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The receptivity to freestream acoustic disturbances and the stability properties of hypersonic boundary layers are

numerically investigated for boundary-layer flows over a 5� straight cone at a freestream Mach number of 6.0. To

compute the shock and the interaction of the shock with the instability waves, the Navier-Stokes equations in

axisymmetric coordinates were solved. In the governing equations, inviscid and viscous flux vectors are discretized

using a fifth-order accurate weighted-essentially-non-oscillatory scheme. A third-order accurate total-variation-

diminishing Runge-Kutta scheme is employed for time integration. After the mean flow field is computed,

disturbances are introduced at the upstream end of the computational domain. The appearance of instability waves

near the nose region and the receptivity of the boundary layer with respect to slow mode acoustic waves are

investigated. Computations confirm the stabilizing effect of nose bluntness and the role of the entropy layer in the

delay of boundary-layer transition. The current solutions, compared with experimental observations and other

computational results, exhibit good agreement.

Nomenclature

� = streamwise wave number
Crecpt = receptivity coefficient
cp = specific heat at constant pressure
cv = specific heat at constant volume
E = total energy
e = molecular internal energy
F, G = inviscid flux vector in the axial and radial directions
Fv, Gv = viscous flux vector in the axial and radial directions
J = Jacobian matrix
k = thermal conductivity
M = Mach number
Pr = Prandtl number (�cp=k)
p = pressure
Q = state vector
q = heat flux
Re = Reynolds number
ReTB = transition Reynolds number based on the local

boundary-layer edge conditions on blunt cones
ReTS = transition Reynolds number based on the local

boundary-layer edge conditions on sharp cones
r0 = nose radius
S = source term, entropy
s = distance along the cone surface

T = temperature
u, v = velocity components in x and y directions
XT = estimated transition location
X = surface distance to onset of transition
XSW = entropy-swallowing distance
x, y = two-dimensional coordinates
x, y, � = axisymmetric coordinates
�ac, "ac = acoustic disturbance wave numbers in x and y

directions
� = specific heat ratio
� = molecular viscosity
� = acoustic disturbance incidence angle
� = density
� = shear stress
! = acoustic disturbance frequency
�, � = curvilinear coordinates

Subscripts

ac = acoustic
e = boundary-layer edge conditions
recpt = receptivity
SW = entropy-swallowing distance
TB = transition on blunt cones
TS = transition on sharp cones
v = viscous
1 = freestream conditions

I. Introduction

L AMINAR-TO-TURBULENT transition in shear flows occurs
due to the evolution and interaction of different disturbances

inside the shear layer. Though there are several mechanisms and
routes to go from a laminar to a turbulent state, most of them
generally follow these fundamental processes: receptivity, linear
instability, nonlinear instability, saturation, secondary instability, and
breakdown to turbulence.

The transition onset mainly depends on the boundary-layer
characteristics and the frequency, wave number distribution, and
amplitude of the disturbances that enter the boundary layer. The
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boundary-layer profiles depend on the flow parameters such asMach
number, Reynolds number, wall temperature, and model geometry.
In supersonic and hypersonic boundary layers, one important
geometrical parameter is nose bluntness. The effects of bluntness on
transition in supersonic and hypersonic boundary layers have been
studied experimentally [1–6] and numerically [7–13] by many
researchers. It was identified that the entropy layer that is formed near
the bow shock region persists for a long distance downstream and
makes the boundary layer more stable when compared to the sharp-
cone case. After the entropy layer and the developing boundary layer
merge together, the boundary layer becomes unstable. It was also
found that, in addition to the first- and second-mode instability
waves, other inviscid-type disturbances grow inside the entropy
layer. It is also observed that, with increasing bluntness, the sta-
bilizing trend is reversed in hypersonic boundary layers of cones.

Stetson [2] studied the effects of nosetip bluntness on the transition
onset for sphere-cone boundary layers at freestream Mach numbers
of M� 6 and 9. The investigation mainly concentrated on the
transition in the entropy-swallowing region. The variations of
XTB=XTS and ReTB=ReTS with XTB=XSW were plotted from the
measurements obtained with different nose bluntness and Reynolds
numbers. The results showed that, for XTB=XSW � 1, the local
transition Reynolds number is about two times higher than those of a
sharp cone, and the transition location is about 1.5 times higher than
those of a sharp cone. For XTB=XSW � 0:1, the local transition
Reynolds number is less than those of a sharp cone, and the
transition location is about four to five times higher than those of a
sharp cone. For XTB=XSW � 0:01, the local transition Reynolds
number is very small compared to those of a sharp cone, and the
transition location is about 1.5 times higher than those of a sharp
cone. It is speculated that the transition in these situations is
dominated by the nosetip flow and surface roughness near the nose
region. Recently, Reshotko [14] attempted to explain this behavior
using the transient growth theory.

Stetson et al. [3] investigated the stability of the laminar boundary
layer experimentally on a 7� half-angle blunt cone at a freestream
Mach number of M� 8. The experiments were performed with
different nose radii of 0.15, 0.25, 0.50, and 0.70 in. at a freestream
unit Reynolds number of 2:5 � 106=ft. The growth of the distur-
bances along the frustum were measured using hot-wire
anemometry. They found that the entropy-swallowing region
stabilized the boundary layer and increased the critical Reynolds
number to high values. The critical Reynolds numbers increased
from 5:1 � 106 to 10 � 106 when the nose radii increased from 0.15
to 0.25 in. They did not observe the transition on the body even with
the smallest nose radius of 0.15 in. at this Reynolds number. They
estimated that for this small bluntness case (Reynolds number based
on the nose radius is 31,250), the transition Reynolds number
increased by two times compared to the sharp-cone case. They also

identified disturbances growing outside the boundary layer, in the
entropy layer, indicating the existence of inviscid instability. They
attempted to correlate this growth of the disturbances with a
generalized inflection point in the entropy layer. However, the
measurements did not clearly reveal any generalized inflection point
in this region. This experiment was widely used in several linear
stability computations [8–10] and in direct numerical simulation
(DNS) studies [11–13].

