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Abstract 

A growing number of species require conservation or management efforts. Success of 

these activities requires knowledge of the species' occurrence pattern. Species-habitat 

models developed from GIS data sources are commonly used to predict species occurrence 

but commonly used data sources are often developed for purposes other than predicting 

species occurrence and are of inappropriate scale and the techniques used to extract predictor 

variables are often time consuming and cannot be repeated easily and thus cannot efficiently 

reflect changing conditions. We used digital orthophotographs and a grid cell classification



scheme to develop an efficient technique to extract predictor variables. We combined our 

classification scheme with a priori hypothesis development using expert knowledge and a 

previously published habitat suitability index and used an objective model selection 

procedure to choose candidate models. We were able to classify a large area (57,000 ha) in a 

fraction of the time that would be required to map vegetation and were able to test models at 

varying scales using a windowing process. Interpretation of the selected models confirmed 

existing knowledge of factors important to Florida scrub-jay habitat occupancy. The 

potential uses and advantages of using a grid cell classification scheme in conjunction with 

expert knowledge or an HSI and an objective model selection procedure are discussed. 

Keywords: Florida scrub-jay; species-habitat model; occupancy; habitat mapping; model 

selection 

1. Introduction 

In the current conservation crisis, many populations are declining due to anthropogenic 

destruction or alteration of the species' critical habitat (DeGraaf and Rappole 1995, -Marzluff 

and Sallabanks 1998). Many of these species are geographically widespread, despite their 

habitat specificity, e.g. red-cockaded woodpecker Picoides borealis (REF NEEDED). 

Consequently, a growing number of species require conservation efforts and habitat 

management over large areas. Central to preserving such declining species is knowledge of 

the species range/geographic distributionloccurrence pattern and the distribution of suitable 

habitat (Gibson et al. 2004, Johnson et al. 2004, Noss 1983 as cited in Beard et al. 1999). 

Species-habitat models are often the only efficient approach to acquiring this information. 

However, species-habitat models often require predictor variable data be obtained from 

extensive or inaccessible areas. Thus, many species-habitat models use existing GIS data



sources generated for other purposes (e.g. land cover maps, satellite imagery, climatic maps 

and topographic maps) to expedite or eliminate the need to collect habitat data on the ground 

(e.g., Irwin 1998, Raphael et al. 1998, Villard et al. 1998, Dettmers and Bart 1999, Shriner et 

al. 2002, Seoane et al. 2003). Often such data is not collected at an appropriate spatial or 

temporal scale for the species of interest (Greco et al. 2002, Tobalske 2002). 

Even given readily available GIS data, conservation biologists and managers must 

have sufficient knowledge of the species-habitat relationship (the process being modeled) to 

relate GIS data sources to important habitat suitability predictors. Theoretically, vegetation 

features serve as the best predictors of vertebrate habitat occupancy because in many cases 

habitat selection is thought to operate on vegetation structure (Beard et al. 1999, Cody 1985). 

However, extracting fine resolution vegetation features (e.g., mapping land cover types) from 

GIS data sources often requires substantial time and effort (Seoane et al. 2003). This 

constraint is significant when management decisions based on predictive models are required 

in short time spans or frequent updates of habitat data are required, as is often the case in 

conservation planning and management (Fleishman et al. 2001). The need for decision 

support in conservation efforts often exceeds resources (Fielding and Bell 1997). In some 

cases workers have avoided mapping detailed vegetation data by using course resolution 

landscape properties to predict species occurrence (e.g., Fleishman et al. 2001, Mitchel et al. 

2001) but this approach will not be appropriate in many cases since models must match the 

scale of the process being modeled to have the best predictive power (Huston 2002). 

Consequently, techniques are needed that can quickly generate habitat data of suitable scale 

over large areas. 

