also released by the soil.3 Furthermore, 
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in a recent study by Shine and Sturges it is estimated that 40% of the heat trapped by 

anthropogenic greenhouse gases in the Earth’s atmosphere is due to gases other than 

CO2.4 

Other potent greenhouse gases, such as hydrofluorocarbons (HFCs), 

chlorofluorocarbons (CFCs) and perfluorocarbons (PFCs), are heavily used in the 

electronics, air conditioning, appliances and carpet manufacturing industries. Production 

and industrial use of CFCs have been discontinued since it was discovered that they 

contribute to the destruction of the ozone layer. However, PFCs and HFCs are 

continually utilized in various industries. In addition to the above uses, PFCs are used as 

a blood substitute in biological cell cultures and in blood transfusions.5 PFCs are also  

widely used as tracers in atmospheric studies, in tracking leaks in gas lines and electrical 

transmission lines,6 and in tracking carbon sequestration processes.7 Although the current 

concentration of some of these tracer gases have been found to be very small compared to 

that of CO2, their concentration is on the rise for as long as the data exists.8 More 

importantly, PFCs and HFCs are extremely efficient greenhouse gases as they absorb in 

the atmospheric infrared window and in some cases have atmospheric lifetimes estimated 

at thousands of years.9 This means that some PFCs and HFCs display the characteristics 

to impact global temperatures significantly more than CO2 in terms of both short term 

and long term effects.  Although it is estimated that they contribute little to the total 

radiative forcing at present, with the current rate of increase they will be significant 

contributors in the future according to some models.4 Some hydrofluoroethers have been 

suggested as substitutes for CFCs and HFCs as carrier compounds for lubricants and for 

use in the refrigeration industry. Although the hydrofluoroethers have slightly lower 
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atmospheric lifetimes due to reactions with the OH radical and other atmospheric 

scrubbing agents, they have relatively large instantaneous radiative forcing.10 

  An index was introduced some years ago to quantify the potency of an 

individual molecule regarding global warming.11 This index, the ‘Global warming 

potential’ (GWP), is defined as the time integrated radiative forcing of one gas with 

respect to a reference gas over a time horizon.  The absolute GWP depends on the time 

horizon for which the GWP is considered.  However it is pointed out in chapter 6 of the 

Intergovernmental Panel on Climate Change (IPCC) working group’s 2001 report9 that 

the GWP of a molecular species is relatively insensitive to the choice of the time horizon 

when the atmospheric lifetime of the gas is not substantially different from the response 

time of the reference gas (for CO2, this is about 150 years9). The GWP of different 

molecules can vary significantly.  For example over a 20 year time horizon the GWP of 

CH4 is 72 times and N2O is 289 times the GWP of CO2,12 while the GWP of CFC-11 

(CCl3F) is 6730 times that of CO2.  It is clear GWP is a quantity that is very specific to a 

molecular species, and that while atmospheric lifetime is a factor, a molecule’s radiative 

forcing is often the deciding factor for large variations in GWPs. 

The relative radiative forcing parameter is determined on either a molecule-per 

mole basis or a kilogram-per-kilogram basis compared to a reference, usually CO2.12 

Generally, a radiative transfer model is used to determine the radiative forcing for 

perturbations of greenhouse gases.  In these computations a certain concentration of a 

perturbing gas along with the molecule’s infrared profile (absorption bands and strengths) 

is added to the model.  From a molecular standpoint the radiative forcing depends on the 

total absorption of electromagnetic radiation by a molecule, especially within the so-
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called atmospheric window.  While it is established that the radiative forcing can vary 

significantly for different molecular species, the underlying chemical or physical causes 

for this variation have not been studied. That is, the GWP of different greenhouse gases 

measured over the same time horizon can vary significantly due to their inherent 

chemical natures. The purpose of the present research is to identify the underlying 

molecular properties that cause GWPs to vary so much amongst different types of 

molecules.  If one is to minimize the impact of anthropogenic materials on global climate 

change, it is necessary to design better materials that have minimal absorption 

capabilities in the atmospheric window or shorter atmospheric lifetimes.  A number of 

studies have addressed how to minimize the atmospheric lifetime of materials,13,14 

however no studies have addressed how to minimize the absorption capabilities of 

molecular species in the atmospheric window.  In the present report, we present new 

insights into how properties of a molecule influence the molecular absorption in the 

atmospheric window and the underlying molecular cause of global warming.  Theoretical 

methods used in the present study are detailed in the next section, followed by Results 

and Discussion, and then Conclusions in the final section. 

