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strength are determined more accurately in discrete-source damage cases by using

an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-

based method. Improving accuracy of the residual strength training data would, in

turn, improve accuracy of the surrogate model. When combined, the surrogate model

methodology and high-�delity fracture simulation framework provide useful tools for

adaptive �ight technology.
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Nomenclature

E = elastic modulus (GPa)

ν = Poisson's ratio (mm/mm)

σy = yield stress (MPa)

STRI65 = quadratic triangular shell element in ABAQUS [1]

S8R = quadratic reduced-integration shell element in ABAQUS [1]

C3D10 = quadratic tetrahedral elements in ABAQUS [1]

C3D15 = quadratic wedge element in ABAQUS [1]

C3D20(R) = quadratic brick element (reduced-integration) in ABAQUS [1]

a = crack length (cm)

n = number of cracks in discrete-source

θ = orientation of discrete-source damage, angle between positive x axis and nearest crack

dx = distance from middle sti�ener to center of discrete-source damage (cm)

KI ,KII ,KIII = mode I, II, and III plane strain stress intensity factors (MPa
√
m)

KIc,KIIc = plane strain fracture toughness for modes I and II (MPa
√
m)

Pmax = damage-dependent allowable traction, residual strength (MPa)

P = applied traction (MPa)

MSE = mean squared error as de�ned by Eq. (2)

cv = correlation coe�cient as de�ned by Eq. (3)

CTD = magnitude of relative displacement between upper and lower fracture surfaces (mm)

CTDcrit = critical value of CTD (mm)

CTDI , CTDII , CTDIII = opening, in-plane sliding, out-of-plane shearing components of CTD

(mm)

d = �xed characteristic distance behind crack front where CTD is monitored (mm)

da = crack extension (mm)

(n) = script to denote mesh at nth crack increment

(n+ 1) = script to denote mesh at (n+ 1)th crack increment
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I. Introduction

Resilient aircraft control involves adaptive responses to o�-nominal �ight conditions, including

the incurrence of structural discrete-source damage during �ight. Discrete-source damage is typically

manifested as a result of a structural impact event, including hail- and birdstrike. In 2003, an Airbus

A300 operated by DHL was struck by a surface-to-air missile after takeo� from Baghdad, Iraq,

causing discrete-source damage to crucial control surfaces of the left wing [2]. In 2008, a Boeing

747-438 operated by Qantas Airways incurred in-�ight structural damage to the fuselage and right

wing leading edge following the failure of an onboard oxygen cylinder [3]. Although the aircraft

landed safely in both cases, these examples motivate a need for more resilient, adaptive control

system responses.

In these types of cases, problems associated with in-�ight discrete-source damage, for example

inability to sustain original design loads, can be exacerbated by crack propagation from damaged

regions. To avoid unstable crack propagation, load levels must be maintained below a reduced

load-carrying capacity, or residual strength, of damaged �ight structures. Adaptive control system

responses might include automatic adjustment of certain �ight parameters (e.g. velocity, maximum

acceleration) to accommodate structural residual strength. This accommodation implies that accu-

rate residual strength predictions of �ight structures with complex damage con�gurations be made

in real time, during �ight ; this capability currently does not exist for commercial aviation.

Challenges to developing an adaptive response technology include accurately predicting residual

strength of discrete-source damaged structures both o�ine (i.e. during control system design) and

online (i.e. in real time onboard the aircraft). In the o�ine context, researchers have developed

various tools for determining residual strength of thin, damaged metallic structures using elastic-

plastic fracture mechanics (EPFM)-based numerical methods. For example, two common �nite

element (FE) modeling techniques involve nodal release and adaptive remeshing. Both techniques

represent cracks geometrically [4]. The former, however, prescribes possible crack trajectories, which

introduces inherent mesh dependencies into fracture simulations and limits generality of crack path

predictions. Nodal release techniques have been used in 2D [5�12] and in 3D [13�15] for studying

crack growth parameters and predicting residual strength of structures where the crack path was
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known a priori and where mesh re�nement along the crack path su�ciently characterized growth

increments. Adaptive remeshing techniques avoid such mesh dependencies and enable simulation

of arbitrary crack propagation using evolutionary models or criteria [16�20]. Adaptive remeshing

techniques have been implemented in both 2D [21] and in 3D [22, 23]. Of the described techniques,

3D, adaptively remeshed, elastic-plastic tearing simulations provide the most general prediction

capabilities for crack growth and residual strength.

It is infeasible to perform a rigorous and computationally intensive crack growth simulation

within the possible short time span following a discrete-source damage event. Thus, an approxima-

tion, or surrogate model, is needed for making online predictions of residual strength. Queipo et al.

provided a complete description of surrogate modeling development and optimization [24]. With

regard to surrogate construction, they described both parametric (e.g. polynomial regression and

Kriging) and nonparametric (e.g. radial basis functions) approaches. In nonparametric approaches,

a global functional form relating system input to system response is not assumed.

Arti�cial neural networks (NNs) are a nonparametric surrogate modeling approach and are

trained to infer a nonlinear mapping from system input to system response, or output. The reader is

referred to [25] for an extensive methodology overview of the most widely used types of NN. Di�erent

types of NNs have been applied extensively for damage detection [26�32] and, to a much lesser extent,

for damage assessment. Ouenes et al. employed a NN methodology to predict fracture indicators

(e.g. density of fractures) in naturally fractured rock reservoirs as a function of various geological

and geophysical data [33]. Pidaparti et al. employed a NN to predict residual strength and corrosion

rate of aging aircraft panels with collinear multi-site damage by training with experimental results

and validating with both experimental results and analytical solutions [34]. Recently, Mohanty et

al. used a Gaussian process (GP) approach to predict fatigue crack growth in aluminum 2024-T351

specimens by training two distinct models, one presented with experimental load parameters as

input and another presented with piezoelectric sensor signals as input [35]. In that work, Mohanty

et al. used observed fatigue crack lengths and growth rates as known output for training each model.

Alternatively, NNs can be trained using results from numerical experiments, or simulations [36].

For example, Sankararaman et al. recently used linear-elastic fracture parameters computed from
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FE analyses to train a GP model as part of a method to statistically infer equivalent initial �aw

size in fatigue applications [37]. High-�delity numerical simulations can provide training data when

analytically- and experimentally-derived data are limited due either to a lack of generally applicable

analytical solutions or to prohibitive costs of obtaining su�cient experimental data.