Maslov et al. [4] conducted stability experiments on sharp and
blunt cones at Mach 5.92. They also measured the frequency spectra
of the disturbances in the boundary layer using hot-wire anemom-
etry. Their measurements also showed that bluntness stabilizes the
second mode and delays the boundary-layer transition downstream
compared to those in a sharp cone. An experimental investigation
was conducted on a 5� half-angle cone in a conventional Mach 6
wind tunnel by Horvath et al. [5] to examine the effects of facility
noise on boundary-layer transition. In addition, the effect of
bluntness at a freestream Reynolds number of 7:8 � 106=ft was
investigated for nosetip radii 0.0001, 0.03125, and 0.0625 in. The
corresponding Reynolds numbers based on nose radius are 65,
20,312, and 40,624. They found that the transition onsets shifted to
5.0, 9.25, and 12.25 in. with the increasing nose radius 0.0001,
0.03125, and 0.0625 in., respectively. Rufer and Schneider [6]
measured mass flux profiles over 7� half-angle sharp and blunt
(0.020 in. radius) cones to study the amplitude and growth of
instability waves. Schneider [15,16] also published additional
calibrated stability results of Stetson’s [3] experiment.

Malik et al. [8] performed linear stability computations for
Stetson’s [3] experiment. They computed the mean flow by solving
the parabolized Navier-Stokes equations with the initial conditions
obtained from the solution of the full Navier-Stokes equations. The
results were in agreement with Stetson’s observations that small
bluntness increases the critical Reynolds number by an order of
magnitude compared to the sharp-cone value and shift the transition
onset point downstream compared to the sharp-cone case. The
predicted frequency of the most-amplified disturbances was about
10% higher than what was measured in the experiment. The growth
rate of the most-amplified disturbances was overpredicted by about
60% compared to the experiment. It was also established by the
computations that the effect of unit Reynolds number observed in the
aeroballistics range data of Potter [1] was in fact a nose bluntness
effect. Esfahanian [9] and Rosenboom et al. [10] also performed
linear stability analysis for Stetson’s experiment. Their results
generally agreed with the earlier computations [8] and overpredicted
the growth rate of themost-amplified disturbances compared to those
found in the experiment. Rosenboom et al. also calculated the
transition onset using the eN method and found that the critical
Reynolds number and the transition onset monotonically increased
with bluntness. Based on an N Factor value of 4.5, the predicted

r0
Nose

M=6.0

pac= a exp( i (αacx ± εacy - ωt))+c.c

X

Y

Outer boundary

θc

M∞ = 6.0

Re = 7.8×106/ft., 15.6 ×106/ft.

T∞ = 113.98 ° R

Twall = Adiabatic

Leading edge radius r0 = 0.001, 0.01, 0.05, 0.10 in.

Cone half-angle = 5 degrees.

Fig. 1 Schematic diagram of the computational model.
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transition onsets for the second-mode instability shifted downstream
0.57, 0.90, 3.5, and 8.8 m as the nose radius increased 0, 3.81, 17.78,
and 42.67 mm, respectively.

Zhong andMa [11,13] and Zhong [12] also investigated the effect
of nose bluntness on the linear stability and the receptivity of the
hypersonic flow over Stetson’s blunt cone. They performed detailed
linear stability analysis and DNS studies of wave developments
inside the boundary layer. They superimposed unsteady-plane fast-
acoustic waves in the freestream and investigated the evolution of
different modes inside the boundary layer. Their linear stability
calculations were comparable to the previous computations [8–10].
Their receptivity simulations revealed that the fast acoustic modes
generate the stable modes near the nose region and, as these modes
evolve downstream, they generate the Mack’s second mode near the
synchronization point in the eigenvalue diagram.

In previous work [17,18], we have investigated the interaction of
forced slow and fast acoustic waveswith hypersonic boundary layers
over sharp-flat plates, wedges, and cones. The results showed that for
flows over sharp-flat plate cases, the instability waves are generated
very close to the leading edge, and the receptivity coefficient of the
instability waves generated by the slow acoustic wave is about five
times the amplitude of the freestream acoustic waves. It was also
found that the receptivity coefficient of the slow acoustic wave is 20
times larger than the fast acoustic waves. For flows over sharp-cone
cases, the receptivity coefficient is about 10 for slow acoustic waves,
and for the fast acoustic waves it is about 67 times smaller.
Balakumar [19] performed computations for a blunt flat plate with
thicknesses of 0.0001 to 0.01 in. and a wedge of 10� half-angle with
different leading edge radii of 0.001 and 0.01 in. to find the effect of
nose bluntness on the stability of two-dimensional supersonic
boundary layers at a freestreamMach number ofM� 3:5. He found
that bluntness had a strong stabilizing effect on two-dimensional
boundary layers and that the boundary layers on wedges were far
more stable than on blunt flat plates.

The objective of this work is to investigate the effect of nose
bluntness on the hypersonic boundary layer over blunt cones and to
estimate the transition Reynolds number based on the eN criteria, as
well as to compute the receptivity coefficient of the instability waves
generated inside the boundary layer. To investigate the effect of the
Reynoldsnumberbasedonnose radii, simulationswereperformed for
different leadingedge radii,wherer0 � 0:001, 0.01,0.05, and0.10 in.
at a unit Reynolds number of 7:8 � 106=ft for a 5� half-angle cone. To
differentiate the unit Reynolds number effect from the nose Reynolds
number effect, one simulation is performed at a higher unit Reynolds
number of 15:6 � 106=ft with 0.05 in. nose bluntness. These
parameters yieldReynoldsnumbers basedon thenose radius that vary
from 650 to 130,000. The results consist of (1) mean flow profiles,
linear stability, and transition onset Reynolds numbers for different
nose radii and (2) receptivity coefficients for different nose radii.

In an earlier study by the current authors [18], our simulation code
was validated against the experimental and theoretical data available
in the literature. In that work, steady flow features such as shock
standoff distance, bow shock shape, and wall-to-total temperature
ratios were compared to experimental results and very good agree-
ment was found. Density profiles at various downstream locations
were also compared to self-similar boundary-layer solutions for each
simulation and very good agreement was found.