 

 

Theoretical methods 

 The determination of equilibrium structures for all molecules was performed 

using second order Moller-Plesset perturbation theory (MP2) in conjunction with a 

double zeta plus polarization and diffuse function basis set denoted DZP++ (indicating 
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that diffuse functions are included on hydrogen atoms).15-18 All ab initio electronic 

structure calculations were performed with the Q-Chem3.119 quantum chemistry 

program.  Harmonic vibrational frequencies and infrared (IR) intensities were computed 

using the same level of theory. The IR vibrational intensities were computed using the 

double harmonic approximation (i.e., mechanical and electrical harmonicity). Under the 

double harmonic approximation, infrared vibrational intensities are proportional to the 

square of the dipole derivatives.20 The Cartesian dipole derivatives obtained at the 

MP2/DZP++ level of theory have been transformed into the simple internal coordinates 

for each molecule in order to assess various molecular properties.  For simplicity, the 

simple internal coordinates used are limited to the bond distances and angles of the 

molecules concerned.  Intder2005,21 a code for vibrational analysis and nonlinear 

transformations of quartic force fields (including property force fields) has been used to 

transform the Cartesian dipole derivatives into simple internal coordinate derivatives.  

Results and Discussion 

Although carbon dioxide, methane and nitrous oxide are considered to be the 

main greenhouse gases, as discussed in the Introduction, there are others, especially the 

halocarbons. One interesting question then is what are the common dominating factors or 

collection of factors that make certain molecules effective greenhouse gases and others 

ineffective?  Our initial investigation led to the first observation:  certain bond stretch 

vibrational modes are ideally suited for occurring in the atmospheric IR window region 

(for purposes of this study, we have defined the atmospheric IR window to be 800 to 

1400 cm-1). These modes include C-F, C-Cl, C-Br, S-F, N-F vibrational stretches among 

other vibrational modes.  Some bond angle bending and torsions fall within the 
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atmospheric window and contribute to global warming albeit in a significantly lesser way 

for reasons that will be discussed below.  

To investigate further, collected in Table 1 are the summed IR intensities of 

several GHGs plus some other atmospheric trace molecules of interest.  Also included is 

the summed IR intensity for bands that occur in the atmospheric window, and the 

percentage of the total IR intensity that contributes to the bands occurring in the 

atmospheric window. The atmospheric lifetime and the GWPs (for a time horizon of 100 

years) are taken from Ref. 9.9   It is evident that some of the most effective GHGs have 

GWPs that are thousands of times that of CO2.  In fact, CFCs, which fall into this 

category, have been recommended for use in the Martian atmosphere to keep Mars warm 

and habitable.22 A systematic inspection into the IR vibrational frequencies and 

intensities of some of the most common HFCs and CFCs listed in Table 1 has led to 

following conclusions: 1) the IR absorption intensities within the IR atmospheric window 

are much larger than that of CO2 and therefore they are much more potent absorption 

agents than CO2; and 2) the percentage of the integrated vibrational absorption intensity 

that falls within the atmospheric window increases, up to as high as 99% of the total IR 

intensity, as more and more halogens are involved. These factors, boosted by very long 

atmospheric lifetimes contribute to making the HFCs, CFCs, PFCs, and other GHGs 

extremely potent compared to CO2 on a per molecule basis.  The data reported in Table 1 

highlights that it is not only the fact that these molecules posses long atmospheric 

lifetimes, but even more important is their inherent capability to strongly absorb radiation 

in the atmospheric window that make them worthy of attention.  The HFCs, CFCs, PFCs, 

and sulfur and nitrogen fluorides not only absorb in the atmospheric window, where no 
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other atmospheric molecules absorb, but do so very effectively.  The fact that for many of 

these molecules more than 85-90% of their IR absorption occurs in the atmospheric 

window was perhaps not well understood or not well appreciated.   

Comparison of the total IR intensity occurring within the atmospheric window for 

similar F and Cl containing molecules contained in Table 1 (e.g., CF4 vs. CCl4 or CHF3 

vs. CHCl3) shows that F containing molecules are much more effective greenhouse gases 

compared to Cl containing molecules.  In addition, we note that the molecule with the 

largest total IR intensity in the atmospheric window is SF5CF3 (1823 Km/mol), and while 

SF6 has a total IR intensity of 434 Km/mol in the atmospheric window, it is much smaller 

in comparison.  Of the molecules included in Table 1, only three molecules have a total 

IR intensity in the atmospheric window greater than 1000 Km/mol – CF4 (1403), CClF3 

(1199), and SF5CF3 (1823), but considering that the total IR intensity in the atmospheric 

window for CO2, CH4, and N2O is only 25.7, 44.1, and 13.6 Km/mol, respectively, even 

the compounds with total IR intensity in the atmospheric window in the hundreds of 

Km/mol are significant greenhouse gases. 

