Human Exploration Telerobotics (HET)
Enabling Technology Development & Demonstration Program
Exploration Systems Mission Directorate

Terry Fong
Intelligent Robotics Group
NASA Ames Research Center
terry.fong@nasa.gov

30 September 2010
Context

“How do we use human-robotic partnerships to increase productivity, reduce cost, and mitigate risks?”

Objectives

• Improve the efficiency and productivity of human explorers
• Increase the return (science, engineering, etc.) of human missions
• Identify requirements, benefits, limitations, costs and risks of integrating advanced telerobotics into future exploration campaigns

Relevance to ETDD

• “Demonstration” project: FY11 to 13, test-driven, NPR 7120.8
• Provide focal point for integrating tools, techniques, and technology from “Foundational Domains” (HRS, ASA, etc.)
• Validate end-to-end systems that can be infused as flight experiments into future missions (NASA and international)

Disclaimer

• FY11 budget uncertainty: project scope & schedule are not final …
• Partnerships & collaborations are very important (especially now)
Overview*

Focus

• Robotics for human exploration (pre-cursor, assistant, & follow-up work)
• Advanced telerobotics: hardware, software, control modes, communications, & conops
• Use ISS as a testbed
 ▪ Orbit-to-Ground (OTG) experiments
 ▪ Ground-to-Orbit (GTO) experiments

FY11

• ISS crew remotely operates K10 rover (ground)
• Ground remotely operates Robonaut 2 on ISS
• Ops simulations with Centaur 2 & SPHERES

FY12

• ISS crew remotely operates multiple robots
• Ground remotely operates R2 & SPHERES on ISS

* from HET formulation plan (July 2010)
Team (Proposed)

NASA Ames Research Center
- Project management (lead)
- OTG: K10 experiment
- GTO: SPHERES experiment
- Science data systems

NASA Glenn Research Center
- Data communications (space)

Jet Propulsion Laboratory
- Middleware (RAPID)
- Robot User Interfaces
- OTG: ATHLETE experiment

NASA Johnson Space Center
- Project management (deputy)
- GTO: Robonaut 2 experiment
- OTG: Centaur 2 experiment
- Mission operations

NASA Kennedy Space Center
- Data communications (field)
Human Exploration Telerobotics (HET)

Technical Objectives*

• Remotely operate robots to support human exploration
 ▪ Different types: dexterous manipulators, free-flyers, planetary rovers
 ▪ Different modes of control: time-delay mitigated, supervisory, interactive
 ▪ Different conops: crew-centric, crew/ground shared, ground-centric
• Quantify benefits & limitations
• Demonstrate heterogeneous robots collaborating with human teams
• Implement large-scale participatory exploration
• Evaluate productivity, workload, safety, costs and performance
• Mature dexterous & human-safe robotics for use in space
• Conduct high-fidelity experiments involving ISS
• Develop approach to infuse prototype systems into missions

* from HET formulation plan (July 2010)
Approach

Test-driven Project
- Rigorous experimental plan
- Quantitative metrics & data
- Scientific peer & board reviews

Orbit to Ground
- Crew operates surface robot from flight vehicle
- NEO’s, Phobos-to-Mars
- Tasks: instrument platform, mobile manipulator, field work

Ground to Orbit
- Ground operates robot on flight vehicle
- Off-load routine & tedious work from crew to ground control
- Tasks: basic maintenance, inventory, payload experiment support

* from HET formulation plan (July 2010)
Candidate OTG Experiments*

Key Questions

• When is it worthwhile for astronauts to remotely operate surface robots from a flight vehicle during a human exploration mission?

• Under what operational conditions and scenarios is it advantageous for crew to control a robot from orbit, rather than a ground control team on Earth?

“Worthwhile”

• Increases human productivity

• Increases crew safety

• Reduces crew workload

• Reduces dependency on consumables

• Reduces mission risk

• Improves likelihood of mission success

• Improves science return

* from HET formulation plan (July 2010)
Candidate OTG Experiments*

Variables

- Robot configuration: form, function, autonomy, sensors, etc.
- Control mode: rate/position, interactive, supervisory, etc.
- User interface: planning, commanding, monitoring, analysis
- Comm link: bandwidth, latency, delay tolerance, QoS, etc.
- Tasks: “easy to automate” vs. “hard for a robot”
- Conops: crew-centric, crew/ground shared, ground-centric

Exploration tasks

- Mobile sensor platform (scouting, site survey, mobile camera)
- Dexterous mobile manipulation (payload deploy, sample collect)
- Field work (repetitive or long-duration tasks)
- Real-time support (contingency handling, emergency response, etc)

* from HET formulation plan (July 2010)
Candidate GTO Experiments*

Key Questions

• How can robots in space be safely and effectively remotely operated to enable more productive human exploration?
• Under what operational conditions and scenarios can robots be controlled by a ground control to improve how crew work in space?

Off-loading crew

• Tedious tasks (inventory, inspection, etc.)
• Routine tasks (in-flight maintenance)
• Repetitive tasks (science experiment manipulation)

Augmenting crew

• Force (manipulating large / bulky payloads)
• Vision (remote / mobile camera views)
• Assistant (another “set of hands”)

* from HET formulation plan (July 2010)
Candidate GTO Experiments*

Variables (same as OTG!)

- Robot configuration: form, function, autonomy, sensors, etc.
- Control mode: rate/position, interactive, supervisory, etc.
- User interface: planning, commanding, monitoring, analysis
- Comm link: bandwidth, latency, delay tolerance, QoS, etc.
- Tasks: “easy to automate” vs. “hard for a robot”
- Conops: crew-centric, crew/ground shared, ground-centric

Exploration tasks

- Equipment filter replacement
- Experiment maintenance and monitoring
- ISS inventory
- Atmospheric sampling
- Remote / mobile camera

* from HET formulation plan (July 2010)
Collaboration Opportunities

Education & Public Outreach

• Engage & inspire students (formal & informal education)
• Large-scale public participation (contribution & collaboration)

Communications

• Direct-To-Earth: more realistic NEO ops simulation
• DTN: for internetworked ops & delay tolerance
• Middleware: robotic command & control API (e.g., RAPID)

Experiments

• Share data on different approaches
• Use CSA or ESA user interfaces to operate NASA robots
• Use NASA user interfaces to operate CSA or ESA robots
• Test sites: laboratories, outdoor testbeds, analog sites