The purpose of the work presented here is two-fold: (1) to illustrate a methodology for creating

a surrogate model as a real-time residual strength prediction tool and (2) to describe and validate

numerical tools for making accurate residual strength predictions o�ine using fully 3D, elastic-

plastic, FE-based crack growth simulations. The high-�delity, more computationally expensive tools

described in (2) can provide training data that, when coupled with the surrogate model methodology

described in (1), can be used in the design of adaptive response technology.

Consistent with our two-fold purpose, this paper is divided into two primary sections. Section II

illustrates the methodology for developing a surrogate model (in particular, a NN) that predicts

residual strength as a function of discrete-source damage parameters. The methodology is illustrated

using a relatively simple proof-of-concept example. The procedure for gathering training data

is described in IIA and IIB. Because an implementation-ready NN is beyond the scope of this

paper, training data for the proof-of-concept example relies on reduced-order residual strength

approximations. After collecting training data, a simple NN is constructed in II C by optimizing

certain performance parameters. Finally, a sensitivity study is conducted in IID to understand the

e�ect of each damage parameter on predicted residual strength speci�cally for the proof-of-concept

structure.

Section III improves upon o�ine residual strength prediction tools used in Section II by simulat-

ing 3D, elastic-plastic tearing. The tools provide more general crack growth simulation capabilities

and can be used to generate accurate residual strength training data. A relatively large, integrally-

sti�ened panel (ISP) that exhibits crack branching is simulated in III C to validate the tools.

Results and discussions from the NN proof-of-concept example and from the elastic-plastic tear-

ing simulation are provided in each respective section. Section IV o�ers a summary and conclusions

for the entirety of this work.
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II. Neural Network Development and Methodology

This section describes the development of a surrogate model for predicting residual strength of

discrete-source damaged aircraft structures in real time. A global functional form is not assumed

for the nonlinear relationship between residual strength and the damage parameters in�uencing it;

thus, a nonparametric surrogate model is developed. In particular, a supervised NN is considered

due to rapid prediction capabilities amenable to real-time applications. In Fig. 1, the upper dashed

region shows the generalized procedure for developing a NN (surrogate model) that predicts residual

strength as a function of parameterized discrete-source damage. The lower dashed region shows the

functionality of the NN (surrogate model) in a real-time context.

Fig. 1 Upper dashed box illustrates a general approach for developing a surrogate model to
predict residual strength of damaged structures. Lower dashed box illustrates how the sur-
rogate model would function onboard an aircraft for predicting residual strength of damaged
structures in real time.

The �rst step in this type of surrogate model development is typically referred to as design of

experiment (DOE) [24] and involves obtaining data points that will be used to train and test the

NN. The DOE should be based on the intended application of the NN. For example, if the NN is

intended to provide residual strength predictions in terms of maximum allowable bending moment

in a damaged aircraft wing, then the data points should be gathered using an appropriate wing

structure with applied boundary conditions of interest. Each data point includes sampled input

variable(s) and corresponding known system response(s), called target output. Once the NN has

been trained to map given input to target output, it becomes a useful tool for predicting system
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response when presented with new input that is within the training range but does not necessarily

correspond to data points used for training.

To illustrate the methodology, a simple NN is developed using a representative wing structure

and reduced-order (linear-elastic) approximations for predicting residual strength. The representa-

tive wing structure is a 61.0 x 91.4 cm2 integrally-sti�ened panel (ISP) with three blade sti�eners

each 5.1 cm in height, as shown in Fig. 2. The ISP skin and sti�eners are 2.3 mm thick. The panel

is modeled as linear-elastic with E = 71.0 GPa and ν = 0.33, similar to values for a 2XXX series

lower wing skin aluminum alloy (AA).

Fig. 2 Schematic of ISP model with dimensions similar to those used in [38]. Plan view (top)
and cross-section showing integral blade sti�eners (bottom). A damage-containing region is
modeled using 3D solid elements (enclosed in shell-solid boundary) while remainder of panel
is modeled with shell elements. All dimensions in cm.

Multiple FE models of the uncracked panel are constructed using ABAQUS R⃝ [1]. A shell-

solid modeling technique is employed, where each panel is modeled using 3D solid elements in a

region that will contain damage and shell elements elsewhere, as depicted schematically in Fig. 2.

In this way, 3D constraint is inherently captured along crack fronts using fully 3D solid elements,

while shell elements help maintain a level of computational e�ciency yet are able to capture out-

of-plane deformation and possible buckling. The shell and solid element regions are joined using

a coupling constraint, whereby resultant forces and moments acting at shell edge nodes on the

shell-solid boundary are distributed as forces acting at nodes located in a region of in�uence on the

7



solid surface of the shell-solid boundary. A mesh re�nement study is carried out to ensure adequate

discretization of the panel models. Uncracked panels are modeled using approximately 50 STRI65,

2000 S8R, and between 1800 and 17,300 C3D20R elements, depending on the size of the damaged

region. Boundary conditions for the ISP models are de�ned to emulate tensile loading conditions

for a region of the lower wing surface and are shown schematically in Fig. 2.

A supplementary study was carried out to determine shell-solid boundary e�ects on nearby

crack fronts in order to minimize the size of the solid region without a�ecting stress intensity factors

(SIFs) computed along nearby crack fronts. Maintaining fracture parameter accuracy is especially

important since fracture parameters are used to predict structural residual strength (described in

II B), which is in turn used to train the NN (described in IIC). The supplementary study considered

a 61.0 x 91.4 cm2 unsti�ened panel of the same (linear-elastic) material and thickness as the ISP

described above. The panel had a single, 12.7 cm long, centrally-located through-crack oriented in

the x direction (normal to applied tensile load). Both tensile and bending conditions were considered

in the study. The panel was modeled entirely with shell elements except for a region containing the

crack, which was modeled with 3D solid elements. All model parameters remained constant while

varying the size (both in-plane dimensions) of the square-shaped solid region, therefore varying the

distance from the shell-solid boundary to the crack front. The size of the solid region was initially

slightly larger than the length of the crack and was increased until computed SIFs converged. Results

from the supplementary study indicated that for a static, linear-elastic crack, the distance from shell-

solid boundary to nearest crack front should be no less than 25% of the crack length. This ensures

that the shell-solid boundary has negligible e�ect on computed SIFs. The same rule-of-thumb is

applied to the example ISP models described in the NN study.