A systematic study of the HFCs and PFCs, see Table 2, reveal that with 

introduction of each F atom, more and more vibrational modes occur in the atmospheric 

window by virtue of the C-F bond stretch falling within the 800-1400 cm-1 region, while 

simultaneously each C-F stretch is becoming more intense.  Figure 1 shows graphically 

that as one introduces F, going from CH4 to CF4, the percentage of the total amount of IR 

intensity within the atmospheric window increases from 20% up to almost 100%.  It is 

important to emphasize that simultaneously the absolute IR intensity of the C-F stretches 
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increases along this series.  For example, the IR intensity per C-F bond in the CH3F to 

CF4 series is 117, 193.5, 253.7, and 350.8 Km/mol, respectively (see Table 2). 

 Under the double harmonic approximation a vibrational band IR intensity is 

proportional to the square of the dipole derivative. Therefore a large intensity is the 

manifestation of a larger dipole derivative. The dipole derivatives calculated for some 

GHGs in the simple internal coordinate system are presented in Table 3.  For a systematic 

test of the above we computed the dipole derivatives of the C-H, C-F, C-Cl, and N-F 

bonds for a series of molecules in the simple internal coordinate system. For the CH4, 

CH3F, CH2F2, CHF3 and CF4 series the individual dipole derivatives increase at first and 

then decrease slightly.  However, the integrated dipole derivative increases linearly as 

seen in Figure 2a. On going from CH4 to CH3F to CH2F2 the dipole derivative increases 

due to a greater electronegativity difference between C/F compared to C/H. However, the 

dipole derivative does not increase as one might have expected, and in fact it decreases 

on going from CH2F2 to CHF3 to CF4.  This can be rationalized by looking at the Figure 

3. Each additional F renders the central C more positive. As the ionic character or the 

oxidation state of the central C increases so does its electron attracting ability, i.e. 

electronegativity.  Therefore as the central C becomes more cationic in nature its absolute 

electronegativity increases and the electronegativity difference between it and the 

terminal fluorines decreases. The smaller electronegativity difference yields smaller 

dipole derivatives. However, the integrated dipole derivatives for the C-F stretching 

modes increases across the entire series as seen in Figure 2a. Likewise the dipole 

derivatives increase on going from NH3 to NH2F to NHF2 to NF3 (see Figure 2b).  

Figures 2b and 2d show that the integrated IR intensities increase even more rapidly 
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across both series due to the fact that they are proportional to the square of the dipole 

derivatives.  

 Fluorine, being strongly electronegative, forms very polar bonds with the central 

atom whether that be C or N.  Each additional F atom makes the central atom more 

positively charged by drawing electronic charge away, making all of the C-F or N-F 

bonds more and more polar across the series.  We have attempted to quantify this effect 

by computing a “bond dipole” using either Mulliken populations23 or the Natural 

Population Analysis (NPA).24 These are collected in Table 3 together with the percent IR 

intensity in the atmospheric window from Table 1, for comparison. We note that the 

electrostatic interaction between the central atom, which is positively charged, and the 

negatively charged terminal fluorine also causes gradual bond shortening.  The bond 

shortening acts as a mitigating factor for the bond dipole. Hence, although 

electronegativity difference between the central and the terminal atoms qualitatively 

decide the ionic nature of the bond, it is hardly the only contributing factor.25 Mulliken 

qualitatively broke down the dipole moment of a bond into four components; primary, 

overlap, hybridization and core.26 The primary moment originates due to 

electronegativity difference between atoms. While the electronegativity difference is one 

of the contributing factors to the overall asymmetry in the electronic cloud of the bond, 

other factors can also contribute and are sometimes dominant. Therefore an attribution of 

a trend in the dipole derivatives or even the bond dipoles to merely electronegativity 

differences of the atoms involved would be an oversimplification. Nevertheless, 

electronegativity differences play a vital role in creating asymmetry in the electronic 

environment of a bond, and in the case of the X-F bonds studied here is the dominant 
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contribution to the bond dipole. To summarize, the highly polarized nature of the X-F 

bond leads to a large dipole derivative; increasing the number of fluorine atoms bonded 

to a given central atom increases the total or integrated dipole derivative linearly as a 

function of the number of F atoms, leading to a non-linear increase in IR intensity.  

