
Software Architecture of the NASA Shuttle

Ground Operations Simulator--SGOS

R. P. Cook
Department of Computer Sciences, Georgia Southern University, Statesboro, GA 30460 U.S.A.

C. T. Lostroscio
NASA Mail Code YA-D8, Kennedy Space Center, FL 32899 U.S.A.

SUMMARY

The SGOS executive and its subsystems have been an integral component of the Shuttle Launch
Safety Program for almost thirty years. It is usable (via the LAN) by over 2000 NASA employees at
the Kennedy Space Center and 11,000 contractors. SGOS supports over 800 models comprised of
several hundred thousand lines of code and over 1,000 MCP procedures. Yet neither language has a
for loop!! The simulation software described in this paper is used to train ground controllers and to
certify launch countdown readiness.

KEY WORDS: NASA, Shuttle, simulation, ground operations

INTRODUCTION

A recent project (KLASS), which was sponsored by the Education Office of the

NASA Kennedy Space Center, to create a Shuttle-Launch edu-tainment application for

12 to 14-year olds presented an opportunity to document the architecture of the Shuttle

Ground Operations Simulator (SGOS). The Kennedy Launch Academy Simulation

System (KLASS) was created by porting SGOS and its SimAPI library.

The first author ported the SimAPI front-end of SGOS to Windows and Apple's OS-X;

the second author was one of the system's architects and has ported the SGOS executive

to Linux. The paper presents a rare glimpse into software that has helped to certify over a

hundred Shuttle launches.

Simulation has always played a vital role in the space program. SGOS is used to test new

launch control (firing room) software, to train launch teams, and to certify launch

countdown readiness. The devices participating in the simulation are encoded as

continuous and discrete mathematical models that are accurate real-time emulations of

the physical orbiter, external fuel tank, solid-rocket boosters, payload interfaces and

ground-support components. The simulation is plug-compatible with the 110 of the firing

room.

SGOS was first written (over twenty-five years ago) for a mainframe using a mixture of

FORTRAN and assembler. In 1995, a four-year project was undertaken to port SGOS to

the C language rurming on a more versatile modern architecture. The Executive was

ported to a VME single-board computer (running Sun Solaris) to control the hardware

interfaces to the firing room. The Executive and all other support software was also

ported to Sun Solaris workstations. Table 1 lists the major subsystems of SGOS.

SGOS Subsystems _________
RSI Real-time Simulation Interface provides the hardware and software to

emulate Shuttle data links with modeled data ___________
Execution Supports the execution and manipulation of SGOS models and Model

Control Procedures (MCPs) __________
Build Supports the conversion of the SGOS modeling language and MCPs into

executable objects
Support Provides tools for creating, controlling, debugging, and analyzing models

Table 1. List of SGOS Subsystems

More recently, Cook and Lostroscio ported the model front-end library, the support tools

and the Executive to Linux, Windows and Mac OS-X for the KLASS project. KLASS

enables students anywhere in the world to collaborate (using the Internet) to count down

a Shuttle launch. Further, teachers can control the execution of KLASS models to

introduce problems that have either occurred in past launches or to create new problems

(based on learning objectives) for the students to solve.

The paper introduces the operation of the Real-time Simulation Interface (RSI) and the

Simulation Executive. The operational difference is that the RSI is connected to the

firing room via the MIL-STD-1553 protocol and is clock-driven to run the simulation in

"real" time. In Remote Terminal Mode (non real-time), the Simulation Executive runs

the models at CPU speeds with simulated clocks. The paper covers the modeling

language and support system (SimAPI) in more detail than the Executive. The reason is

that those components will most affect KLASS users.

SIMULATION MODEL

The complete model program size for a typical launch simulation is just over 100

megabytes. All components of a simulation, except user interaction commands, are

statically linked to the executive. A simulation is comprised from databanks, model-

control procedures (explained later) and systems. Systems can contain sub-systems,

which can have "in" and "out" parameters. Sub-systems are coded from models.