For this study, we have selected the flow conditions and geometry
used byHorvath et al. [5]. A schematic diagram of the computational
setup is depicted in Fig. 1. The nose radius was varied between
r0 � 0:001 and 0.10 in., and the flow near the nose was resolved by
using a sufficiently dense computational grid. Boundary conditions
used in these simulations are described in section III.

II. Governing Equations

The equations solved are unsteady, compressible, axisymmetric
Navier-Stokes equations in conservative form, as shown below:
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where Q is the state vector, and F and G are the axial- and radial-
direction inviscid flux vectors given by:
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and Fv and Gv are the axial- and radial-direction viscous and heat
conduction flux vectors given by:
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The vector S contains source terms resulting from axisymmetric
formulation.

The source term, viscous stresses, and heat fluxes have the
following form:
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Singularity exists along the symmetry axis of y� 0. To remove the
singularity we apply l’Hopital’s rule to the source term and take the
limit of the resulting equations as y! 0, using symmetry conditions
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After applying the same procedure, viscous stresses and heat
fluxes have the following form:
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Here, �x; y� represent the two-dimensional coordinates, �x; y; ��
are the axisymmetric coordinates, �u; v� are the corresponding
velocity components, � is density, andp is pressure. The total energy
E is:

E� e� u
2 � v2
2

e� cvT; p� �RT

Here, e is the molecular internal energy and T is temperature.
The viscosity (�) is computed using Sutherland’s law (��

c1T
3=2=�c2 � T�, where c1 � 7:30246E � 7 and c2 � 198:7�R)

with no correction for low temperature, and the coefficient of
conductivity is given in terms of Prandtl number (Pr� 0:7). For
computation purposes, the equations are transformed from the
physical curvilinear coordinate system �x; y� to a computational
coordinate system ��; ��. The transformed governing equations are:
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III. Solution Algorithm

In the governing equations, inviscid and viscous fluxes were
discretized using a fifth-order accurate weighted-essentially-non-
oscillatory (WENO) scheme, and a third-order total-variation-
diminishing (TVD) Runge-Kutta (RK) scheme was employed for
time integration. Shu [20] explains theWENOand the TVDmethods
and the formulas. Atkins [21] gives the application of the essentially-
non-ossillatory (ENO)method to theN-S equations. Balakumar et al.
[22] describe in detail the solution method implemented in this
computation.

These methods were suitable for flows with discontinuities or
high-gradient regions. These schemes solved the governing equa-
tions discretely in a uniform structured computational domain, in
which flow properties are known at the grid nodes. WENO scheme
approximates the spatial derivatives in a given direction to a higher
order at the nodes, using the neighboring nodal values in that
direction. The TVD-RK scheme integrates the resulting equations in
time to acquire point values as a function of time. Since the spatial
derivatives were independent of the coordinate directions, the
method could easily include other dimensions. It is well known that
approximating a discontinuous function by a higher-order (two or
more) polynomial generally introduces oscillatory behavior near the
discontinuity, and this oscillation increases with the order of the
approximation. The ENO scheme and the improvement of these
WENO methods were developed to keep the higher order approx-
imations in smooth regions and to eliminate or suppress the
oscillatory behavior near the discontinuities. They were achieved by

systematically adopting or selecting the stencils based on the
smoothness of the function, which was being approximated.

At the outflowboundary, an extrapolation boundary conditionwas
used. No-slip, no-penetration, and adiabatic wall conditions are
enforced at the wall. Density on the wall was computed from the
continuity equation. In the mean flow computations, the simulation
prescribed the freestream values at the outer boundary, which lay
outside the bow shock. In the unsteady computations, the acoustic
perturbations were superimposed to the uniform mean flow at the
outer boundary. The procedure was to first compute the steady mean
flow by performing unsteady computations, using a variable time
step until the maximum residual reached a small value of �10�11.
These computations used a Courant-Friedrichs-Lewy (CFL) number
of 0.2. The next step was to introduce unsteady disturbances at the
upper boundary of the computational domain and to perform time-
accurate computations to investigate the interaction and evolution of
these disturbances on downstream direction.

The two-dimensional computational grid is generated using
orthogonal curvilinear coordinates ��; ��, representing downstream
and wall-normal coordinates, respectively. The grid was stretched in
the � direction, close to the wall, and was uniform outside of the
boundary layer. In the � direction, the grid was veryfine near the nose
andwas uniform in the flat region. For the simulation, it was assumed
that the flow is axisymmetric. The outer boundary that lay outside the
shock followed a parabola, so that the boundary-layer growth could
be captured accurately. The computational domain extended from
x��0:015 to 36.0 in. in the axial direction, depending on the
bluntness. Calculations were performed using a grid that had 32
blocks with 127 � 251 grid points for each block, where the
computational domain has approximately one million grid points.
Grid refinement studies were also performed with different grid
distributions in the x and y directions. Because of the very fine grid
requirement near the nose, the allowable time stepwas very small and
the computations became too expensive to simulate the unsteady
computations in the entire domain. In the nose region, about 20,000
to 50,000 time steps per cycle were required depending on the
bluntness and the frequencies that were simulated. To overcome this,
calculations were performed in two steps. First, the computations
were done near the nose region with a very small time step. Second,
the flow properties in the middle of the domain were fed as inflow
conditions for the second larger domain so that the computations
were carried out with a larger time step.

The acoustic field that impinged on the outer boundary was taken
to be in the following form:

p0 � Realf ~pei�acx	i"acy�i!tg

Here �ac and "ac were the acoustic wave numbers in the x, y
directions, and ! is the frequency of the acoustic disturbance. The
wave number in the y-direction, "ac, determines the incident angle of
the acoustic waves; we made computations for zero incident angle
"ac � 0:0.