We developed a rapid approach to species-habitat modeling in which habitat 

classification is integrated with an objective model selection procedure. As an efficient



alternative to detailed land cover mapping, we classified grid cells by a set of predictive 

vegetation and landscape variables that are interpreted from high-resolution aerial 

photographs. The grid cell classification scheme was derived from a set of apriori 

hypotheses (models) developed using existing knowledge. This knowledge was based in part 

on a modified habitat suitability index, HSI, (Breininger 1992, Breininger et al. 1998, 

Burgman et al. 2001, Duncan et al.1995). Although HSI are not explicitly designed to predict 

occurrence they can be useful to generate a priori hypotheses for model selection procedures 

(Van Horne 2002) such as the information-theoretic approach based on Akaikes Information 

Criterion suggested by Burnham and Anderson (2002). This approach is superior to 

indiscriminate predictor variable selection based on availability because developing models a 

priori is the only way to effectively confirm genuine effects (Burnham and Anderson 2002). 

Often investigators focus on prediction and ignore the opportunity to gain insight into the 

mechanism of habitat selection (Fielding and Bell 1997) but understanding the mechanism 

that underlies patterns of distribution is essential to conservation and management (Rushton 

2004). The combination of expert opinion (or a HSI) and objective model selection can be a 

valuable step in determining species-habitat relationships (Van Home 2002). 

The focus of this study was to develop an efficient approach to wildlife-habitat 

modeling that uses rapidly generated and biologically meaningfully habitat data in 

conjunction with an objective model selection procedure. We demonstrate this approach by 

developing predictive models of habitat occupancy of the Florida scrub-jay Aphelocoma 

coerulescens population on John F. Kennedy Space Center/Merritt Island National Wildlife 

Refuge (KSC). The Florida scrub-jay is a threatened species and the population on KSC has 

the potential to be one of the largest metapopulations of the species (Stith 1999, Stith et al. 

1996) and thus is important to conservation of the species. A large amount of scrub-jay



habitat on KSC is difficult to access and occupancy of these areas is unknown. Knowledge 

of occupancy in these remote areas could facilitate adaptive management efforts for this 

population.. 

2. Methods 

2.1 Field methods 

Fieldwork was conducted during March and April of 2000. Presence/absence data for 

the model was collected by sampling scrub-jay occupancy at random points. Sampling points 

were overlaid on primary and secondary scrub-jay habitat maps that were previously created 

using soils data (Breininger et al. 1991). A Trimble UPS unit (Trimble 1996, 1999) was used 

to navigate to within 2 meters of the points. Florida scrub-jays are permanently territorial 

birds (Woolfenden and Fitzpatrick 1984) and respond aggressively to playback of conspecific 

recordings. Using playback of scrub-jay vocalizations on a handheld tape cassette player we 

thoroughly sampled a 150 meter radius circle around each point to approximate the size of an 

average scrub-jay territory (Woolfenden & Fitzpatrick 1984). Playback was initiated at the 

center of the circle followed by playback at points 75 meters from the center point in each of 

the cardinal directions until scrub-jays were detected or the process was completed. Playback 

at each point in the sampling area began with a two minute bout of play followed by a minute 

of silence and then another 2 minute bout of play in the opposite (180 compass degrees) 

direction. If no jays were seen or heard within the 150 m radius sampling area after playback 

was conducted at all five points the sampled area was deemed unoccupied.



2.2 GIS/mapping 

Mapping of landscape characteristics was done using Arclnfo 7.0 and ArcMap 8.2. 

Landscape attributes were determined based on 1:24000 color infrared orthophotos taken in 

spring 2000. First, a grid coverage was created consisting of 10 ha square polygons. This 

layer was then overlaid on the digitized orthophoto image, and each grid cell occurring in 

potential Florida scrub-jay habitat (Breininger et al. 1991) was then assigned attributes for 

each of eight landscape variables (Table 1), based on photo-interpretation. Three additional 

attributes were derived from a combination of six of these variables using a modification of a 

Florida scrub-jay Habitat Suitability Index (Breininger 1992, Breininger et al. 1998, Burgman 

et al. 2001, Duncan et al.1995). HSI Scale 1 was calculated by modifying the habitat 

suitability index formula to fit the habitat variables determined by photo-interpretation within 

each cell (Figure 1). The remaining two variables were determined by taking the mean value 

of HSI Scale 1 for the focal cell and the surrounding cells at two scales. HSI Scale 2 was the 

mean of HSI Scale 1 for the focal cell and all cells within one cell of the focal cell. HSI Scale 

3 was the mean of HSI Scale 1 for the focal cell and all cells within two cells of the focal cell. 

