Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution

Possible applications of this catalyst include fabrication of water electrolysis units in hydrogen generators.

NASA’s Jet Propulsion Laboratory, Pasadena, California

NASA requires a durable and efficient catalyst for the electrolysis of water in a polymer-electrolyte-membrane (PEM) cell. Ruthenium oxide in a slightly reduced form is known to be a very efficient catalyst for the anodic oxidation of water to oxygen, but it degrades rapidly, reducing efficiency. To combat this tendency of ruthenium oxide to change oxidation states, it is combined with iridium, which has a tendency to stabilize ruthenium oxide at oxygen evolution potentials. The novel oxygen evolution catalyst was fabricated under flowing argon in order to allow the iridium to

Piezoelectrically Enhanced Photocathodes

NASA’s Jet Propulsion Laboratory, Pasadena, California

Doping of photocathodes with materials that have large piezoelectric coefficients has been proposed as an alternative means of increasing the desired photoemission of electrons. Treating cathode materials to increase emission of electrons is called “activation” in the art. It has been common practice to activate photocathodes by depositing thin layers of suitable metals (usually, cesium). Because cesium is unstable in air, fabrication of cesiated photocathodes and devices that contain them must be performed in sealed tubes under vacuum. It is difficult and costly to perform fabrication processes in enclosed, evacuated spaces. The proposed piezoelectrically enhanced photocathodes would have electron-emission properties similar to those of cesiated photocathodes but would be stable in air, and therefore could be fabricated more easily and at lower cost.

Candidate photocathodes include nitrides of elements in column III of the periodic table — especially compounds of the general formula Al$_x$Ga$_{1-x}$N (where 0 ≤ x ≤ 1). These compounds have high piezoelectric coefficients and are suitable for obtaining response to ultraviolet light. Fabrication of a photocathode according to the proposal would include inducement of strain in cathode layers during growth of the layers on a substrate. The strain would be induced by exploiting structural mismatches among the various constituent materials of the cathode. Because of the piezoelectric effect in this material, the strain would give rise to strong electric fields that, in turn, would give rise to a high concentration of charge near the surface.

Examples of devices in which piezoelectrically enhanced photocathodes could be used include microchannel plates, electron-bombarded charge-coupled devices, image tubes, and night-vision goggles. Piezoelectrically enhanced photocathode materials could also be used in making highly efficient monolithic photodetectors. Highly efficient and stable piezoelectrically enhanced, ultraviolet-sensitive photocathodes and photodetectors could be fabricated by use of novel techniques for growing piezoelectrically enhanced layers, in conjunction with thinning and dopant-selective etching techniques.

This invention is owned by NASA, and a patent application has been filed. Inquiries concerning nonexclusive or exclusive license for its commercial development should be addressed to the Patent Counsel, NASA Management Office–JPL. Refer to NPO-40407.
Dispersion-strengthened molybdenum-rhenium alloys for vacuum plasma spraying (VPS) fabrication of high-temperature-resistant components are undergoing development. In comparison with otherwise equivalent non-dispersion-strengthened Mo-Re alloys, these alloys have improved high-temperature properties. Examples of VPS-fabricated high-temperature-resistant components for which these alloys are expected to be suitable include parts of aircraft and spacecraft engines, furnaces, and nuclear power plants; wear coatings; sputtering targets; x-ray targets; heat pipes in which liquid metals are used as working fluids; and heat exchangers in general. These alloys could also be useful as coating materials in some biomedical applications.

The alloys consist of 60 weight percent Mo with 40 weight percent Re made from (1) blends of elemental Mo and Re powders or (2) Re-coated Mo particles that have been subjected to a proprietary powder-alloying-and-spheroidization process. For most of the dispersion-strengthening experiments performed thus far in this development effort, 0.4 volume percent of transition-metal ceramic dispersoids were mixed into the feedstock powders. For one experiment, the proportion of dispersoid was 1 volume percent. In each case, the dispersoid consisted of either ZrN particles having sizes <45 µm, ZrO₂ particles having sizes <1 µm, HfO₂ particles having sizes of about 1 µm, or HfN particles having sizes <45 µm, ZrO₂ particles at grain boundaries of the Mo-Re alloy.

This Scanning Electron Micrograph of a dispersion-strengthened specimen shows ZrO₂ particles at grain boundaries of the Mo-Re alloy.