IV. Results

Computations were performed for hypersonic flows at a
freestream Mach number of 6.0 over a 5� half-angle cone with
blunt noses. The flow parameters are given in Table 1. The inviscid
conditions, downstream of the shock, on the surface of a sharp cone
are given in Table 2. Figure 1 shows the schematic diagram of the
computational setup. The nose region of the cone was modeled as a
circle of the form:

�x � r0�2 � y2 � r20

Here, r0 is the nose radius. Simulations were performed for the
nose radii of r0 � 0:001, 0.01, 0.05 and 0.10 in. at a unit Reynolds
number of 7:8 � 106=ft. This providesRer0 (Reynolds number based
on nose radius r0) as 650, 6500, 32,500, and 65,000. To achieve
higher Rer0, two computations were performed at a higher unit
Reynolds number of 15:6 � 106=ft for the nose radii of r0 � 0:05 and
0.10 in.. The various cases are summarized in Table 3.
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A. Linear Stability: Similarity Profiles

The linear stability results for the axisymmetric similarity
boundary layers, over the 5� half-angle sharp cone at a freestream
Mach number of 6.0, are presented in Fig. 2. Details about the linear
stability analysis can be found in the appendix of [23]. Figure 2a
shows the neutral stability diagram in �pRex; F� and �

p
Rex; ��

planes for two-dimensional disturbances. The figure shows the first-
and second-mode unstable regions and the variation of the wave
number with the Reynolds number. Figure 2b shows the N-Factor
curves at different frequencies. Here, the variables are non-
dimensionalized by thevariables at the edge of the boundary layer. To

obtain the variables nondimensionalized by the freestream values as
given in Table 1, the variables in this section should be multiplied by
the corresponding factors from Table 2. The frequency variable F
must be multiplied by 1.174 to obtain the values in terms of
freestream values.

The neutral stability curve clearly shows the unstable regions at the
first and second modes, and they merge at a Reynolds number ofp
Rex � 1600 for the cone. The transition Reynolds numbers based

on anN-Factor of 10 is about 3750, and themost amplified frequency
is F� 0:78 � 10�4. To get the most-amplified frequency in terms of
freestream values, we have to multiply F� 0:78 � 10�4 by 1.174,
which gives 0:916 � 10�4.

B. Mean Flow

Figure 3 shows the mean flow density contours. Figures 3a–3e
depict the results for the 5� half-angle cone at different nose radii of
r0 � 0:001, 0.05, 0.10, and 0.10 (at two times the unit Reynolds
number) in. Smaller nose radius cases at r0 � 0:001, 0.05, and 0.10
were performed at a unit Reynolds number of 7:8 � 106=ft, which
yielded Reynolds numbers based on the nose radii varying from 650
to 65,000. Figure 3e shows the results obtained at a higher unit
Reynolds number of 15:6 � 106=ft with r0 � 0:10, which yields the
Reynolds number based on the nose radius of 130,000. Figure 3a
shows the density contours in a larger domain and the other figures
show the flow field near the nose region. The boundary-layer edge
values for the small bluntness case of r0 � 0:001 are seen in Table 2.
The simulation results of the small bluntness case of r0 � 0:001
agree very well with the results of the sharp-cone case with the
conical flow assumption. One interesting observation is that the
inviscid density contours and the shock locations are the same
between Figs. 3d and 3e, which were obtained with the same
bluntness of r0 � 0:10 but at different unit Reynolds numbers of 7.8
and 15:6 � 106=ft. This can probably be explained by the fact that
freestream values were held constant so that the change in Reynolds
numbermust have been caused by theviscosity,which does not affect
the inviscid part of the flow if the boundary layers are thin. The
shocks are located approximately at 0.0002, 0.008 and 0.016 in.
upstream of the leading edge for the cases of r0 � 0:001, 0.05, and
0.10, respectively.

Figures 4a and 4b show the effect of grid refinement on the density
profiles for two bluntness cases r0 � 0:001 and 0.10 in. The
computations were performed using 251 and 401 points in the y-
direction and keeping the number of points in the x-direction the
same. As can be seen, the solutions obtained from both grids are the
same except near the shock, where, as expected, the shocks become
sharper with the finer grid. The density profiles at different axial
locations are plotted in Fig. 5a–5d for different bluntness cases of
r0 � 0:001, 0.05, 0.05 (Re1=ft� 15:6 � 106), and 0.10 in. in the
similarity coordinates. The compressible Blasius similarity profile is

Table 2 Flow parameters at the edge of the

boundary layer for a sharp cone

�Var:�s=�Var:�1 Sharp cone Cone, r0 � 0:001 in:

Mach number 0.931 0.932
Pressure ratio 1.547 1.560
Density ratio 1.367 1.372
Temperature ratio 1.133 1.137

Table 3 Parameters used

in the computations

r0, in. Re1, =1 Rer0

0.001 7:8 � 106 650
0.01 7:8 � 106 6500
0.050 7:8 � 106 32,500
0.100 7:8 � 106 65,000
0.050 15:6 � 106 65,000
0.100 15:6 � 106 130,000
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Table 1 Flow parameters for Horvath et al.’s [5] wind tunnel model

Freestream
Mach number M1 � 6:0
Unit Reynolds number Re1 � 7:8 � 106=ft
Density �1 � 7:059 � 10�3 lbm=ft3

Velocity U1 � 3140:21 ft=s
Reservoir Pressure P0 � 475 psi
Reservoir Temperature T0 � 475�F
Wall temperature Adiabatic condition
Prandtl number Pr� 0:70
Ratio of specific heats � � 1:4
Length scale (x0 � 0:5 in:)

���������������������
	1x0=U1

p
� 7:30882 � 10�5 ft

The nondimensional frequency F� 2
	1f
U2
1

, F� 1:0 � 10�4. f� 390 kHz

Local Reynolds number
��������
Rex
p ������

Ues
	e

q
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also included for comparison. Here, the similarity parameter � is
defined as

�� yn�����
	es
Ue

q

where yn is the distance normal to the surface, s is the distance along
the surface of the cone, and 	e andUe are the kinematic viscosity and
the tangential velocity at the edge of the boundary layer. The
difference between the density profiles with the bluntness and the
similarity profiles increases with the bluntness. It is seen that, for the
small bluntness case of r0 � 0:001 in:, the boundary-layer profiles
approach the similarity profiles at about x� 0:5 in. It was also found

that, for the case of r0 � 0:01 in:, this occurred around x� 7:0 in.
For the larger radii of 0.05 and 0.10 in., the boundary-layer profiles
did not approach the similarity profiles within the respective
computational domains of x� 25 and 40 in., which are closer to the
transition onset points. Figures 5e and 5f depict the density profiles
for r0 � 0:05 and 0.10 in. in the physical coordinate.