The following sections describe the generally applicable methodology for developing a NN as a

real-time residual strength prediction tool.

A. Input Variables: Discrete-source Damage Parameters

Discrete-source damage in this work is represented by a symmetric, star-shaped, array of equi-

length cracks, as depicted in Fig. 3(b). This representation of discrete-source damage is motivated
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by observations of petaling caused by penetration damage to thin metallic structures, see Fig. 3(a).

If all of the cracks in the star-shaped array of Fig. 3(b) separate under load (i.e. there are no crack

closure e�ects), then the cracked region transfers no load and e�ectively represents a circular hole

with petaling edges, similar to that shown in Fig. 3(a). The damage representation is parameterized

by the four variables n, a, dx, and θ, which are postulated to in�uence residual strength of the ISP.

Fig. 3 (a) Petaling on the reverse side of a metallic sheet subject to explosive, discrete-source
damage [39]. (b) Schematic showing the representation and parameterization of discrete-
source in the NN example described in this work.

The sample space of damage con�gurations is de�ned by a range of values for each parameter.

Ranges can be speci�ed based on accident reports, photographic evidence, potential structural

threats, design speci�cations, and so forth. Inherently, the NN predictions are valid only for input

parameter values within the range of training data. Thus, it is necessary to de�ne the sample space

based on the particular NN application. In the example NN, ranges for each damage parameter

are limited to some extent by the ISP geometry. Each range is given in Table 1. The parameter

n, takes integer values ranging from two to six. The range of θ depends on n due to the de�nition

of orientation and the symmetry of the star-shaped con�guration. The range of a is de�ned in

terms of ISP bay width, from 1/8 ∗ baywidth to 1/4 ∗ baywidth. Due to symmetry of the ISP
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model, the parameter dx ranges from 10.2 cm (damage centered in mid-bay) to 0 (damage centered

at middle sti�ener). If the damage is located such that the damage-containing, solid FE region

overlaps anywhere with the middle sti�ener, the sti�ener is assumed to be severed in the damaged

region and is modeled explicitly as such.

Table 1 Range of values associated with each damage parameter in the example NN.

Damage Parameter Range

n 2-6

θ: n = 2 (deg) 0-90

θ: n = 3 (deg) 0-60

θ: n = 4 (deg) 0-45

θ: n = 5 (deg) 0-36

θ: n = 6 (deg) 0-30

a (cm) 1.27-5.08

dx (cm) 0-10.2

The damage parameter space is sampled to obtain damage con�gurations, each expressed as

a combination of input parameters (n, θ, a, dx). The space of variables can be sampled using a

number of di�erent sampling methods, including random, strati�ed, and Latin Hypercube [40].

Latin Hypercube Sampling (LHS) is a type of strati�ed sampling method that guarantees each

partition, or stratum, of input variable space is sampled, though not necessarily uniformly. In this

work, LHS is performed �ve times for each of the variables (θ, a, and dx). Each of the �ve LHS runs

corresponds to a di�erent value of n (two, ..., six cracks) and requires the number of partitions to

be speci�ed. The MATLAB R⃝ implementation for LHS is used here [41], where output is provided

in the range from zero to one. Each sample value is then scaled to the respective parameter range

according to Table 1.

Table 2 shows all damage con�gurations (26 in total) that are modeled in the ISP NN example,

where each con�guration is expressed in terms of sampled input parameters. For each damage

con�guration, the x and y dimensions of the square, damage-containing, solid FE region are provided

in the sixth column. The x and y dimensions are each 25% larger than the diameter of the star-

shaped damage (i.e. 1.25 ∗ 2a), as suggested by the supplementary shell-solid boundary e�ect study

described above. The last column speci�es whether or not the solid, damaged region severs the

middle sti�ener. If so, the portion of the sti�ener that intersects the solid model region is removed;
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otherwise the sti�ener remains intact.

Table 2 Damage con�gurations modeled in the ISP NN example. Each damage con�guration
is assigned an alphanumeric identi�cation with number corresponding to n. The sixth column
provides x and y dimensions of the square region in the shell-solid ISP.

Damage a dx θ n Solid region Severs

con�guration ID (cm) (cm) (deg) x,y dimensions (cm) sti�ener?

2A 3.8 7.1 21.8 2 9.39 NO

2B 4.2 2.1 87.8 2 10.48 YES

2C 3.0 3.6 2.2 2 7.53 YES

2D 1.4 0.2 35.7 2 3.49 YES

2E 2.3 9.9 36.5 2 5.66 NO

2F 4.5 6.1 44.9 2 11.25 NO

3A 3.7 8.3 5.0 3 9.36 NO

3B 1.5 0.6 25.2 3 3.72 YES

3C 2.9 9.6 23.2 3 7.15 NO

3D 4.0 3.7 32.9 3 9.88 YES

3E 4.6 1.7 10.4 3 11.56 YES

3F 2.0 6.3 38.6 3 4.92 NO

4A 1.7 6.5 6.6 4. 4.15 NO

4B 3.4 1.7 18.7 4 8.60 YES

4C 4.9 9.7 25.1 4 12.3 NO

4D 2.1 4.4 27.0 4 5.37 NO

4E 3.0 7.0 14.9 4 7.52 NO

5A 3.3 8.2 4.8 5 8.30 NO

5B 2.2 0.8 6.9 5 5.43 YES

5C 1.5 5.4 19.8 5 3.84 NO

5D 3.2 9.4 22.6 5 7.91 NO

6A 1.8 8.3 5.4 6 4.50 NO

6B 3.7 9.7 26.5 6 9.21 NO

6C 4.9 6.0 12.2 6 12.20 NO

6D 4.2 2.0 18.4 6 10.61 YES

6E 3.0 3.5 21.9 6 7.54 YES

B. Target Output: Residual Strength from Numerical Fracture Simulations

For each input damage con�guration, a numerical fracture simulation is employed to determine

residual strength, which provides target output used to train and test the NN. FRANC3D\NG [42]

is used to insert each parameterized star-shaped crack con�guration into the solid FE region of each

panel. An ABAQUS R⃝ contact algorithm is employed to prevent crack surfaces from overlapping

during the applied loading. Contact properties are de�ned as frictionless in the tangential direction

with �hard� pressure-overclosure behavior normal to the contacting crack surfaces, which minimizes
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interpenetration. The FE models are then analyzed using ABAQUS R⃝, and FE analysis results are

post-processed to determine residual strength.