2.3 Model selection 

We used the information-theoretic approach described by Burnham and Anderson 

(2002) to model relationships between Florida scrub-jay habitat occupancy and habitat 

characteristics measured from GIS mapping procedures. This method is based on selecting 

among a set of candidate alternative hypothesis (models) using a model selection tecimique 

based on how well-supported each hypothesized model is by the data (see Johnson and 

Omland 2004 for a succinct summary). Prior to data analysis we devised a set of 20 

alternative hypotheses (models) postulating relationships between habitat variables and 

Florida scrub-jay occupancy. These models were based on our knowledge of Florida scrub-



jay biology and published studies describing such relationships (e.g. Breininger 1992, 

Breininger and Carter 2003, Breininger and Oddy 2004, Breininger et al. 1995, 1998, 

Woolfenden and Fitzpatrick 1984). Logistic regression models with Florida scrub-jay 

occupancy as the response variable were then fit for each hypothesis using SPSS 12.0. 

Before model selection, the global model (i.e. a model that included all parameters 

considered in any model) was estimated and the fit assessed (Agresti 2002). Models were 

then ranked based on relative differences in the second order Akaike' s information criterion 

(AIC). AIC is recommended by Burnham and Anderson (2002) when the sample size 

divided by the number of parameters in the most parameterized model is less than 40. For 

each model we rescaled AIC C relative to the model with the lowest value to compute Ai (i.e. 

the model with the lowest AIC had Ai = 0) and also computed the Akaike weight, w 1 (useful 

in evaluating the relative likelihood of one model compared with another). For all models 

with Al <4 we evaluated the model fit (based on a X2 goodness-of-fit test, or the Hosmer-

Lemshow test for models with continuous variables) and present model parameter estimates. 

2.4 Model performance 

Because our emphasis was on inference rather than prediction we wanted to maximize 

the information for available for model selection. Therefore, we chose not to partition the 

survey points into training and evaluation data sets. However, we did conduct a cross-

validation (jackknife) procedure (Verbyla and Litvaitis 1989) to evaluate the predictive 

performance of the selected models. Each model was tested n times by removing one case at 

a time and model performance was evaluated using the receiver operator characteristic 

(Rushton et al. 2004, Fielding and Bell 1997). Future use of these models for predictive 

purposes will require collection of an independent validation data set (Fielding and Bell



1997). To demonstrate the utility of the method for predicting habitat occupancy, we used 

model averaging (see Burnham and Anderson 2002) to predict Florida scrub-jay occupancy 

for a region of the study site which had an independent data set of Florida scrub-jay habitat 

occupancy. This area was part of a demographic study of Florida scrub-jays; all of 

individuals were banded within this area aPd territory boundaries were mapped every year 

since 1988 (Breininger and Carter 2003). We included models in the set such that the sum of 

their w1 values exceeded 0.9 (analogous to a 90 % confidence set of models, Burnham and 

Anderson, 2002). We provide a visual presentation of these results. 

3. Results 

3.1 Field work 

Of 4297 grid cells comprising the study site, 57% (n=2455) were potential Florida 

scrub-jay habitat. Within potential habitat we surveyed 74 randomly located field locations 

for Florida scrub-jays. Of these, 54% (n= 40) were occupied by Florida scrub-jays. On 

average 3 scrub-jays responded to playback in occupied sites; range = 1-7. 