A databank is an inverted list of sub-system and model variables, their data types, and the

mapping to hardware. The latter information is only used for real-time emulation. The

supported data types are continuous and discrete. Examples of continuous data are

pressures, temperatures, currents, flow rates, and voltages. Models are programmed as

unordered lists of segments. Each segment is a partially-ordered (explained later) list of

statements.

Table 2 lists a model source file for a simple example. The voltage at the regulator is

dependent on the state of PSW (power switch). RAWVOLTS will be either 30.0 (the

voltage of the power supply) or 0.0 depending on whether PSW is closed (ON) or open

(OFF). Comments are delimited by a pair of $ (dollar signs). Both the power source

and the voltage into the regulator are physical processes so they are encoded as

continuous variables. The CMOD keyword denotes a continuous model segment. The

LOGIC FUNCTION SWITCH (LFS) is a library function that allows the modeler to

assign one of two continuous values to RAWVOLTS based on whether the discrete value

of PSW 'is ON or OFF. The DLM statement, on the other hand, assigns ON/OFF to a

discrete variable (FAULT light) if the continuous variable RAWVOLTS is out of range.

POWER
Supply

30.0 Volts

FAULT	
I

OLTS

DATABANK

DBANK;

:SYS

VOLTREG;

:INIT D FAULT /0FF!;

:INIT C POWER /30.0/;

:INIT D PSW /OFF/;

:INIT
Voltage____________

C WVOLTS /0.0/;

Regulator :CMOD
___________ ____________________

RAWVOLTS = LFS(PSW,POWER,0.0);

CALL DLM(FAULT, RAWVOLTS, 29.0, 31.0, OUT);

SYSEND;

Table 2. Example Voltage Regulator Model

The notation of the variables' data types (Cm) in the model initialization section is

redundant as the types are also specified in the databank. The recommended coding style

is to initialize all variables, which has the additional advantage of documenting their

types on the program listing The statements in the programming language will be

discussed in more detail in the Build Sub-System Section.

RSI AND MODEL EXECUTION SUB-SYSTEMS

The RSI system' is built on a 21-slot \ME chassis containing two Force Sparc CPUs

for system control together with generic simulator cards (GSCs) that perform Shuttle and

ground system data flow emulation. Each GSC is dynamically configurable to emulate

one of a Shuttle downlink pulse code modulation (PCM) stream, a ground data bus

(GDB), or a launch data bus (LDB). A DSP (TMS32O) in each GSC enables the card to

emulate data protocols for a variety of hardware via a MIL-STD-1553 protocol interface.

Inter-processor communication utilizes a fiber-optic network connection and shared

memory segnients, which are implemented on reflective memory cards attached to each

processor.

Prior to execution, all models, sub-systems and control procedures are translated to C-

language statements. The current simulation has approximately 800 models and 1,000

control procedures. Procedures are written in a variant of the Ground-Operations

Aerospace Language (GOAL). MCPs are used to configure sub-systems into predefined

states and to introduce "ad hoc" failures for training purposes.

The most complex step in the translation process is to calculate the dependency chain for

model segments (i.e. CMOD). A model, such as VOLTREG, with segments that have no

variable dependencies or input parameters would be assigned Level Zero. Any segments

in the same model, or in other models, that depend only on RAWVOLTS would be

assigned Level One. The analysis continues until transitive closure is completed with no

cycles.

Further, each segment is analyzed for external dependencies. This results in a novel

computation model in which only the segments that reference a changed variable are

executed each model cycle. As a result, SGOS resembles a dynamic dataflow

architecture.

The C modules are compiled to object code and statically linked with the Executive. The

default execution step interval in real-time mode is 50 milliseconds (with a capability

down to 5 milliseconds). During each 5Oms cycle, stimuli to the model are processed

from four different sources: Firing Room input, model-control procedures, user

commands and time-based changes to continuous and discrete variables within each

model.