For the sake of illustrating the NN methodology, two simplifying assumptions are made here

to predict residual strength of the ISPs. First, the ISPs remain linear-elastic and can be analyzed

using LEFM parameters (SIFs). Second, the residual strength can be predicted for a static crack

con�guration (i.e. crack growth is not modeled in this example).

In the ISP NN example, the LEFM approximation of residual strength is based on mixed-mode

I/II fracture criteria [16, 18] to account for local mode mixity (in-plane) of angled cracks in the

star-shaped damage array. In [43], Broek described a practical mixed-mode I/II failure envelope,

approximated by the equation of an ellipse:

(KI/KIc)
2 + (KII/KIIc)

2 = 1. (1)

For the AA 2XXX series material in the ISP example, KIc = 32 MPa
√
m, and KIIc is assumed to

be 10% less than KIc after results from the strain energy density criterion presented by Sih [18].

Using this mixed-mode LEFM-based approximation, residual strength is de�ned here as the

applied traction load, Fig. 2, that �rst causes unstable crack growth for any point along any crack

front of the star-shaped damage con�guration. In other words, as soon as one point along one crack

front reaches a critical combination (KI ,KII)c on the elliptical failure envelope, the entire panel is

assumed to fail. The method for determining the residual strength for each damaged panel is shown

in Fig. 4 and proceeds as follows: (1) analyze the ISP FE model with P ; (2) compute KI and KII

at each node along each crack front using FRANC3D\NG; (3) for each crack front node, �nd the

intersection point (KI ,KII)c of the elliptical failure envelope with a straight line from the origin to

the computed (KI ,KII) and subsequently �nd the linear scaling factor, λ, that maps (KI ,KII) to

(KI ,KII)c; (4) of all the computed scaling factors, select the most critical, λc; (5) calculate Pmax

as P scaled by λc.

To ensure that nonlinearity due to crack face contact does not invalidate the linear load scaling

approach described above, each of the damaged ISPs is reanalyzed with the respective scaled load,

12



Fig. 4 LEFM-based procedure for approximating residual strength of the damaged ISPs in
the NN example.

i.e. the approximated residual strength. In all cases, (KI ,KII) = (KI ,KII)c at the predicted crack

front failure point, indicating that the scaled loads indeed correspond to failure loads according to

the LEFM-based failure criterion assumed for this example problem. Values of Pmax provide the

target outputs used to train the NN.

C. Neural Network Construction

The inputs (sampled damage parameters) and target outputs (residual strength predictions from

numerical fracture simulations) are used to train and test a NN. For the ISP example, a feedforward

NN with a backpropagation learning rule [25, 44], which is a commonly used type of supervised

NN, is constructed using MATLAB R⃝ [41]. The NN consists of a single hidden layer mapping the

four-parameter input vectors (n, θ, a, dx) to the single-valued outputs (Pmax). The reader is referred

to [44] for a general discussion on NNs and details regarding speci�c implementation of the transfer

functions and training algorithm described next. A tan-sigmoid transfer function is employed to

map the weighted inputs plus bias to the interval (-1,1). A linear transfer function proportionally

maps the weighted output plus bias from the hidden layer to the output layer. Data presented

to the NN is divided into three sets�training, validation, and test. Weights and biases of the

NN are adjusted at each iteration, or epoch, using the training set and a Levenberg-Marquardt

optimization algorithm, as described in [45]. The algorithm seeks to improve performance of the

NN by minimizing error between the NN outputs and the target outputs. Weights and biases from
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training at any epoch are then used to check performance of the NN using the validation and test

sets. The validation set prevents overtraining of the NN by ceasing training if performance degrades

over a certain number of successive epochs. The test set is not used for training but is used to test

NN accuracy following the current training epoch. The NN performance metric used here is the

MSE, calculated as:

MSE(i) =
1

Q(i)

Q(i)∑
k=1

(t
(i)
k − pk)

2, (2)

where the superscript (i) corresponds to the training, validation, or test set, Q is the number of

data points in the respective set, tk is target output for the kth input, and pk is output predicted

by the NN for the same kth input.

The NN can be optimized by adjusting any number of parameters, including transfer functions

between layers, number of hidden layers, various performance metrics, and so forth. In the ISP

example, the NN is optimized by varying the number of neurons in the hidden layer (4,5,6) and by

increasing size of the training set from 60%, to 70%, to 80% of the available data (with the balance

equally divided between validation and test sets). Further, the performance metrics are optimized

by minimizing MSE for the training and testing sets and by specifying that the correlation coe�cient

between NN output and targets should be at least 0.95 over the entire data set.

D. Parametric Sensitivity Studies

The trained NN is then employed to conduct parametric sensitivity studies, whereby sensitivity

of residual strength to each postulated damage parameter is gauged. The sensitivity studies are

carried out for con�guration 4E, Table 2, as it represents an average damage con�guration in terms

of n, a, and dx as compared to the other con�gurations.

A sensitivity study is conducted out for each of the four damage parameters. In each study,

three damage parameters of con�guration 4E are held constant while one is varied. The variable

parameter in each study takes values in the range of the corresponding variable on which the NN

was trained. For example, the longest a considered in the sensitivity study is no longer than the

longest a used to train the NN, which is a = 4.9 cm in the ISP example (damage con�gurations
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4C and 6C). Further, the variable parameter takes values that are equally incremented within the

respective range. Results from the study are presented in the following subsection.

E. Results and Discussion from Neural Network Example

Table 3 shows the approximated residual strengths of all damaged ISPs based on numerical

fracture analyses and LEFM assumptions outlined in II B. The table is sorted in order of increasing

residual strength, and the corresponding damage parameters are provided to help draw preliminary

conclusions. One immediate observation is that panels with severed sti�eners have lower (≈ 50 −

80 MPa) residual strengths, as expected. The single exception is damage con�guration 2B. Though

it severs the sti�ener, con�guration 2B is less critical than all other sti�ener-severing cases and some

intact-sti�ener cases because it is an n = 2 con�guration (straight crack) aligned with the loading

direction. Overall, the correlation between severed sti�ener and reduced residual strength highlights

the e�ect of the load carrying sti�ener on crack criticality.

