The model library can be used to sup-
port SysML user models in various ways.
A simple approach is to define and doc-
ument libraries of reusable systems of
units and quantities for reuse across
multiple projects, and to link units and
quantity kinds from these libraries to

Unit and QuantityKind stereotypes de-
fined in SysML user models.

This work was done by Nicolas F. Rou-
quette of Caltech, Hans-Peter DeKoenig of the
Luropean Space Agency, Roger Burkhart of
Deere & Company, and Huascar Espinoza of
the French Centre of Atomic Energy for

NASA’s Jet Propulsion Laboratory. For more
information, contact iaoffice@jpl.nasa.gov.

The software used in this innovation is
available for commercial licensing. Please con-
tact Daniel Broderick of the California Insti-
tute of Technology at danielb@caltech.edu.
Refer to NPO-47251.

> Sptrace

NASA’s Jet Propulsion Laboratory, Pasadena, California

Sptrace is a general-purpose space
utilization tracing system that is con-
ceptually similar to the commercial
“Purify” product used to detect leaks
and other memory usage errors. It is
designed to monitor space utilization
in any sort of “heap,” i.e., a region of
data storage on some device (nomi-
nally memory; possibly shared and pos-
sibly persistent) with a flat address
space. This software can trace usage of
shared and/or non-volatile storage in
addition to private RAM (random ac-
cess memory).

Sptrace is implemented as a set of C
function calls that are invoked from
within the software that is being exam-
ined. The function calls fall into two
broad classes: (1) functions that are em-
bedded within the heap management
software [e.g., JPL’s SDR (Simple Data
Recorder) and PSM (Personal Space
Management) systems] to enable heap
usage analysis by populating a virtual
time-sequenced “log” of usage activity,
and (2) reporting functions that are em-
bedded within the application program
whose behavior is suspect. For ease of

use, these functions may be wrapped pri-
vately inside public functions offered by
the heap management software. Sptrace
can be used for VxWorks or RTEMS real-
time systems as easily as for Linux or
OS/X systems.

This work was done by Scott C. Burleigh of
ACRO for NASA's Jet Propulsion Laboratory.
Further information is contained in a TSP
(see page 1).

This software is available for commercial li-
censing. Please contact Daniel Broderick of
the California Institute of Technology at
danielb@caltech.edu. Refer to NPO-41626.

@ S-Band POSIX Device Drivers for RTEMS

NASA’s Jet Propulsion Laboratory, Pasadena, California

This is a set of POSIX device driver level
abstractions in the RTEMS RTOS (Real-
Time Executive for Multiprocessor Sys-
tems real-time operating system) to S-
Band radio hardware devices that have
been instantiated in an FPGA (field-pro-
grammable gate array). These include
A/D (analog-to-digital) sample capture,
D/A (digital-to-analog) sample playback,
PLL (phase-locked-loop) tuning, and
PWM (pulse-width-modulation)-con-
trolled gain. This software interfaces to S-
band radio hardware in an attached Xilinx

Virtex-2 FPGA. It uses plug-and-play device
discovery to map memory to device IDs.
Instead of interacting with hardware de-
vices directly, wusing direct-memory
mapped access at the application level,
this driver provides an application pro-
gramming interface (API) offering that
easily uses standard POSIX function calls.
This simplifies application programming,
enables portability, and offers an addi-
tional level of protection to the hardware.

There are three separate device drivers
included in this package: sband_device

(ADC capture and DAC playback), pll_de-
vice (RF front end PLL tuning), and
pwm_device (RF front end AGC control).

This work was done by James P. Lux, Minh
Lang, Kenneth J. Peters, and Gregory H. Tay-
lor of Caltech for NASA’s Jet Propulsion Lab-
oratory. For more information, contact iaof-
fice@jpl.nasa.gov.

This software is available for commercial li-
censing. Please contact Daniel Broderick of
the California Institute of Technology at
danielb@caltech.edu. Refer to NPO-47496.

@ MaROS: Information Management Service

NASA's Jet Propulsion Laboratory, Pasadena, California

This software is provided by the Mars
Relay Operations Service (MaROS) task
to a variety of Mars projects for the pur-
pose of coordinating communications
sessions between landed spacecraft as-
sets and orbiting spacecraft assets at
Mars. The Information Management
Service centralizes a set of functions

NASA Tech Briefs, September 2011

previously distributed across multiple
spacecraft operations teams, and as
such, greatly improves visibility into the
end-to-end strategic coordination pro-
cess. Most of the process revolves
around the scheduling of communica-
tions sessions between the spacecraft
during periods of time when a landed

asset on Mars is geometrically visible by
an orbiting spacecraft. These “relay” ses-
sions are used to transfer data both to
and from the landed asset via the orbit-
ing asset on behalf of Earth-based space-
craft operators.