Therefore a combination of factors, 1) the X-F stretching frequencies falling within the 

atmospheric IR window; 2) the strong electronegativity of F; and 3) the typically long 

atmospheric lifetimes of compounds containing many fluorine atoms (since they do not 

usually readily react with OH) contribute towards making fluorine containing compounds 

the most effective global warming agents.   

 

Conclusions 

As a rule of thumb, a large atomic electronegativity leads to polar bonds by 

drawing charge from its bonding partner.  The total bond polarity or the bond dipole 

moment increases as the electronegativity difference increases, and a larger bond dipole 

yields a larger bond dipole derivative leading to a large IR intensity.  The total or 

integrated IR intensity for a given molecule, however, depends on the number of polar 

bonds, as well as the polarity of each bond. Therefore, since fluorine is highly 

electronegative, molecules containing several fluorine atoms are strong greenhouse gases 

and are much more effective warming agents compared to equivalent Cl and/or H 

containing species.  With the addition of each F, the integrated bond dipole derivative for 

the molecule increases linearly and hence the total IR absorption intensity increases 

dramatically. Moreover, the increased IR absorption contributes to a molecule’s radiative 
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forcing since the C-F stretching frequencies occur in the atmospheric window.  In 

summary, large dipole derivatives for the vibrational modes that fall within the 

atmospheric IR window yield very large integrated IR intensities for the HFCs, PFCs and 

CFCs – sometimes an order of magnitude more than that of the common greenhouse 

gasses like CO2, O3, N2O and CH4.  The insights developed in this study should help in 

better understanding the physical characteristics of greenhouse gases, and specifically 

what makes an efficient greenhouse gas on a molecular level.  It is hoped that the results 

from this study will be used in the design of more environmentally friendly materials. 
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Table 1. Atmospheric lifetimes, Global Warming Potentials (GWP), Integrated infrared 

absorption intensities, integrated infrared intensities in the atmospheric IR window and 

the per cent IR intensity in the Atmospheric window for some common greenhouse gases. 

Industrial Name Chemical 
name 

Lifetime 
Yrs 

GWP    
100 yr 

Int. IR 
Intensity 
Km/mol 

Intensity in 
Atmospheric 
window 
Km/mol 

 % 

Water H2O   159.0 0.0 0.0 
Carbon dioxide CO2 100a 1 594.5 25.7 4.1 
Nitrous oxide N2O 114 298 351.3 13.6 3.88 
Methane CH4 12 25 127.5 44.1 34.6 
Methyl fluoride CH3F 2.6 97 241.1 119 49.4 
HFC-32 CH2F2 4.9 675 535.6 406.3 75.9 
HFC-23 CHF3 270 14800 947.6 759.6 80.2 
PFC-14 CF4 50000 7390 1419.6 1403 98.8 
CFC-13 CClF3 640 14400 1225.63 1199 97.9 
CFC-12 CCl2F2 100 10900 979.79 970.1 99.0 
CFC-11 CCl3F 45 4750 707.4 705.2 99.7 
Methyl Chloride CH3Cl 1 13 109 26 23.9 
Methylene chloride CH2Cl2 0.38 8.7 198.7 168.5 84.8 
Chloroform CHCl3 0.5 30 333.7 327.6 98.2 
Carbon tetrachloride CCl4 26 1400 443.73 443.7 99.9 
Methyl bromide CH3Br 0.7 5 80.3 40.7 50.7 
HCFC-22 CHClF2 12 1810 769.3 742 96.5 
Ammonia NH3   278.02 217 78.0 
Nitrogen trifluoride NF3 740 17200 519.9 516.2 99.3 
Sulfur hexafluoride SF6 3200 22800 554.2 434 78.3 
SF5CF3 SF5CF3 >1000 18000 2029.5 1823 89.8 
Sulfur dioxide SO2   172.36 137.1 79.5 
Phosphine PH3   303.92 64.77 21.3 
Trifluorophosphine PF3   662.46 619.8 93.6 
Ozone O3   1802.2 1.69 0.1 
Oxygendifluoride OF2   76.44 75.91 99.3 
a - http://cdiac.ornl.gov/pns/current_ghg.html 