The ISPs with the lowest computed residual strength (con�guration 3D) and highest computed

residual strength (con�guration 5C) are presented in Fig. 5. Each ISP is depicted with its respective

residual strength, or failure load, applied. The predicted point of �rst-failure lies along the crack

front indicated. Con�guration 5C has more cracks and is 62.5% smaller than con�guration 3D,

though it is not the smallest of all con�gurations. More importantly, con�guration 5C leaves the

sti�ener intact while con�guration 3D results in a severed sti�ener. For con�guration 3D, the crack

front that lies within the severed region and near the geometric discontinuity of the sti�ener junction

is subjected to higher stresses and is predicted to be critical.

The optimal NN consists of four neurons in a single hidden layer with 80% of available data (i.e.

twenty damage con�gurations) allocated to training. NN performance metric (MSE) as a function

of training epochs is plotted in Fig. 6 for training, validation, and test sets. The NN is best trained

at epoch 141, beyond which the MSE in the validation set continually increases and overtraining

is said to occur. At this epoch, MSE of the three sets are MSEtrain = 0.001, MSEval = 0.87,

and MSEtest = 0.30. Weights and biases connecting the input layer (damage parameters) to the

hidden layer and the hidden layer to the output layer (residual strength) at training epoch 141 are
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Table 3 LEFM-based residual strength approximations for all damage con�gurations consid-
ered in the ISP example, sorted by increasing residual strength.

Damage a dx Severs Pmax

con�guration ID (cm) (cm) sti�ener? (MPa)

3D 4.0 3.7 YES 54.2

6D 4.2 2.0 YES 56.8

3E 4.6 1.7 YES 56.8

4B 3.4 1.7 YES 58.1

6E 3.0 3.5 YES 63.5

2C 3.0 3.6 YES 67.6

5B 2.2 0.8 YES 71.2

3B 1.5 0.6 YES 73.8

2D 1.4 0.2 YES 80.7

6C 4.9 6.0 NO 82.7

4C 4.9 9.7 NO 83.9

2A 3.8 7.1 NO 89.1

3A 3.7 8.3 NO 90.3

2B 4.2 2.1 YES 93.8

5A 3.3 8.2 NO 94.3

4E 3.0 7.0 NO 98.4

5D 3.2 9.4 NO 101.5

2F 4.5 6.1 NO 102.1

6B 3.7 9.7 NO 109.2

3C 2.9 9.6 NO 110.2

4A 1.7 6.5 NO 124.9

3F 2.0 6.3 NO 128.2

2E 2.3 9.9 NO 129.5

6A 1.8 8.3 NO 130.7

4D 2.1 4.4 NO 132.8

5C 1.5 5.4 NO 146.7

presented in Tables 4 and 5.

Considering the entire set of damage con�gurations, the NN predictions correlate well with the

target outputs at epoch 141, as depicted in Fig. 6. Despite the good overall correlation and small

MSE for the training set, the MSE in the validation and testing sets (which include only three

damage con�gurations each) may be too large for actual implementation onboard an aircraft. It is

suspected that adding more samples to the entire set of damaged ISPs would further reduce these

errors in the NN.

The in�uence of each damage parameter on predicted residual strength can be visualized graph-

ically by plotting predicted residual strength as a function of each damage parameter (see Fig. 7).

Sensitivity can be quanti�ed by a number of di�erent metrics, many of which yield comparable
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Fig. 5 Two di�erent damaged panels (ID 5C and ID 3D) shown with respective Pmax applied.
Panels represent damage con�gurations that are least critical (a) and most critical (b) of
all con�gurations considered. Predicted failure point lies along the indicated crack front.
Deformation is scaled by factor of 10. FE mesh is not shown for better contour visualization.

Table 4 NN weights and biases used to map input layer to hidden layer for the optimized NN
at training epoch 141.

Input
parameter

Hidden layer neuron

1 2 3 4

Weights

n -0.43 -2.98 -1.11 1.83

a 0.69 -9.17 1.61 -2.27

x 3.58 -0.15 1.50 -8.74

θ -1.53 2.87 -2.96 5.58

Biases -0.42 0.45 1.37 2.94

results [46]. Here, sensitivity is quanti�ed by the cv, expressed as a percentage:

cv =
σ

P̄max
, where σ =

√∑N
i=1(Pmax,i − P̄max)

2

N − 1
. (3)

For any given sensitivity subset, i corresponds to the ith sample con�guration, P̄max is the average
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Fig. 6 (a) NN performance as a function of training epochs for the optimized NN; overtraining
occurs after epoch 141. (b) Correlation between predicted and target residual strength values
considering all damage con�gurations.

Table 5 NN weights and bias used to map hidden layer to output for the optimized NN at
training epoch 141.

Hidden layer neuron Output

Weights

1 0.78

2 0.25

3 -1.70

4 1.05

Bias 1.29

residual strength of the subset, and N is the total number of damage con�gurations in the respective
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subset. Sensitivities to each damage parameter are calculated as c
(x)
v = 24.8%, c

(a)
v = 16.6%,

c
(n)
v = 6.0%, and c

(θ)
v = 1.2%.

Orientation and number of cracks are found to have relatively minor in�uences on predicted

residual strength, which is apparent both by their sensitivity metrics and by the plots (b) and (d)

of Fig. 7. Crack length, on the other hand, has a more signi�cant in�uence and causes a reduction

in predicted residual strength as crack length increases, which is expected. What is unexpected,

however, is the step-like behavior depicted in Fig. 7(c). This behavior is caused by binary modeling

of the sti�ener (explicitly modeling as severed or intact), a feature that is inherently implicit in

both crack size and location. The sti�ener e�ect is also apparent in Fig. 7(a) of damage location

sensitivity. Predicted residual strength is lowest (and relatively insensitive to damage location) if

the damage is located such that it severs the sti�ener. As the damage location moves away from the

sti�ener and is no longer severing it, there is a linear increase in residual strength until the damage

is located within the middle quarter of the bay.