This software component is an appli-
cation process running as a Java virtual

51

machine. The component provides all
service interfaces via a Representational
State Transfer (REST) protocol over
“https” to external clients. There are two
general interaction modes with the serv-
ice: upload and download of data. For
data upload, the service must execute
logic specific to the upload data type
and trigger any applicable calculations
including pass delivery latencies and
overflight conflicts. For data download,
the software must retrieve and correlate

requested information and deliver to
the requesting client.

The provision of this service enables
several key advancements over legacy
processes and systems. For one, this serv-
ice represents the first time that end-to-
end relay information is correlated into
a single shared repository. The software
also provides the first multimission la-
tency calculator; previous latency calcu-
lations had been performed on a mis-
sion-by-mission basis.

This work was done by Daniel A. Allard,
Roy E. Gladden, Jesse J. Wright, Franklin H.
Hy, Gregg R. Rabideau, and Michael N.
Wallick of Caltech for NASA’s Jet Propulsion
Laboratory. Further information is contained
in a TSP (see page 1).

This software is available for commer-
cial licensing. Please contact Daniel Brod-
erick of the California Institute of Technol-
ogy at danielb@caltech.edu. Refer to
NPO-47454.

¢ Interplanetary Overlay Network Bundle Protocol

Implementation

NASA's Jet Propulsion Laboratory, Pasadena, California

The Interplanetary Overlay Network
(ION) system’s BP package, an imple-
mentation of the Delay-Tolerant Net-
working (DTN) Bundle Protocol (BP)
and supporting services, has been specif-
ically designed to be suitable for use on
deep-space robotic vehicles. Although
the ION BP implementation is unique in
its use of zero-copy objects for high per-
formance, and in its use of resource-sen-
sitive rate control, it is fully interoperable
with other implementations of the BP
specification (Internet RFC 5050).

The ION BP implementation is built
using the same software infrastructure
that underlies the implementation of the
CCSDS (Consultative Committee for
Space Data Systems) File Delivery Proto-
col (CFDP) built into the flight software

of Deep Impact. It is designed to mini-
mize resource consumption, while maxi-
mizing operational robustness. For ex-
ample, no dynamic allocation of system
memory is required. Like all the other
ION packages, ION’s BP implementa-
tion is designed to port readily between
Linux and Solaris (for easy development
and for ground system operations) and
VxWorks (for flight systems operations).
The exact same source code is exercised
in both environments.

Initially included in the ION BP imple-
mentations are the following: libraries of
functions used in constructing bundle
forwarders and convergence-layer (CL)
input and output adapters; a simple pro-
totype bundle forwarder and associated
CL adapters designed to run over an IP-

based local area network; administrative
tools for managing a simple DTN infra-
structure built from these components; a
background daemon process that silently
destroys bundles whose time-to-live inter-
vals have expired; a library of functions
exposed to applications, enabling them
to issue and receive data encapsulated in
DTN bundles; and some simple applica-
tions that can be used for system check-
out and benchmarking.

This work was done by Scott C. Burleigh of
ARCO for NASA’s Jet Propulsion Laboratory.
Further information is contained in a TSP
(see page 1).

This software is available for commercial li-
censing. Please contact Daniel Broderick of
the California Institute of Technology at
danielb@caltech.edu. Refer to NPO-41628.

& STRS SpaceWire FPGA Module

NASA’s Jet Propulsion Laboratory, Pasadena, California

An FPGA module leverages the previ-
ous work from Goddard Space Flight
Center (GSFC) relating to NASA’s Space
Telecommunications Radio System
(STRS) project. The STRS SpaceWire
FPGA Module is written in the Verilog
Register Transfer Level (RTL) language,
and it encapsulates an unmodified
GSFC core (which is written in VHDL).
The module has the necessary
inputs/outputs (I/Os) and parameters
to integrate seamlessly with the SPARC
1/0 FPGA Interface module (also devel-
oped for the STRS operating environ-
ment, OF).

Software running on the SPARC
processor can access the configuration

52

and status registers within the
SpaceWire module. This allows soft-
ware to control and monitor the
SpaceWire functions, but it is also used
to give software direct access to what is
transmitted and received through the
link. SpaceWire data characters can be
sent/received through the software in-
terface, as well as through the dedi-
cated interface on the GSFC core. Sim-
ilarly, SpaceWire time codes can be
sent/received through the software in-
terface or through a dedicated inter-
face on the core.

This innovation is designed for plug-
and-play integration in the STRS OE.
The SpaceWire module simplifies the in-

terfaces to the GSFC core, and synchro-
nizes all I/0 to a single clock. An inter-
rupt output (with optional masking)
identifies time-sensitive events within
the module. Test modes were added to
allow internal loopback of the
SpaceWire link and internal loopback of
the client-side data interface.

This work was done by James P. Lux, Gre-
gory H. Taylor, Minh Lang, and Ryan A.
Stern of Caltech for NASA’s Jet Propulsion
Laboratory. For more information, contact
iaoffice@jpl.nasa.gov.

This software is available for commercial li-
censing. Please contact Daniel Broderick of
the California Institute of Technology at
danielb@caltech.edu. Refer to NPO-47434.

NASA Tech Briefs, September 2011