3.2 Model selection 

For each of the twenty hypothesized models, Table 2 gives the maximized log-

likelihood function and degrees of freedom of the fitted logistic regression equation (-2LL), 

the number of estimated parameters (k), the ration of k to the sample size (n=74), the AIC 

value, the difference between each model and the model with the lowest AJC C (Ai), and the 

Akaike weight (w i). The global model (the model that included all the terms included in any 

other separate model) was found to have an adequate fit (Hosmer and Lemeshow goodness of 

fit test X2 = 9.7, df= 8,p = 0.287). Four models were found to have Ai values less than 2



(Table 2); parameters of the fitted logistic regression equation for these models are given in 

Table 3.

The model with the lowest Al included the habitat suitability index scale 2 (HSI2) as 

the only predictor variable. The inverse logistic transformation of the fitted logistic 

regression equation for this model was: probability of Florida scrub-jay occurrence = 0.2 + 

167 * (HSI2). Since habitat suitability scale 2 was by definition between 0 and 1, for every 

0.01 increase in a cell's measured HSI2, the predicted probability of Florida scrub-jay 

occurrence increased 1.6 times. Another way to explore the output of a logistic regression 

model is to examine the predicted probability of success for various combinations of the 

predictor variables (Agresti 1990). Table 4 shows the predicted probability of Florida scrub-

jay occurrence for different levels of the predictor variables in each of the four models with 

Al values less than 2. The model with the next lowest Al (1.02) included scrub height (II) and 

ridge (A) as predictor variables. Scrub height (II) level 2 (optimal height) has the greatest 

positive effect on the predicted probability of Florida scrub-jay occurrence (Table 4). Also, 

by comparing between entries in Table 4 with the same values for the height variables but 

different values for A, it can be seen that when A = I (cell is not within one cell of a scrub 

ridge), the predicted probability of Florida scrub-jay occurrence is greatly reduced. The 

model with the next lowest Al (1.44) included % suitable habitat (2) and ridge (A) as 

predictor variables. As % suitable habitat (2) increased, the predicted probability of Florida 

scrub-jay occurrence also increased (Table 4). Also, by comparing between entries in Table 

4 with the same values for % suitable habitat but different values for A, it can be seen that 

when A = 1 (cell is not within one cell of a scrub ridge), the predicted probability of Florida 

scrub-jay occurrence is greatly reduced. This model however did not have an adequate fit



(Table 3). The model with the next lowest Ai (1 .58) included the habitat suitability index 

scale 1 (HSIJ)as the only predictor variable. The inverse logistic transformation of the fitted 

logistic regression equation for this model was: probability of Florida scrub-jay occurrence = 

0.4+ 22.9 * (HSIJ). Since habitat suitability scale 1 was by definition between 0 and 1, for 

every 0.0 1 increase in a cell's measured HSIJ, the predicted probability of Florida scrub-jay 

occurrence increased 0.23 times. 

3.3 Model performance 

According to ROC plots of the jackknife samples, HSI2 was best followed by HA, ZA, 

and HSIJ respectively. The area under the ROC function (AUC) was 0.74 for HSI2, 0.70 for 

both ZA, and HSIJ, and 0.66 for HA (ROC figure). Model average results for cells occurring 

in a long-term demographic study site are illustrated in Figure 1. 

4. Discussion 

4.] Efficient habitat mapping 

It might appear, based on the number of published studies that utilize GIS data to 

obtain predictor variables for models of species-habitat relationships, that this is a relatively 

direct and efficient process. However, many commonly used GIS data sources (e.g., land-

cover maps arid satellite imagery) must be further processed (e.g., vegetation mapping etc.) to 

allow predictive models with mechanisms that have biological significance. Unfortunately, 

this step in the model development process can be arduous (Beard et al. 1999). Furthermore, 

there are numerous other cases where pre-existing GIS data is not available or is unsuitable. 

