Abstract

Automatic Ground Collision Avoidance Systems (Auto-GCAS) utilizes Digital Terrain Elevation Data (DTED) stored onboard a plane to determine potential recovery maneuvers. Because of the current limitations of computer hardware on military airplanes such as the F-22 and F-35, the DTED must be compressed through a lossy technique called binary-tree tip-tilt. The purpose of this study is to determine the accuracy of the compressed data with respect to the original DTED. This study is mainly interested in the magnitude of the error between the two as well as the overall distribution of the errors throughout the DTED. By understanding how the errors of the compression technique are affected by various factors (topography, density of sampling points, sub-sampling techniques, etc.), modifications can be made to the compression technique resulting in better accuracy. This, in turn, would minimize unnecessary activation of A-GCAS during flight as well as maximizing its contribution to fighter safety.
Background

Controlled Flight Into Terrain (CFIT) is the #1 cause of fighter pilot fatalities and accounts for 25% of destroyed fighter aircraft. To prevent CFIT, Automatic Ground Collision Avoidance Systems (Auto-GCAS) utilizes Digital Terrain Elevation Data (DTED) stored onboard a plane to determine potential recovery maneuvers. Auto-GCAS has been successfully tested on the F-16 in a small area at Edwards AFB/Dryden Flight Research Center.

The military is interested in worldwide Auto-GCAS for F-22 and F-35 to maximize fighter and pilot safety, but because of current computer hardware limitations, worldwide DTED must be compressed for storage. This lead to research of DTED compression algorithms such as: thinning of data, binary/quad-tree tip-tilt, regular and irregular triangle networks, and fractals.

Materials and Methods

Binary-tree tip-tilt compression sub-samples DTED to a lower resolution and constructs regular rectangular slopes arranged in a regular pattern. Then the error is calculated by checking against the original DTED. Where the error is above a given tolerance, rectangular divisions are made and the process is repeated.

The truth data is 1 Arc Second National Elevation Data (35.1562°N to 35.2228°N and -117.499°W to -117.306°W) and comes in a matrix of elevation posts.

The test data is the compressed version of our truth data covering roughly the same geographical area. It is recorded in rows that contain the corners of the planes.

Preliminary Results

<table>
<thead>
<tr>
<th>Descriptive Statistics of Error Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Error</td>
</tr>
<tr>
<td>Absolute Mean Error</td>
</tr>
<tr>
<td>Standard Error</td>
</tr>
<tr>
<td>Percentage of Points Underestimated</td>
</tr>
</tbody>
</table>

Because the data sets come in different formats, it must be determined which plane contains each elevation post. Once this is determined, the difference or error is found by subtracting the height of the plane from the height of the elevation post. This will result in a matrix of error values that is the same size as the original DTED.

Discussion

The error values are largely dependent on the shape of the terrain as can be seen by comparing the two color plots. Wherever there is a quick change in elevation, the errors are high. 1% of the terrain is being underestimated. Compression algorithm is not supposed to be underestimating so this raises concerns. Requires further investigation of spatial distribution to see if certain areas are causing issue.

Future Areas of Interest

The following are research ideas to provide further information and improvements to Binary-Tree Tip-Tilt compression:

- Assess the horizontal accuracy of the DTED after compression
- Explore different sub-sampling techniques and determine the most efficient/most accurate
- Analyze how the error of the original DTED propagates through compression and decompression

References

Acknowledgements

I would like to acknowledge the STAR program for providing me with the opportunity to research at NASA. I would like to thank John Ryan for his time and effort spent mentoring me as well as Mark Skoog for providing direction. I would also like to thank Loyd Hook for answering my numerous questions about DTED and SarahKatie for providing me with datasets and pictures.