In general, the importance of this kind of sensitivity study is (1) to gain a better intuition of how

and why certain damage characteristics in�uence residual strength and (2) to potentially decrease

the dimensionality of the NN by neglecting parameters deemed insigni�cant.

III. 3D Elastic-plastic Fracture Simulations for Improved Neural Network Training

For discrete-source damage cases involving signi�cant ductile tearing, a generally applicable

3D EPFM framework should be used for improving residual strength training data. An elastic-

plastic crack growth simulation procedure, as implemented in this section, is illustrated in Fig. 8

and proceeds as follows:

1. de�ne an uncracked FE model and boundary conditions;

2. extract a sub-region of the mesh for crack insertion, remeshing, and reconnection with the

global mesh;

3. map previous deformation and material state onto the remeshed model;

4. perform nonlinear FE analysis and monitor the crack growth criterion;
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Fig. 7 Sensitivity of predicted residual strength to each damage parameter.

5. once criterion is satis�ed, stop the current FE analysis to update crack con�guration, remesh

sub-region, and reconnect sub-region mesh with global mesh;

6. repeat from step 3 until critical crack length is achieved or until residual strength is attained.

The simulation procedure allows for prediction of curvilinear crack paths and arbitrary crack

front evolution. The EPFM framework was overviewed in [47] and is described here for completeness.

Additional details of the framework, including scripts used for implementation, are found in [48].

A. Nonlinear Fracture Parameter: Crack-tip Displacement

In elastic-plastic tearing simulations, especially of thin metallic structures, crack growth should

be characterized by an appropriate nonlinear parameter. One such parameter arises from correlation

between crack growth and a critical amount of opening or displacement behind the crack tip (see

[49] for details). A criterion based on this parameter, which is called the crack-tip displacement

20



Fig. 8 Elastic-plastic crack growth simulation algorithm using FRANC3D\NG. Contributions
from this work include evaluation of crack-tip displacement (CTD) criterion during nonlin-
ear FE analysis and implementation of material state mapping algorithm following adaptive
remeshing.

(CTD) or sometimes referred to as the generalized crack (tip) opening displacement [22, 50], is

implemented here. Notably in simulation, once a critical value, CTDcrit , has been determined for

a speci�c material and thickness through a calibration procedure, the same CTDcrit is applicable

over a range of structural con�gurations comprising the same material and thickness under similar

loading. In this work, CTD is computed as:

CTD =

√
CTDI

2 + CTDII
2 + CTDIII

2 (4a)

CTDI = v1 − v2 (4b)

CTDII = u1 − u2 (4c)

CTDIII = w1 − w2, (4d)

where u, v, and w correspond to displacements in the x, y, and z directions, respectively, and

subscripts 1 and 2 denote the two points used to compute CTD. CTD is computed between two

points that are initially coincident (one on each crack face) on the undeformed crack surface at

a distance, d, behind the crack front node (i.e. in the direction normal to the crack front at the
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particular crack front node). This is illustrated schematically in 2D in Fig. 9. In 3D, CTD values

are computed behind multiple crack front nodes. The pair of initially coincident points where CTD

is calculated is called a CTD point. Element shape functions are used to interpolate displacements

(u, v, w) such that the CTD points need not correspond to nodal locations.

Fig. 9 Simpli�ed schematic of CTD implementation illustrated on crack pro�le.

Crack growth occurs when CTD attains a critical value, CTDcrit, within a speci�ed tolerance.

There are several ways to evaluate the CTD criterion when modeling a 3D crack front, including

evaluation at a single CTD point either midway along the crack front or on the specimen's free sur-

face. Alternatively, the CTD criterion may be evaluated by comparing CTDcrit to an average CTD

value calculated for multiple CTD points. Because CTDcrit is known to depend on 3D constraint

at any point along a crack front, using a single CTDcrit to predict the advance of an entire crack

front might not be valid for all cases. A more rigorous and computationally expensive evaluation

technique would be to compare CTD at each CTD point to a constraint-dependent CTDcrit. While

some work has been done to resolve a relationship between 3D constraint and CTDcrit [20, 51], a

constraint-dependent fracture criterion is not evaluated in the simulation described here.

B. Material State Mapping Algorithm

Following crack growth and remeshing, state variables are mapped from the previous mesh to

the current mesh using an inverse isoparametric mapping routine, as in [52]. Lim et al. described

the inverse isoparametric mapping technique for 2D elastic-plastic fracture simulations [53]. Im-

plementation of the mapping algorithm consists of two high-level steps: (1) in the (n) mesh, state

variables stored at integration points are extrapolated to nodes using element shape functions and
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(2) displacements and state variables are transferred to either nodes or integration points in the

(n + 1) mesh. The second step involves �nding, for each point in the (n + 1) mesh, the natural

coordinates (ξ, η) of that point with respect to the element from the undeformed (n) mesh in which

that point would spatially reside. The inverse problem becomes �nding the natural coordinates

(ξ, η) that satisfy the known global coordinates:

X(n+1) = ΣNi(ξ, η)X
(n)
i , (5)

where the subscript i ranges from one to the number of element nodes, X(n) are global nodal

coordinates in the (n) mesh, X(n+1) are point or nodal coordinates in the (n+ 1) mesh, and N are

element shape functions evaluated at (ξ, η). Once (ξ, η) are known, nodal displacements and state

variables, U , can be transferred from the (n) mesh to the (n+ 1) mesh in a forward manner, again

using the element shape functions, N :

U (n+1) = ΣNi(ξ, η)U
(n)
i . (6)

Two levels of mapping are incorporated into the extended FRANC3D\NG and ABAQUS R⃝

software framework. First, displacements are mapped onto the undeformed mesh following crack

growth and remeshing. Second, a mapping function available in ABAQUS R⃝ is invoked to map the

remaining state variables (e.g. stress, strain, plastic strain) onto the deformed mesh. When mapping

material state between successive cracked con�gurations, it is critical that mesh re�nement in regions

of high gradients (e.g. near crack fronts) is su�cient to minimize solution di�usion, which occurs as

a result of extrapolation, interpolation, and nodal averaging (if employed). This e�ect can become

compounded as the crack growth simulation continues. After growing the crack and remeshing,

the updated mesh model contains additional surface area due to crack extension, and equilibrium

must be re-established before additional load is applied. During the equilibration procedure, global

boundaries are held �xed and the new, traction-free crack surfaces are allowed to displace in response

to surrounding �elds, as shown in Fig. 10.
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Fig. 10 Qualitative comparison of deformation and equivalent plastic strain �eld after mapping
and subsequent equilibration. Images show face of 3D mesh. Deformation is not scaled.