Figures 6a–6d depict the entropy contours for different bluntness
cases of r0 � 0:001, 0.05, 0.10, and 0.10 (Re1=ft� 15:6 � 106) in.
Here, the entropy is computed from

S� �

� � 1
ln
�
T

T1

�
� ln

�
p

p1

�

Fig. 3 Contours of the density for flow over a cone with different ranges of bluntness at M � 6:0. (a) and (b) r0 � 0:001 in:, Re� 7:8 � 106,

(c) r0 � 0:05 in:, Re� 7:8 � 106, (d) r0 � 0:10 in:, Re� 7:8 � 106, (e) r0 � 0:10 in:, Re� 15:6 � 106.
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For the small nose radius r0 � 0:001, only the boundary layer
appears near the nose region, and the entropy layer is not
discernable in the outer part of the boundary layer. For the larger
nose radii, the entropy layer that was visible near the nose region
persisted downstream and eventually merged with the boundary
layer. Figures 7a–7d show the entropy profiles at different axial
locations for different bluntness cases. As was observed in the
contours, any discernable entropy layer also appears for the small
bluntness cases. For the nose radius r0 � 0:05, two layers are clearly
seen in the profiles at x� 0:50 and 1.0 in. One layer, the viscous
boundary layer, exists very close to the wall with large gradients,
and the other, the inviscid entropy layer produced by the bow shock
near the nose, exists away from the wall with small gradients. The
outside entropy layer and the boundary layer become as a single

layer beyond x� 2:0 in. As the boundary layer grows downstream,
it gradually absorbs the lower part of the entropy layer, and the
entropy layer shrinks and moves toward the wall. It is seen that the
boundary layer completely swallowed the entropy layer by
x� 8 in:, and beyond that the boundary layer grows as in the sharp-
cone case. At larger nose radii, the two layers are more evident
(marked by BL and EL in Fig. 7c), and the merging occurs at larger
distances from the nose. For the bluntness case of r0 � 0:10, the two
layers merge close to x� 5:0 in:; for the case of r0 � 0:10, with a
larger unit Reynolds number, the merging occurs close to
x� 5:0 in:, which is equivalent to 10.0 in. when it is converted to
the same unit Reynolds number. Figures 7c and 7d show that
swallowing of the boundary layers occurs at about x� 20 and
30 in., respectively, for both cases.
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Fig. 5 Mean density profiles at different X locations using similarity coordinates for (a) r0 � 0:001 in:, Re� 7:8 � 106, (b) r0 � 0:05 in:,
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C. Linear Stability: Blunt Cones

Figures 8a and 8b show theN-Factors and the growth rates for the
most-amplified disturbances [23]. They were computed using the
mean profiles obtained from the numerical simulation for different

bluntness at r0 � 0:001, 0.01, 0.05, and 0.10 with the unit Reynolds
number of 7:8 � 106=ft, as well as for r0 � 0:05 and 0.10 with the
higher unit Reynolds number of 15:6 � 106=ft. For purposes of
comparison, the results for the Blasius similarity profiles, which

Fig. 6 Contours of entropy for flow over a cone with different ranges of bluntness at M � 6:0 (not to scale). (a) r0 � 0:001 in:, Re� 7:8 � 106,

(b) r0 � 0:05 in:, Re� 7:8 � 106, (c) r0 � 0:10 in:, Re� 7:8 � 106, and (d) r0 � 0:10 in:, Re� 15:6 � 106.
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model a sharp nose, are also shown in the figure. The frequency of the
most-amplified wave is about F� 0:91 � 10�4 for the similarity
profiles. There is a significant difference both for the mean flow and
the stability results with increasing bluntness. The growth rates
become smaller and the N-Factor curves move downstream with
increasing bluntness. For the smaller bluntness of r0 � 0:001 and
0.01 cases, theN-Factor curves remain closer to the similarity curve.
For the larger bluntness cases, the growth rates become smaller and
the N-Factor curves move further to the right. The most-amplified
frequencies are 0:88 � 10�4, 0:87 � 10�4, 0:75 � 10�4, 0:59 � 10�4,

and 0:42 � 10�4 for r0 � 0:001, 0.01, 0.05, 0.10, and 0.10 (with
higher unit Reynolds number) in., respectively. This shows that the
frequencies of the most-amplified disturbances become smaller with
increasing bluntness. The growth rate curves are similar to the
Blasius profile for all the cases, with the exception that the mildly
unstable first mode becomes stablewith increasing nose bluntness. It
is also seen that the window of unstable second-mode region
increases with increasing bluntness. The unstable second-mode
region spans from 10 to 20 in. for the sharp-cone case, and it spans
from 20 to 42 in. for the blunt r0 � 0:10 case. The transition
Reynolds numbers obtained using the N-factor of 10.0 for different
bluntness cases are summarized in Table 4 and plotted in Fig. 9. The
ratio between the transition Reynolds number with bluntness and the
transition Reynolds number for the similarity profile �ReT�r0=
�ReT�Similarity is 1.06, 1.08, 1.37, 1.97, and 3.48, respectively, for
Rer0 � 650, 6500, 32,500, 65,000, and 130,000. To differentiate
between the effects of the freestream unit Reynolds number and the
nose Reynolds number, one simulation was performed for the
bluntness case r0 � 0:05 at twice the unit Reynolds number of
2 � 7:8 � 106=ft. The expectation was that the results from this
simulation would be close to the results obtained for the case with
r0 � 0:10 at a unit Reynolds number of 7:8 � 106=ft. It is interesting
to see in Fig. 8 that the growth rates and the N-Factor curves are
almost the same, and the most-amplified nondimensional fre-
quencies are also the same at F� 0:59 � 10�4. The transition
Reynolds numbers are the same, 23:2 � 106, for the cases of r0 �
0:10 and 0.05 (higher unit Reynolds number), respectively. The
transition Reynolds number for higher unit Reynolds number case is
also included as a black dot in Fig. 9. This implies that the nose
Reynolds number determines the stability and the transition of
boundary layers over blunt bodies. Most of the wind tunnel
experiments discussed in the introduction [2–5] were performed in
conventional tunnels where the freestream disturbance levels were
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Fig. 9 The transition Reynolds numbers obtained withN � 10 and 4.5

for different ranges of bluntness.