For both cases, we believe that using grid cell-based classification of habitat characteristics is 

a more efficient alternative. Although some previous studies have used grid cell-based 

classification of GIS data (e.g. see, Collingham et al. 2000, Schadt et al. 2002, 

Gavashelishvili 2004) the classifications were typically based on topographic maps, land-



cover maps or satellite images. Our classification scheme is based on interpretation of 

vegetation and landscape characteristics using high resolution digital orthophotographs. We 

believe this technique is superior to classification schemes based on other sources (e.g., 

topographic maps, land-cover maps or satellite images) for two reasons. First, while no GIS 

data sources allow direct measurement of habitat features that determine habitat suitability 

(Rushton et al. 2004), classification of high resolution digital orthophotographs can be 

quickly accomplished by the wildlife investigator with knowledge of the focal species. This 

knowledge is essential because the variables that characterize pre-existing GIS data may not 

correlate well with predictive species-habitat variables (Van Home 2002). For example, 

land-cover maps represent classification schemes developed for other uses not specifically 

intended to predict species occurrence and consequently might lack sufficient detail to allow 

classification of potentially important variables (Seoane et al. 2003, Rushton et al. 2004). 

Second, high resolution digital orthophotographs allow features to be discerned that are not 

possible to map with satellite imagery. 

We believe grid cell classification improves on vegetation mapping because only 

variables of interest are classified, thus providing necessary detail with out having to map 

potentially time consuming detail. Another benefit is that the resolution at which the model 

operates is determined by the size of the cell. Furthermore, grid cells allow predictor 

variables to be determined at various resolutions by averaging cell values in a windowing 

•process. This is useful because a full understanding of the issue of scale as it applies to a 

particular situation is often not available (Rushton et al. 2004). In our example we used this 

process to calculate the HSI variable, as described earlier, at three scales. Subsequently, the 

HSI2 model (Table 2) was selected as the best fitting model. These results demonstrate the 

advantages of grid cells in determining appropriate scale and potentially revealing àther



important mechanisms that influence habitat occupancy. In this case the intermediate scale of 

the HSI2 model is probably related to behavioral traits exhibited by Florida scrub-jays other 

than habitat selection, such as philopatry, conspecific attraction (see Woolfenden and 

Fitzpatrick 1984) and their sentinel system (see McGowan and Woolfenden 1989) used for 

predator avoidance. 

4.2 Variable selection and model development 

Selection of the variables to be used to classify grid cells should be based on a careful 

review of existing knowledge of the system being modeled. This fits well with the 

information-theoretic model selection approach, because the validity of these procedures 

depends heavily on a priori hypothesis specification based on existing knowledge (Burnham 

and Anderson 2002). The hypothesis formulation stage of the model selection procedure 

should serve to determine the classification scheme as well as the candidate set of models. 

Integrating these steps also helps ensure a robust study design because sample points can be 

screened to ensure adequate coverage amongst all of the variables of interest. 

We relied on a combination of expert opinion and a HSI (Breininger 1992, Breininger 

et al. 1998, Burgman et al. 2001, Duncan et al.1995) to generate hypotheses (models) that 

relate habitat and landscape variables to scrub-jay habitat occupancy. The use of a HSI in the 

model development stage is not necessary but given the significance of HSI in management 

decisions (Brooks 1997) and their utility in generating hypotheses (Van Home 2002) we 

believe that more emphasis should be placed on using existing HSIs to investigate the 

mechanisms of species-habitat relationships. Our results show that HSI (particularly well 

developed ones) can be used to develop models that predict well (ROC figure).