All stimulated segments are queued in Level order at the beginning of each cycle. As

each model segment runs, it may, in turn, generate changes to other model variables.

This results in further segment queuing, which is also ordered by Level. Eventually, no

more variables will change and no more segments will be queued. The cycle completes.

All this happens every 5Oms simulation cycle.

BUILD SUB-SYSTEM LANGUAGE SYNTAX

The GGOS Build Sub-system 2 consists of translators and tools that convert models

and procedures to C source code compile and link a simulation, and that manage

databanks. Every model has a unique system name. A partial listing of model syntax is

documented in Table 3. Comments are delimited by a dollar sign ($) and can occur

wherever white space is permitted except within strings or other comments.

Statements (in order) Explanation
DATABANK <name>; References the name space for this model
:SYS <name> [(<param-list>)]; Defines the unique system name for this model
[:INIT {CJD} <name> /<constant>/; Initialize a continuous (C) or discrete (D)

]... variable. The constant must match in type.
[:SUBSYS <name> AS <name> Import a parameterized duplicate of another
[(<param-list>)];]... model and assign a unique system name
[:DIM . <name> (<constant> Array names must be preceded by a period.
[,<constant>]);]... Bounds can range from 1 to 1024. The data

type	 is	 double.	 Arrays	 are model-local
variables and do not propagate changes.

{ Boolean,	 Continuous,	 or Discrete Model
{:BMOD <name> [,1];

I
segments. The [,l] limits execution to once per

:CMOD <name>(<const>) [,1]; cycle. The constant qualifier on a CMOD is the
:DMOD <name>; response time (is to lOs). It is the maximum
} <statements>	 0 time until the segment is recalculated if an input

variable does not change sooner.
:SYSEND; Denotes the end of a program

Table 3. Model Program Syntax

A model is an unordered list of segment definitions. There are three different types of

segments: Boolean (BMOD), continuous (CMOD), and discrete (DMOD). The

execution of segments, and their associated statements, is initiated by changes to model

variables. The segments can occur in any order in a program. The beginning of the next

segment or the occurrence of a SYSE delimits the end of a segment.

The BMOD and DMOD segments can be best visualized as implementations of

sequential or combinatorial circuits. They capture the cause and effect relationships

among event occurrences in the simulation. The Boolean operators are & (and), + (or), -

(not). The library functions BAND, BOR, BXOR perform a logical operation on two

"continuous" expressions. The constants are ON, OFF, 1 and 0.

A DMOD segment has several differences with a BMOD. First, a DMOD can only

contain discrete assignment statements. DMOD statements are executed selectively if

any variable in that statement is triggered. Thus, a DMOD segment with n assignment

statements is just convenient shorthand for n BMOD segments with one statement each.

Table 4 lists the statements in the modeling language.

Statements Explanation
<C-name> = <C-expression>; Continuous variable assignment
<D-name> [(<time-delay>)] = BID Boolean assignment with an optional delay
<D-expression>; value (.05s to	 lOs). A <time-delay> is a

comma-separated list of two constants. The first
constant specifies the time delay for an OFF to
ON transition.	 The second constant specifies
the ON to OFF delay. _______________________________

CALL ASRT(<C-name-i>,<C-narne- The <constant> is the number of array
2>, <constant>,2); elements.	 Store the permutation vector for a

sorted	 <narne-2>	 in	 <name-i>	 without
changing <name-2>. ________________________________

CALL DLM(<D-narne>, <C-name>, Set a discrete model name to indicate that a
<C-expression-i>, <C-expression-2> continuous model name is IN or OUTside of

[, { IN/OUT }] [' <time-delay>]); specified limits. The <time-delay> is applied as
in discrete assignment.