Table 4 Transition Reynolds number for the blunt cones based on N � 4:5 and 10

r0, in. Rer0 XT , in. ReT � 106 �ReT�ro=�ReT�Similarity

N � 4:5 N � 10 N � 4:5 N � 10 N � 4:5 N � 10

0.000a 0 5.64 18.13 3.66 11.78 1.00 1.00
0.001a 650 6.31 19.23 4.10 12.50 1.12 1.06
0.010a 6500 6.40 19.60 4.16 12.74 1.13 1.08
0.050a 32,500 12.50 24.78 8.12 16.11 2.23 1.37
0.100a 65,000 23.20 35.80 15.08 23.27 4.11 1.97
0.100b 130,000 46.54 63.13 30.25 41.03 8.25 3.48
0.050b 65,000 35.70 23.20 1.97

aRe1 � 7:8 � 106
bRe1 � 15:6 � 106
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high. The computed transitionN-Factor for these tunnels varies in the
range of 3.5 to 4.5 [5,8,10]. Similar to the previous calculations for
N � 10, we also computed the transition onset points for different
bluntness cases using N � 4:5. The results are included in Table 4
and in Fig. 9. The ratio between the transition Reynolds number with
bluntness and the transition Reynolds number for the similarity
profile, �ReT�r0=�ReT�Similarity, is about 1.12, 1.13, 2.23, 4.11, and
8.25, respectively, for Rer0 � 650, 6500, 32,500, 65,000, and
130,000. The corresponding most-amplified frequencies are 1:53�
10�4, 1:50 � 10�4, 0:96 � 10�4, 0:68 � 10�4, and 0:46 � 10�4.
Horvath et al. [5] measurements showed that the transition locations
shifted by 1.85 and 2.4 times the sharp-cone case as the nose

Reynolds numbers are increased to 20,312 and 40,614, respectively.
Stetson’s experiment [3] and the stability calculations [8] showed
that the transition Reynolds number for a blunt cone at a Mach
number of 8, with nose Reynolds numbers of 31,250, increased by a
factor of 1:7� 2:0 compared to a sharp cone. Rosenboom et al. [10]
computations predicted, based on an N-Factor value of 4.5, that
transition onsets for the second-mode instability shifted downstream
1.58, 6.14, and 15.4 times the sharp-cone case as the nose Reynolds
number increased to 31,250, 145,800 and 350,000, respectively. The
present predictions also fall in the same range as in the experi-
ments and computations. Potter [1] found that, from a series of
aeroballistics range experiments on nominally sharp cones, the

Fig. 10 Contours of the unsteady density fluctuations due to the interaction of slow acoustic wave with a blunt cone: F� 0:75 � 10�4. (a) Nose part.
(b) Flat end. Black lines represent the edge of the boundary layer, edge of the entropy layer, and the location of the shock.

Fig. 11 An expanded view of the contourswith unsteady densityfluctuations near thewall, along the axial direction. Black lines in (a) represent the edge

of the boundary layer, edge of the entropy layer and the location of the shock; the black lines in (b), (c), and (d) represent the edge of the entropy layer.
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transition Reynolds number increases with the freestream unit
Reynolds number as a power of 0.63. The effect of unit Reynolds
number observed by Potter [1] may have been caused by changes in
Reynolds number based on nose radius r0. A line with the slope of
0.60 is included in Fig. 9 for comparison. The prediction from the
present calculations follows this slope closely.

D. Interaction of Slow Acoustic Waves with the Boundary Layer

After the mean flow is computed, two-dimensional slow acoustic
disturbances are introduced at the outer computational boundary and
the time-accurate simulations are performed. Unsteady simulation
results are first presented for the cases of r0 � 0:001, 0.05,
0:05�2 � Re1�, and 0.10 in. at frequencies of F� 0:80 � 10�4,
0:75 � 10�4, 0:60 � 10�4, and 0:60 � 10�4. These frequencies
correspond to 312, 292, 468, and 234 kHz, respectively, and
streamwise wavelengths for slow mode correspond to 0.1007,
0.1074, 0.0671, and 0.1343 in., respectively, for these Reynolds
numbers. To remain in the linear regime, the amplitude of the forcing
freestream acoustic waves was given a small value of pac=p1�
2 � 10�6. Even with this small amplitude, nonlinearity started to
develop near the end of computational domain for the small
bluntness case of r0 � 0:001 with a frequency of F� 0:80 � 10�4.

Figures 10a and 10b show the results for the evolution of unsteady
density fluctuations, obtained from simulations for the slowwave at a
fixed time for the case r0 � 0:05 and F� 0:75 � 10�4. Figure 10a
shows the contours of the density fluctuations near the nose region up
to x� 6:0 in: and Fig. 10b depicts the results near the end of the
computational domain of x� 15� 25 in. Figures 11a–11d display
the expanded view of the density contours near the wall along the
axial direction. We also included the shock and the edge of the
entropy layer in these figures. The perturbation field can be divided
into four regions. One region is the area outside the shock where the
acoustic waves propagate uniformly. The second region is the shock
layer across which the acoustic waves are transmitted. The third
region is the area between the shock and the boundary layer. This
region consists of transmitted external acoustic field and the
disturbances that are radiated from the boundary layer. The fourth
region is the boundary layer. The figures also show that the flow field
between the shock and the wall exhibit four different regions of
excitations. One is the region directly below the shock where small
wave diffraction occurs; the second is the region below this
diffraction zone and above the entropy layer where the disturbances
are quieter; the third is the entropy layer and the boundary-layer edge
region near the nosewhere large perturbations exist; and the fourth is
the region near the wall. The first important observation is that, near
the nose region (Figs. 10a and 11a), the acoustic disturbances
propagate across the leading edge bow shock and perturb the entropy
layer. These disturbances, as they evolve downstream, remain inside
the entropy layer and enter the boundary layer further downstream.
Figures 11b–11d clearly show that these disturbances remain near
the edge of the boundary layer for a long distance before they