4.3 Model interpretation 

If the goal of a modeling effort is to interpret the meaning of the selected models and 

make inference to the process being modeled then care should be taken to develop models 

that can be easily interpreted. In our case, using the actual HSI (geometric-mean algorithm) 

as a candidate model led to a model that performed well for prediction but was difficult to 

interpret ecologically. If inference is the primary goal, HSI will be more useful when used to 

develop simpler models based on the components of the index. For example, in the (HA) 

and (ZA) models it is easy to see how the probability of occupancy is related to the predictor 

variables (Table 4). Ridge (A) is clearly an important variable because the probability of 

occupancy is greatly reduced when a scrub ridge (A) is not present within or adjacent to a 

cell, A=1 (Table 4). This makes sense ecologically because scrub oaks Quercus spp. are an 

important component of scrub-jay habitat (Woolfenden and Fitzpatrick 1984, Breininger and 

Oddy 2004) and are dominant on ridges with well drained soil (Schmalzer and Hinkle 1992). 

Probability of occupancy is also influenced by the % of suitable scrub habitat (Z) in the cell. 

This agrees with the results of Breininger and Oddy (2004) who showed that poorly drained 

ridges with little oak cover were occasionally unoccupied whereas well drained ridges in 

which oaks dominate were always occupied. We also found that level two of Height (I]) had 

a large positive effect on probability of occupancy (Table 4). Scrub height is important factor 

in determining habitat quality and our level two represents optimal conditions (Breininger 

and Carter 2003). In population centers Scrub-jays prefer and compete for breeding 

opportunities in optimal habitat (Woolfenden and Fitzpatrick 1984, Breininger et al. 1995). 

Interpretation of our results confirmed existing knowledge of Florida scrub-jay habitat 

preferences but clearly we did not consider some important processes that influence habitat 

occupancy because the pattern of occupancy observed did not always agree with known



habitat preferences. Future work should consider patch history and scrub-jay behavioral 

traits not directly related to habitat preference. scrub-jay habitat quality varies temporally 

primarily as a function of the time elapsed since the last fire (Duncan et al. 1995) and 

although species can be abundant in marginal habitats, populations in these areas cannot 

persist withoutimmigration (Van Home 1983). Given the short dispersal distances of Florida 

scrub-jays (Woolfenden and Fitzpatrick 1984, Stith 1999) it is obvious that, despite current 

conditions, scrub-jay habitat may be unoccupied (and there may be a considerable lag time 

before an area is re-colonized) if historical conditions were marginal and a source of 

immigrants is not within the typical dispersal distance. 

4.4 Relating modeling results to conservation and management 

A primary objective in developing species-habitat models is to provide managers and 

conservation biologists with decision support. For example, predictive models can aid in 

determining habitat suitability or occupancy which in turn can aid in reserve design (Cabeza 

et al. 2004). The grid cell technique is well suited to developing maps of habitat suitability 

(e.g., Rubec et al. 2001) or occupancy (Figure 1) and thus could be used in this manner. A 

grid cell map could be also used to prioritize management or restoration efforts by 

distinguishing habitat suitability across a landscape (e.g., Lauver et al. 2002). Grid cell 

classification will be especially useful for situations where vegetation data require frequent 

updates due to continually changing vegetation conditions from management activities or 

natural processes. Furthermore, successive classification of grid cells through time will allow 

transition probabilities to be calculated for pertinent predictor variables and these may be 

used via Markov chain modeling for planning or to develop management strategies based on 

pre-determined scenarios (see Breininger and Carter 2004). The grid cell classification 

approach to habitat mapping demonstrated here can greatly benefit conservation efforts by



providing an efficient method to obtain appropriate data for predictor variables from readily 

available digital ortho-photographs while circumventing some of the common limitations of 

other types of GIS data. 

Predicting patterns and producing maps is important for management activities but 

understanding the mechanism that produces the pattern is equally important. Combining 

knowledge of an animal's ecology with objective model selection is an effective method to 

elucidate the mechanism underlying the process being modeled which may lead to more 

robust models, direct future investigation, and potentially have significant bearing on species 

management (Van Home 2002). 
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Table 2. Of the 20 a priori models hypothesized to relate landscape variables to Florida Scrub-Jay habitat 

occupancy, the model selection proceedure identified four model as clearly superior to the others (bold type). 