CALL FLOW (<n-constant>, <rn- Calculates pressures for interior nodes and
constant>, .G, .HP, .P, .Q, flows for a fluid network. n is the total number
.A,.B,.RA,.RB,.R); of nodes and m is the number of interior

(unknown) nodes. G (nx29) contains the G
numbers. Any desired valve action should be
included (see LFS) in the equations that load
the non-zero (active) slots in G. HP (nx29) is
initialized with head pressures. P (n) is loaded
with the known pressures in the last n-rn slots.
Q (nx29) contains the results of the output flow
calculations.	 The last five arrays (mx29, m,
nx29, nx29, and m) are for intermediate results. _____________________________________

CALL INTGRL (<C-name>, Any assignment to <C-name> when an interval

<C-expression>, is inactive will schedule the segment containing
DELTA=<C-expression>, the integral for the next cycle. 	 The second

LOW=<C-expression>, argument calculates the integration rate in

HI=<C-expression>); units/second.	 It is multiplied by the interval
since the last CMOD execution to derive the
next increment for <C-name>. If the increment

_____________________________________ is less than DELTA, the interval is deactivated.

The value of <C-name> is clamped within
LOW and HIGH. _______________________

CALL PROP (<C-expression>, The propagation delay statement creates a
<constant>, circular buffer of size <constant> to hold
[<Cname>,<constant>f); (value,timestamp)	 pairs.	 Up	 to	 five

(name,interval) arguments may be specified.
When each interval expires, the corresponding
<C-name>	 is	 set	 to	 the	 value	 with	 the
timestamp closest to now-interval. ______________________________________

CALL UPDATE (<C-name>, This statement implements temporal iteration as
<C-expression-l>,<C-expression-2>); a substitute for a for-loop. The statement

iterates at the interval specified for its CMOD.
The first expression is assigned to <C-name> at
every iteration until abs(newC-oldC) is less
than or equal to the second expression.

<int> CONTINUE; Defines a label number, which must be unique.
DECODE(<name>,<C-expression-1>, Sets <name> to the value of bit <C-expression -

<C-expression-2>); 1> in the value of<C-expression-2>. Bit zero is
the 2° position. ___________________________________

DIP '[' <D-expression>]' Execute <statement> if<D-expression> true.
<statement> __
GO TO <int>; Transfer control to label <int>: Loops are not

____________________________________ allowed.
Table 4. Segment Statement Syntax

Names (or identifiers) must be capitalized alphanumeric and are exported from the model

by default. Prepending an "XX" to a name defines segment-local variables. Sub-system

names can be accessed with a qualified reference. A colon (:) is used as the delimiter.

The arithmetic operators are (* / + - and ** for exponentiation). The relational operators

are: (.LT..............LE. .GE.). There is a library of math functions as well as

two continuous-expression functions: CLAMP and LFS. CLAMP takes three arguments

and retifrns (l st<2nd)?2nd :(l sl<=3rd)?l st :3 rd . The LFS function uses its D-expression first

argument to select a return value from its second (ON) and third (OFF) arguments, which

are C-expressions.

BUILD SUB-SYSTEM PROCEDURE TEST LANGUAGE

Testing ground operations for launches was an important activity, even before the

existence of SGOS. The early Shuttle ground-test language was called GOAL, Ground

Operations Aerospace Language. This is the language that was, and still is, used by

firing-room personnel to code their support procedures.

When SGOS was implemented, one of the requirements was to develop a model-test

interface that was similar to GOAL. Thus, other than model and variable names, the

syntax for the test language, which encodes MCPs, is unique. For example, GOAL

supports dimension tags (Volts, Meters) on constants. Table 5 lists example statements to

illustrate some of the features of the test language.

