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The Orion spacecraft is being designed as NASA’s next-generation exploration vehi-
cle for crewed missions beyond Low-Earth Orbit. The navigation system for the Orion
spacecraft is being designed in a Multi-Organizational Design Environment (MODE) team
including contractor and NASA personnel. The system uses an Extended Kalman Filter
to process measurements and determine the state. The design of the navigation system
has undergone several iterations and modifications since its inception, and continues as
a work-in-progress. This paper seeks to benchmark the current state of the design and
some of the rationale and analysis behind it. There are specific challenges to address when
preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still
looking ahead and providing software extensibility for future exploration missions. The
primary measurements in a Near-Earth or Mid-Earth environment consist of GPS pseu-
dorange and deltarange, but for future explorations missions the use of star-tracker and
optical navigation sources need to be considered. Discussions are presented for state size
and composition, processing techniques, and consider states. A presentation is given for
the processing technique using the computationally stable and robust UDU formulation
with an Agee-Turner Rank-One update. This allows for computational savings when deal-
ing with many parameters which are modeled as slowly varying Gauss-Markov processes.
Preliminary analysis shows up to a 50% reduction in computation versus a more tradi-
tional formulation. Several state elements are discussed and evaluated, including position,
velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale
factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. An-
other consideration is the initialization of the EKF in various scenarios. Scenarios such as
single-event upset, ground command, pad alignment, cold start are discussed as are strate-
gies for whole and partial state updates as well as covariance considerations. Strategies
are given for dealing with latent measurements and high-rate propagation using multi-rate
architecture. The details of the rate groups and the data flow between the elements is
discussed and evaluated.

A discussion is given on the use of a single, integrated navigation filter as opposed to
several smaller filters handling separate portions of the navigation job. This is especially
relevant for attitude determination and GPS measurement processing. There are many
things to consider, especially when considering state data exchange, filter initializations,
and extensibility.

Filter performance is affected by many factors: sensor measurement errors, data rates,
tuning, and others. Foremost among these is the number and type of states that are mod-
eled. If too many states are chosen, the filter is slow; if not enough states are modeled,
the filter will perform poorly. The Orion EFT-1 Extended Kalman Filter has 11 states and
24 ECRV (Exponentially Correlated Random Variable) parameters. The parameters are
modeled as first-order Gauss-Markov processes and use a much more efficient computa-
tional algorithm. The state includes attitude as a coupled member, which is needed with
a strapdown IMU for initial attitude determination via gyrocompassing during pad align.
It is noteworthy that the ECRV parameters for accel/gyro misalignment and nonorthogo-
nality are only minimally observable, but are included in the filter as a more analytically
correct way than process noise to condition the covariance and account for the physical
presence of these known effects. A discussion is also presented on the need for separate
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accelerometer biases for low-G and high-G based on the time constants of these effects.
Since their computational burden is small (Gauss-Markov process), however, and there are
currently no throughput issues for the 1Hz EKF task, consideration is given for including
all of these parameters in the filter. A future recommendation would be to allow for the
use of“consider” states/parameters that allow for the benefits of noise modeling with less
concern for state corruption.

A high-rate Filtered Navigator is used as the propagator complement to the EKF. The
vehicle state is propagated forward in time at 200 Hz (the calling rate is 40 Hz, so the input
data is buffered) through the use of sensed ∆V and ∆Θ data from the IMU. The output is
used to calculate values for use by the rest of flight software. Additionally, the propagated
state (position, velocity, and attitude) is sent to the EKF, where it is the primary state
propagation source. The state of the Filtered Navigator is re-synched to the estimated state
of the EKF at 1 Hz intervals via a delta state. The Orion GPS receiver utilizes a single
L1 frequency, and is thus susceptible to measurements with ionospheric delay. Options are
presented and evaluated for modeling the GPS ionosphere in different flight regimes to
balance signal availability, expected delay, and filter measurement weighting. Additionally,
various signal masking schema are considered.
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