All of these models were well-supported, and should be considered if prediction of occupancy is a desired 

goal (see text for details). Models are designated in shorthand by referencing the explanatory variables included 

For identification of variables see table 1. When an interaction term was included all main effect terms were 

also included. For example, model S*H had the response variable Logit(Florida Scrub-Jay Occupancy) and 

included the explanatory variables Scub, Height and the interaction of Scrub and Height. 

Model Description -2 LL df AICc n/k w 

HSI Scale 2 86.21 1 90.37 0.00 37.00 0.36 

H, A 80.54 4 91.40 1.02 14.80 0.22 

Z, A 85.48 2 91.82 1.44 24.67 0.18 

HSI Scale 1 87.78 1 91.95 1.58 37.00 0.16 

Z 90.81 1 94.97 4.60 37.00 0.04 

HSI Scale 3 92.14 1 96.31 5.93 37.00 0.02 

S, H, 0, Z 74.74 9 98.13 7.75 7.40 0.01 

5, R 89.09 4 99.95 9.57 14.80 0.00 

5 91.39 3 99.96 9.58 18.50 0.00 

S, H, 0, R 76.98 9 100.36 9.99 7.40 0.00 

5, H, 0 79.84 8 100.57 10.19 8.22 0.00 

5, H, 0, Z, T 72.35 11 101.30 10.93 6.17 0.00 

S, H, 0, R, T 73.10 11 102.05 11.68 6.17 0.00 

5, H, 0, T 76.25 10 102.38 12.00 6.73 0.00 

5, H, 0, R, T, Z, F 67.61 13 102.49 12.12 5.29 0.00 

5, H, 0, F 79.33 9 102.72 12.35 7.40 0.00 

H 94.47 3 103.03 12.66 18.50 0.00 

S*R 86.75 7 104.90 14.53 9.25 0.00 

S*H 79.54 12 111.41 21.04 5.69 0.00 

0, S*H 74.67 14 112.67 22.30 4.93 0.00 

Global (variables used in any model included) 50.70 25 131.36 2.85



Table 3 
Parameters of the fitted logistic regression equation for selected models 

Model Variables B S.E. df Exp(B) x2 
a

df p 

HISScale2 HISScale2 5.11 1.45 1 166.10 7.93 8 0.44 

constant -1.47 0.51 1 0.23 

H, A H(1) b 0.82 1.02 1 2.27 1.01 4 0.91 

H(2) b 2.86 1.45 1 17.45 

H(3) b 2.16 0.98 1 8.66 

A -2.06 0.61 1 0.13 

constant -0.58 0.87 1 0.56 

Z, A A -1.27 0.55 1 0.28 13.39 6 0.04 

Z 0.03 0.14 1 1.03 

constant -1.40 1.24 1 0.25 

HIS Scale I HIS Scale 1 3.13 0.92 1 22.87 4.54 5 0.48 

constant -1.04 0.43 1 0.35

a Resu;ts of Hosmer and Lemeshow Goodness of fit test. 

b H is a categorical variable with four levels so three dummy variables are used to fit the model. For H=1 :{H(1 )= 

1, H(2)0, H(3)0}, H2:{H(1)0, H(2)1, H(3)0}, H3:{H(1)0, H(2)=0, H(3)z1},H=4:{H(1)=0, H(2)=0, H(3)=0}. 
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Figure 1. Calculation of Habitat Suitability Index (HSI) values for 10 ha grid cells was 
based on a modification of methods described in Breininger et al. (1998, 2001). 
Variables refer to landscape features mapped onto grid cells (see Table 1). 

Figure 2. An example of grid cell map (based on mQdel predictions) was overlain by 
territory maps of a long-term demographic study site. Eaôh polygon represents a territory 
and hatched polygons were unoccupied during the period that random points were 
sampled for scrub-jay occupancy. The probability of occupancy for each cell was 
calculated using model averaging. 

Figure 3. The predictive performance of the selected models was evaluated by 
calculating the area under the receiver operator characteristic function.
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