C. Validation Simulation

The EPFM framework for predicting crack growth and residual strength is validated by simu-

lating a stable tearing test of an ISP machined from a lower wing-skin aluminum alloy, C433-T39.

The test was conducted at Alcoa Technical Center. To illustrate the necessity of using an EPFM

framework for predicting crack propagation and residual strength in relatively thin metallic struc-

tures with discrete-source damage, the test is also simulated using an LEFM-based methodology.

In the LEFM simulation, the material is modeled as linear-elastic, and crack growth is assumed to

occur when an average value of KI along a crack front approximately equals fracture toughness of

the material for any increment of crack length.

Test details, data, and results were overviewed in [54] and have also been provided to the authors

by Alcoa Technical Center. Relevant details are described here for completeness, and additional

details from the test program can be found in [48]. Dimensions of the panel are shown in Fig. 11(a).

An initial two-bay saw cut of length ≈ 2.54 cm was made at mid-height to completely sever the

middle sti�ener. The initial cut was then propagated under fatigue loading until both crack fronts

were 2.54 cm short of reaching the intact sti�eners (2a ≈ 24.1 cm). The panel was then loaded
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monotonically in uniaxial tension until failure occurred by unstable crack growth. Crack front

branching was observed, where an initial crack propagating toward an intact sti�ener eventually

split into two distinct cracks, one continuing into the adjacent bay and one propagating in the z

direction within the sti�ener. Photographs of the test panel with views of crack branching are

provided in Fig. 12.

A 3D FE model of the entire panel is constructed using ABAQUS R⃝ [1]. The FE model contains

an initial crack of total length 24.1 cm, which corresponds to the fatigue crack length just prior to

conducting the residual strength test. The FE model with initial crack is shown in Fig. 11(b). The

mesh region that remains unchanged throughout the tearing simulation is modeled using 56 C3D15

and 9,400 C3D20R elements. A 38.5 x 12.7 cm2 sub-region centered in the panel is subject to

geometry and mesh updating within FRANC3D\NG. Depending on crack length, the sub-region

comprises between 27,000 and 95,000 quadratic elements, including a bulk of C3D10 elements and

a standard rosette of C3D15, C3D20, and pyramid (collapsed C3D20) elements surrounding the

crack front (see [42] for details). The mesh interface between the sub- and global regions is coherent,

obviating the enforcement of a coupling constraint.

The thickened grip ends of the panel are modeled as linear-elastic with an elastic modulus

approximately �ve times greater than that of C433-T39. The rest of the panel is assigned C433-T39

material properties: E = 71.4 GPa, ν = 0.3, and σy = 455 MPa [55]. The strain hardening curve

used for C433-T39 is provided in Fig. 13. A von Mises yield criterion with isotropic hardening is

assumed. For the LEFM simulation, the panel is modeled as linear-elastic with KIc = 50 MPa
√
m

for C433-T39 [55].

Boundary conditions are applied to simulate actual loading in the panel. Nodes on the bottom

face of the lower grip end are �xed in the y direction. Displacement is applied in the y direction at

nodes on the top face of the upper grip end. Additionally, nodes along the same top and bottom

grip end faces are �xed in the x and z directions. For the EPFM simulation, after each increment

of, inclusively, crack growth, remeshing, and material state mapping (see subsection III B), all

nodes with applied boundary conditions are held �xed while the model is brought into equilibrium

before applying additional displacement. Additionally, based on preliminary simulation results, the
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Fig. 11 (a) Schematic (not to scale) from [54] showing dimensions of symmetric ISP tested at
Alcoa Technical Center. Isoparametric view of full panel indicates �nal fatigue crack length
2ai, and cross-section view in plane of the crack shows where sti�ener is completely severed.
All dimensions are in cm. (b) Corresponding 3D FE model of ISP. Initial crack severs middle
sti�ener. Traction, P , is applied uniaxially in the y direction.

entire back (zmin) face is arti�cially �xed after mapping and during the equilibration procedure.

This is because resonance in the z direction is observed with increased crack growth otherwise.

The resonance occurs when mapped tensile and compressive stresses in the faces of the panel are

arti�cially reversed during equilibration of the mapped solution. The additional boundary condition

is, however, removed after the equilibration procedure so that z displacement is allowed during the

subsequent loading step.

Crack growth occurs in the LEFM simulation when the average KI value along either crack

front reaches KIc. A mixed-mode failure criterion is unnecessary, as KII and KIII are negligible
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Fig. 12 Photographs of ISP with central two-bay crack from the Alcoa test program [54]. Full
panel in load frame (left) and angled views of crack front branching into sti�ener (top right)
then exiting the sti�ener (bottom right).

Fig. 13 Strain hardening curve determined from uniaxial tension tests for C433-T39 in LT
orientation [54].

(i.e. <2.5% of KI for all crack growth increments).

For the EPFM simulation, CTDcrit was calibrated at NASA Langley Research Center from a

middle-crack tension (MT) test of the same material (C433-T39) and thickness as the ISP [56]. In

that work, 3D FE simulations of the MT test revealed that simulated load versus crack extension

matched experimental data when the mode I opening angle midway along the crack front at d =

1.02 mm reached a critical value of 6.5◦. This angle corresponds to CTDcrit through the relation

tan(6.5◦) =
CTDcrit

1.02
. (7)

The same criterion is applied in the EPFM simulation by specifying for both crack fronts that

CTDcrit must attain a value of 0.116 mm at d = 1.02 mm behind the crack front and that the

criterion be evaluated midway along either crack front.
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Crack growth occurs in increments of ≈1.15 mm (about 15% of the skin thickness), which is

selected to be approximately the same as that implemented by Seshadri et al. in a similar simulation

[56]. Straight crack fronts are enforced during crack growth in the skin of ISP. Upon entering the

intact sti�ener, a crack front is evolved such that (1) a realistic, arbitrary crack front pro�le is

represented (though the actual evolving crack front pro�le was not monitored during experiment)

and (2) the new crack front pro�le has relatively smooth curvature to facilitate remeshing. A cross-

section view of the panel in Fig. 14 shows di�erent stages of simulated crack front evolution, from

lead crack growth in the skin, to transition crack growth within the sti�ener, to complete branching.