generate the highly unstable second mode. Another interesting
observation is that the region between the boundary layer and the
shock layer is quieter compared to the acoustic waves outside the
shock layer. This quiet region originates from the leading-edge
region (Figs. 10a and 11a), where the bow shock and the oblique
shock meet. This implies that the acoustic waves are weakly
transmitted through the shock and do not directly interact with the
boundary layer further downstream. This was also observed in the
flat plate simulation [24], where, as the acoustic wave incidence
angle was increased, disturbances became quiet in the windward
side.

As discussed before, grid refinement studies were performed with
increasing number of points in the y-direction. Figures 12a and 12b
depict the effect of grid refinement on the unsteady pressure
fluctuations along the wall near the nose region for two cases:
r0 � 0:001, F� 0:80 � 10�4 and r0 � 0:10, F� 0:60 � 10�4. It is
seen that all computations give exactly the same results and confirm
that the results obtained are not due to any numerical resolutions.
Figures 13a–13h show the evolution of thewall pressure fluctuations
for different cases. Figures 13a, 13c, 13e, and 13g show the
amplitude of the pressure fluctuations along thewall in a linear scale,
and Figs. 13b, 13d, 13f, and 13h depict the results in a log scale.
Figures 13b, 13d, 13f, and 13h also include the results from the
parabolized stability equations (PSE) computations obtained for the
same mean boundary-layer profiles. The growth of the disturbances
agrees very well with the PSE results. The figures clearly show the
generation and the eventual exponential growth of the instability
waves inside the boundary layer. Thefirst observation is that there are
large differences in the amplitude levels of the disturbances attained
between the small bluntness case and the large bluntness cases. In all
of the cases, the amplitude of the freestream acoustic pressure is the
same, where pac=p1 � 2 � 10�6. For the nose radius r0 � 0:001
(results shown in Figs. 13a and 13b), the disturbances grow from the
leading edge and reach large amplitude levels of 0.50 near the
predicted transition onset point. The slow wave, which has a
wavelength that is closer to the wavelength of the instability wave,
transforms into instability wave smoothly near the nose region. The
parallel linear computations show that the first mode amplifies
weakly up to x� 10 in: for this frequency and yields anN-Factor of
1.0 near x� 10. However, the simulation shows that the first-mode
disturbances grow much stronger near the leading edge and yield an
N-Factor of 3.0 near x� 10. Hence, the nonparallel effects are
stronger in the small bluntness case near the nose region. The
maximum amplitudes obtained for the large nose radii r0 � 0:05,
0:05�2 � Re1�, and 0.10 (Figs. 13c–13h) are very small in the range
of �10�4. The reason for this is the disappearance of the
amplification of the first modes in the early part of the evolution. The
disturbances not only grow but decay by two orders in magnitude
before they start to grow due to the instability of second modes. This
may be due to the thickening of the boundary layer. Since the
fluctuations in the larger bluntness cases became very small, on the
order of 10�8, we performed calculations with large freestream
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Fig. 12 Comparison of unsteady pressure fluctuations along the wall, obtained using 251 and 401 grid points in the normal direction for two bluntness

cases: (a) r0 � 0:001, F� 0:80 � 10�4 and (b) r0 � 0:10, F� 0:60 � 10�4.
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acoustic pressure levels atpac=p1 � 2 � 10�4 to check the accuracy
of the computations. We included the results obtained from this
simulation in Fig. 13d. It should be noted that the stability properties
for both freestream disturbance levels (pac=p1 � 2 � 10�4 and
2 � 10�6) were found to be the same.

Following the PSE results up to the neutral point, the initial
amplitude of the instability waves at the neutral point can be

estimated. From these values, the receptivity coefficients defined by
the amplitude of the pressure fluctuations at the neutral point
nondimensionalized by the freestream acoustic pressure can be
evaluated:
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Fig. 13 Amplitude of the pressure fluctuation on the wall in (a), (c), (e), and (g) compared with the PSE in (b), (d), (f), and (g).
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Table 5 shows the amplitude of the pressure fluctuations �pwall�n at
the neutral point and the receptivity coefficients for different nose
radii. The amplitudes near the neutral points are about 8:5 � 10�6 for
the small bluntness cases and they are on the order of 10�9 for the
large bluntness cases. The receptivity coefficients are 4.23,
1:85 � 10�3, and 4:75 � 10�3 for the cases of r0 � 0:001, 0.05, and
0.10 in., respectively. Another interesting observation can be made
when comparing the amplitudes and the receptivity coefficients for
the two cases of r0 � 0:10 and r0 � 0:05�2 � Re1�; the amplitudes
and the receptivity coefficients are almost the same for these two
cases. Not only for the instability behavior, but the receptivity
coefficients also appear to depend only on the nose Reynolds
number. This implies that unit Reynolds number effect is directly the
consequence of the variation in the nose Reynolds numbers.

We have also performed additional simulations at higher
frequencies for different bluntness cases. The results for the cases
r0 � 0:001, F� 1:2 � 10�4 and 1:4 � 10�4 were given in [18]. The
conclusions are similar to the case of F� 0:80 � 10�4 shown in
Figs. 13a and 13b. The receptivity coefficients of the instability
waves generated by the slow acoustic waves estimated near x�

1:0 in: are about 4.0 in both cases. Figures 14a and 14b depict the
pressure fluctuations along the wall generated by the slow acoustic
waves for the cases r0 � 0:05, F� 0:96 � 10�4 and r0 � 0:10,
F� 0:68 � 10�4, respectively. The freestream acoustic pressure
amplitude is pac=p1 � 2 � 10�4 in both cases. As mentioned
previously, these frequencies correspond to the disturbances that
yield the N-Factor of 4.5 at the earliest. Again, it is seen that the
amplitudes attained by the second-mode instability waves near the
end of the computational domains are on the order of 1:0 � 10�4,
which are even smaller than the freestream acoustic pressure levels.