Statements Explanation
APPLY ANALOG 8. Volts TO Allows an analog stimuli to be sent to the
<UPLNFRO 1>; model under test.
WAIT 5 SEC OR Delay the test procedure no longer than the
UNTIL <T23> .GT. 5. GAL; specified interval or until the test condition is•

true. ___
VERIFY <VSICHK> IS ON Similar to WAIT but a failure clause can be
WITHIN 3 MIN ELSE added. Compound statements are supported
PRINT TEXT(FLIP SW1 WHEN using the AND connector.
GREEN LIGHT) AND GOTO 520; ___________________________
EVERY 5 SEC CONCURRENTLY Similar to a fork/exec in UNIX. In this case,
PERFORM PROGRAM(FOOBAR); the action would occur every 5 seconds.
FAIL <TY73> TO 3.7 PSI FOR 2. SEC; Freeze the value of a continuous variable for 2

______________________________________ seconds then resume normal calculations.
Table 5. Example Test Language Statements

BUILD SUB-SYSTEM PORTING THE SimAPI INTERFACE

The Sim Application Programming Interface (API) is a collection of C .h files that can

be used to communicate with the SGOS executive (via its SimMaster interface), to

perform simple operations on models (start or kill), and to stimulate and monitor changes

in model variables under program control. The TCP socket interface is used to

implement the functions. As a result, multiple clients can execute on a shared computer

or on any other computer connected to the Tnternet. Since the SimMaster and RSI sub-

systems use shared memory as an inter-process communication mechanism, the SimAPI

implementation also uses shared memory. The benefit is that all clients on the same

computer will "see" only a single copy of the model variables that are being monitored.

As stated earlier, the SimAPI library was written for Sun Solaris and then ported to

Linux, Apple OS-X and Windows. The ports became progressively more difficult from

Linux to Apple to Windows. In order to minimize the use of conditional compilation

(#ifdef) preprocessor directives, OS functions with different semantics (or that did not

exist) were renamed to create a virtual machine (VM) interface for the library. For

example, the recv function from socket.h was renamed to socket_recv so that different

system semantics could be isolated. Table 6 lists some of the problem areas supported by

VM functions for each platform.

Linux Apple OS-X Microsoft Windows
Missing high-res time Different high-res time API Different high-res time API

Conversion to Big Endian
for net data transmission __________________________

Conversion to Big Endian for
net data transmission

Structure packing different
from all other systems _________________________ ________________________

Missing streams (fattach) Missing streams (fattach) Missing streams (fattach)
No semaphores Different semaphore API ________________________
Different shared memory
functions

Different shared memory
functions ___________________________
Different socket semantics
Missing fork, gettimeofday _________________________ _________________________
Missing SIGPOLL __________________ __________________
Missing nanosleep ________________________ ________________________

_________________________ Missing getopt, getpagesize _________________________
_______________________ _______________________ Missing UNIX types (pid_t)

Table 6. System Porting Difficulties

The two most difficult conversion problems on Windows were the handle semantics for

sockets and the absence of a fork() system call. SimAPI requires socket handles (fds) to

be small integers. The solution was to "stub" the socket calls with routines that allocated

fds in the range 3-3 1. The missing fork() (luckily only used once) was replaced by

isolating the child process' code in a procedure that accessed a copy of all global

variables through a struct argument.

The solution achieves the desired notational opaqueness. On all systems, the parent must

initialize the struct. The initialization is redundant in Linux and OS-X since under

normal circumstances the child would have a copy of the global variables. Whereas in

Windows, the forkO stub creates a thread to execute the child process's code.

BUILD SUB-SYSTEM PROGRAMMING WITH THE SimAPI INTERFACE

The SimAPI library was used to implement the KLASS (Kennedy Launch Academy

Simulation System) project. The application was created by writing a GUI front-end to a

variety of simplified launch-countdown models and displaying compelling graphics of

Shuttle and ground components as the countdown progresses. Table 7 lists the methods in

the interface together with a brief description of each.

The primary design requirement for the library was that the SimMaster could never be

blocked, which in turn means that clients cannot be blocked. Since all client-server

communication is implemented with sockets, this dictated that clients and the server use a

socket select for 110. Even though TCP socket output is asynchronous, if the output fills

the connection's window size, the sender will block. Further once clients register an

interest in a model's variables with the SimMaster, it can be continuously generating

changes. A second design consideration was to coalesce the network connections for

clients of the same model on the same host in order to minimize I/O by the SimMaster.