The simulation proceeds as depicted in Fig. 8 until both initial crack fronts completely branch and

Pmax is attained.

Fig. 14 Cross-sectional views of ISP mesh model taken at the crack plane and magni�ed at
one sti�ener. A thickened red line is overlaid along the crack front(s) at each step of crack
growth. Views show lead bay crack before entering sti�ener(a); transition crack evolution
within sti�ener (b,c,d); and complete branching into two distinct crack fronts (e,f).

Evaluation of the CTD criterion becomes nontrivial as a crack front transitions within the sti�-

ener (i.e. while a crack front is within the sti�ener but has not completely branched). Constraint

e�ects introduced by the sti�ener on the unsymmetric crack front pro�le, along with slight z dis-

placement near the cracked region, lead to nonuniform and unsymmetric CTD values along the
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crack front. Evaluating the CTD criterion at only one point along the crack front becomes ambigu-

ous to implement numerically and less representative, physically, of 3D crack growth behavior. A

simple and e�cient approach to address these issues is to compare CTDcrit to an average of CTD

values along the crack front. For transition crack growth in the sti�ener, the middle third section of

CTD points along the crack front are averaged and evaluated to predict crack propagation. Once

the crack fully branches, the CTD criterion is again evaluated midway along each crack front.

D. Results and Discussion from Elastic-plastic Validation Simulation

The consequence of using LEFM versus EPFM simulation to determine residual strength is

made clear in Figure 15, which shows load versus crack extension for both LEFM and EPFM

simulations. Experimental load versus crack extension was not recorded during the tests; however,

maximum applied load is plotted for two di�erent ISP tests of the same material and loading

conditions. Load required to initiate crack extension is similar using either the EPFM or LEFM

method since there are no residual stresses in the model at da=0. Following initiation, however, the

EPFM simulation predicts that the applied load must be increased to maintain crack propagation.

The necessary increase in applied load occurs since a signi�cant amount of energy in the system is

dissipated through plastic deformation. This e�ect cannot be predicted by the LEFM simulation

since plasticity e�ects are not modeled. As a result, much of the energy in the ISP for the LEFM

simulation must be dissipated through creation of new fracture surface area, which means less load

is required to drive crack growth in the LEFM simulation than in the EPFM simulation. Using the

EPFM framework, residual strength is determined within 2% of experimental average of the two

tests. On the other hand, the LEFM method underpredicts the average residual strength by 64%.

Although the LEFM simulation does predict an increase in applied load at the sti�ener junction

due to geometrical e�ects, the increase is negligible compared to that due to plastic deformation.

From the EPFM simulation, equivalent plastic strain �eld evolution in the ISP is depicted

in Fig. 16 for the �rst and �nal crack steps. Accumulation of plastic strain in the wakes of the

advancing crack fronts is relatively signi�cant, extending from initial to �nal crack front locations.

The general shape of 45◦ contour lobes at da=0 mm is maintained at da=44 mm both for the lead
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Fig. 15 Applied load (traction P , Fig. 11(b), integrated over applied area) versus half-crack
extension, da, from ISP simulation. Maximum applied load is indicated for two corresponding
tests conducted at Alcoa Technical Center. Shaded region indicates initially intact sti�ener.

crack front extending into adjacent bay and for the crack front propagating in the z direction within

the sti�ener. At da=44 mm, the equivalent plastic strain in each sti�ener extends in the direction

of both contour lobes to the sti�ener boundary. The consistent contour lobe shapes indicate that,

despite increased z displacement as the crack propagates and severs initially-intact sti�eners, both

lead and branched crack fronts remain locally mode I dominant throughout tearing.

Finally, as evident in Fig. 16 for da=44 mm, the mapping procedure inevitably leads to imper-

fections in the �elds due to di�usion of the FE solution, which occurs in regions of high gradients

from repeated extrapolation and interpolation procedures, see III B. If mapping errors signi�cantly

a�ect crack growth predictions, mesh re�nement should mitigate this e�ect.

IV. Conclusions

A surrogate model methodology and 3D elastic-plastic fracture simulation toolset have been

presented, which enable accurate residual strength prediction of damaged structures in real time.

The methodology and toolset are particularly useful for scenarios involving metallic aircraft struc-

tures subject to discrete-source damage during �ight. An accurate prediction of structural residual

strength in these scenarios could aid in avoidance of catastrophic crack growth and subsequent

structural failure.
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Fig. 16 Magni�ed views of simulated crack growth in ISP at half-crack extensions da=0 mm
(top) and da=44 mm (bottom). Contours show evolution of equivalent plastic strain �elds
with crack growth. Deformation is not scaled. FE mesh is not shown for better contour
visualization. Complete simulation can be viewed at www.cfg.cornell.edu.

The surrogate model methodology relies on o�ine numerical fracture simulations to obtain a

set of data points describing residual strength as a function of discrete-source damage parameters.

Strictly for illustration, a NN has been constructed as a surrogate model for predicting residual

strength of a representative wing sub-structure subject to discrete-source damage. In the illustration,

o�ine residual strength values have been determined using computationally e�cient linear-elastic

fracture mechanics (LEFM) approximations. We have subsequently shown the consequences of

using LEFM approximations for determining residual strength of damaged metallic structures and
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have described an elastic-plastic fracture mechanics (EPFM) framework to accurately determine

residual strength using high-�delity, 3D, elastic-plastic tearing simulations. For an aluminum-alloy,

integrally-sti�ened panel exhibiting crack branching, residual strength is predicted within 2% of

experiment using an EPFM simulation and is underpredicted by 64% using an LEFM simulation.

The more general and rigorous elastic-plastic tearing framework should be used to generate ac-

curate residual strength training data, especially for cases involving discrete-source damage. Also,

the FE model for the structure of interest should include enough detail to fully capture the rela-

tionship between a particular global loading state and onset of unstable crack growth. Furthermore,

damage should be parameterized by taking into account onboard sensor characterization capability

and resolution. With these considerations in mind, the general surrogate model methodology cou-

pled with the EPFM simulation framework presented in this work provides a means of achieving

more resilient and adaptive aircraft control.
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