Figure 15 shows the density fluctuations inside the boundary layer
near the nose region for r0 � 0:001 and r0 � 0:10 (scales of different
magnitude). We also included the shock and the edge of the entropy
layer in these figures for illustration. The figures clearly distinguish
the effect of bluntness in the generation of disturbances near the nose
region. As was discussed previously, in the small bluntness case,
therewas no entropy layer and the disturbances excited the boundary
layer up to the wall. In the large bluntness case, the disturbances are
seen only away from the wall inside the entropy region.

V. Discussion and Conclusion

The receptivity and the stability of hypersonic boundary layers
over a blunt conewith 5� half-angle are numerically investigated at a
freestream Mach number of 6.0 and at a Reynolds number of
7:8 � 106=ft. Both steady and unsteady solutions are obtained by
solving compressible Navier-Stokes equations using the fifth-order
accurateWENOscheme for space discretization and by using a third-
order TVD Runge-Kutta scheme for time integration. Computations
are performed for different nose radii of r0 � 0:001, 0.01, 0.05, 0.05
(2 � Re1), 0.10, and 0.10 (2 � Re1) in., which yields nose

Table 5 Receptivity coefficients for different nose radii

r0, in. Rer0 F � 10�4 �pwall�n Crecpt;pwall ;Slow

0.001a 650 0.80 8:5 � 10�6 4.23
0.050a 32,500 0.75 3:7 � 10�9 1:85 � 10�3

0.100a 65,000 0.60 9:5 � 10�9 4:75 � 10�3

0.050b 65,000 0.60 10:0 � 10�9 5:00 � 10�3

aRe1 � 7:8 � 106
bRe1 � 15:6 � 106
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Fig. 14 The amplitude of the pressure fluctuations on the wall in log-scale for the cases (a) r0 � 0:05, F� 0:96 � 10�4, and (b) r0 � 0:10,
F� 0:68 � 10�4.

Fig. 15 Contours of unsteady density fluctuations inside the boundary layer, near the nose region for two different bluntness cases: (a) r0 � 0:001,
F� 0:80 � 10�4 and (b) r0 � 0:10, F� 0:60 � 10�4. Black lines represent the edge of the boundary layer, edge of the entropy layer, and the location of

the shock.
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Reynolds numbers of 650, 6500, 32,500, 65,000, 65,000, and
130,000, respectively.

The entropy layer that forms near the nose persists over longer
downstream distances with increasing bluntness and modifies the
development of the boundary layer. The linear stability results show
that the bluntness has a strong stabilizing effect on the stability of the
boundary layers. The neutral stability points move downstream and
the frequencies of the most-amplified disturbances decrease with
increasing bluntness. The transition onset Reynolds number
predicted using the N-Factor computations increases slowly up to a
noseReynolds number of 20,000 and then increases sharply at higher
nose Reynolds numbers. The predicted transition Reynolds numbers
using N factor values of 10.0 and 4.5 are about 4.0 and 2.0 times
larger than that for the Blasius boundary layer for a cone at a nose
Reynolds number of 65,000.

Unsteady simulations revealed that in the small bluntness case,
amplitudes of the disturbances grow starting from the nose region
and reach very large values, �0:50, near the transition point. The
computed disturbance growth agrees very well with the PSE results
up to the nose region. This agreement is also further evidence that the
boundary-layer disturbances in small bluntness cases originate from
a small region near the nosetip since the PSE calculations were
performed with a disturbance input at a single axial location. The
strong growth of the first mode in the nose region leads to higher
initial amplitude for the second-mode disturbance. The receptivity
coefficient at a small bluntness of r0 � 0:001 in: case is about 4.2.
This large initial amplitude and the strong second-mode instability
produce large disturbance amplitudes as the disturbances evolve in
the downstream direction.

In the large bluntness cases, the important observation is that the
disturbances initially decay by two to three orders of magnitude
before they start to grow again due to the second-mode instability.
The receptivity coefficients in large bluntness cases aremuch smaller
in the order of�10�3. This very small initial amplitude and theweak
second-mode instability produce very low disturbance amplitudes as
the disturbances evolve in the downstream direction. The maximum
wall pressure amplitude levels are about 50 times the freestream
acoustic pressure level for the low frequency disturbances that yield
N-Factors of 10 near the peak amplitude level locations according to
linear stability theory. This factor is about 1.0 for disturbances that
giveN-Factors of 4.5. Zhong andMa [13] investigated the receptivity
to freestream fast acoustic waves for the flow over Stetson’s [3] cone.
The simulation results showed that weak second-mode waves are
excited downstream of the neutral stability points. It was concluded
that the second modes are generated due to the resonant interaction
between the stable boundary-layer stability mode and the unstable
second mode near the synchronization location between these
modes. The maximum wall pressure perturbations attained by the
second-mode waves in the simulations are about four times the
freestream acoustic pressure levels. Wavenumber and eigenfunction
analyses are not included in this paper, as was done by Zhong andMa
[13]. However, the amplitude levels they obtained agree with the
present results in that the initial amplitudes of the second-mode
waves are very small in hypersonic flows over blunt cones compared
to sharp cones. The major conclusion from these simulations is that
themechanism considered in this investigation (the freestream planar
acoustic waves will generate strong second-mode waves that will
grow and cause the transition in hypersonic flows) is not supported
by the findings of this study for the flows over blunt bodies. As
discussed in the introduction, Horvath et al. [5] measurements
showed that the transition occurred at 5.0, 9.25, and 12.25 in.with the
increasing nose Reynolds number of 65, 20,312 and 40,624,
respectively. The question is what mechanism causes large distur-
bances inside the boundary layers in hypersonic flows over blunt
bodies to cause the flow to become turbulent? Other types of distur-
bances, including oblique acoustic disturbances, three-dimensional
disturbances, and roughness, may have to be considered to answer
this question.
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