SOCKET ConnectToSimMaster(serverlP, Open a client connection to serverlP/port. Send
port) the hostname/username to authenticate and wait

for response. Return the socket handle.
DisconnectFromSimMaster(socket) Close the socket handle, which will propagate an

error return to SimMaster.
{SOCKET, int, ModelTable[]} Call ConnectToSimMaster to get a socket handle.
GetRunningModels(serverlP, port, shmlD) Send a command to get count and descriptors for

all running models if shmlD-1; otherwise just
model shmlD. _____________________________________

mt Print shmlD name IoadTime owner health
PrintModelTableEntry(modelTableEntry) termPort
ModelTableEntry LoadModel(smSD, Send SimMaster a load/directory/name/parameters
directory, name, parameters) command. The response is a model descriptor.
nt KillModel(smSD, shmlD) Send SimMaster a kill/shmlD command message.
{tSD, Tracker} ConnectToModel(serverlP, Invoke GetRunningModels to get a SimMaster
port, shmlD) socket and the model descriptor. If the Tracker

thread/process does not exist, create a Tracker
segment named serverlP-port-shmlD, fork the
Tracker process, and wait for it to initialize. 	 Finally,
open a client connection to localhost/tracker-port
and return socket and Tracker descriptor to caller.

nt DisconnectFromModel(tSD, tracker) Close shared memory, sockets and tracker.
mt PrintTracker(tracker) Print the model-table entry associated with the

tracker.
Print processiD trackerPort useCount

nameCount(')

Print {name index CD 1101-- [INIT] [FAIL] value}nl _______________________________________
{value, initialized, failed, CID} Lookup name in the tracker's name table. Loads
GetVariable(tracker, variableName) and stores are encoded as index-value pairs, not

names. _______________________________________
WaitHandle Call ConnectToModel twice. By convention, the
OpenChangePoll(modellableEntry, count, first socket handle is for data, the second handle is
names[]) for commands. For all names, send a register

command to the Tracker command port.
mt CloseChangePoll(waitHandle) Deregister names, close sockets, close tracker,

deallocate waitHandle. _______________________________________
{count, changelndex[j, changeValueEj} Use the socket select function to wait for a
ChangePoll(waitHandle, timeout) message or a timeout. If changes are received,

return the list. ___
mt SendCommand(modelTableEntry, Call ConnectToModel twice. Send Tracker the
command, name, value) command.

set <name> <double value>;
fail <name> <double value>;
reset fail <name>;
reset all;
stop;
step;

_______________________________________ resume <double value>;

Table 7. Sim Application Programming Interface

For these reasons (and a few others), the Tracker concept was evolved. There is one

Tracker process (or thread) per model per host. Each tracker opens one port to the

SimMaster and one connection port to itself. The socket select method (with a timeout)

is used to query both original Tracker connections in addition to new connections

generated by ConnectToModel. In the API description, all client-server communication

is via Trackers, except for LoadModel and KillModel.

SUMMARY

The SGOS executive and its subsystems have been an integral component of the

Shuttle Launch Safety Program for almost thirty years. It is usable (via the network) by

over 2000 NASA employees at the Kennedy Space Center and 11,000 contractors.

SGOS supports over 800 models comprised of several hundred thousand lines of code

and over 1,000 model-control procedures. Yet neither language has a for loop!! NASA

hopes that the KLASS project will be used to educate and excite the next generation of

scientists and engineers in the areas critical to the new NASA Exploration Mission.

REFERENCES

C.T. Lostroscio and G.S. Estes. 'KSC real-time simulation interface (RSI)', in KSC Research and
Technology Annual Report, NASA Technical Memorandum 211179, 122-123, 2002.

'Shuttle ground operations simulator (SGOS) user guide, build sub-system', NASA KSC Document
#84K08 140, Revision 4, Feb. 2004.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15

