around the outside of the tube. The bending block contains a pivot hole to be aligned with the pivot hole in the clamping/radius block. Once the tube has been clamped between the clamping/radius and top clamping blocks, the bending block is placed around the tube, the pivot holes are aligned, and a pivot pin is inserted through the pivot holes.

To bend the tube, the bending block is pivoted so that its semicircular groove slides along the tube, forcing the tube into the curved portion of the groove in the clamping/radius block. An arm that extends from the clamping/radius block and a similar arm that extends from the bending block provide mechanical advantage for generating bending torques and forces. These arms are actuated by turning a nut on a threaded rod that runs through holes in both arms.

To ensure a precise bend, one should measure the bend angle by use of a protractor at intervals during the bending operation. Even so, it is desirable to calibrate the tool in two ways: (1) measuring and/or calculating the increase in the bend angle for each turn of the nut and (2) measuring and/or calculating the amount of springback. Calibration should facilitate the approach to the final stage of bending (with a slight over-bend to allow for springback) with greater assurance that at the end, the tube will be bent to the desired angle within $\pm1/2^\circ$.