METHODOLOGIES FOR TREATING CONGESTIVE HEART FAILURE

Inventors: Mark Marchionni, Arlington, MA (US); Ralph Kelly, Chestnut Hill, MA (US); Beverly Lorell, Needham, MA (US); Douglas B. Sawyer, Brookline, MA (US)

Assignees: Acorda Therapeutics, Inc., Hawthorne, NY (US); Beth Israel Deaconess Medical Center, Boston, MA (US); The Brigham and Women’s Hospital, Inc., Boston, MA (US)

Division of application No. 10/646,268, filed on Aug. 23, 2003, now Pat. No. 6,635,249, which is a division of application No. 9/208,121, filed on Apr. 23, 1999, now Pat. No. 6,355,361.

Int. Cl. A61K 38/18 (2006.01)

U.S. Patent No.: US 8,076,283 B2

Patent Date: Dec. 13, 2011

Abstract

METHODS FOR TREATING CONGESTIVE HEART FAILURE

The invention features methods of treating or preventing congestive heart failure by administering a polypeptide containing an epidermal growth factor-like domain encoded by a neuregulin gene.

18 Claims, 12 Drawing Sheets
OTHER PUBLICATIONS
Falls et al., "ARIA, A Protein that Stimulates Acetylcholine Receptor Synthesis, is a member of the Neu ligand Family" Cell 72: 801-815, 1993.
Ballingard et al., Cardiac Endothelium and Tissue Growth, Progress in Cardiovascular Diseases, 39:351-360 (1997).
Fig. 1A

<table>
<thead>
<tr>
<th></th>
<th>E14</th>
<th>E16</th>
<th>E19</th>
<th>Ad</th>
<th>M</th>
<th>NRVM</th>
<th>ARVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ErbB2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1050 bp</td>
</tr>
<tr>
<td>ErbB3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1120 bp</td>
</tr>
<tr>
<td>ErbB4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1100 bp</td>
</tr>
<tr>
<td>GAPDH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>240 bp</td>
</tr>
</tbody>
</table>

Fig. 1B

- **rhhGGF2**
- **IP: ErbB4**
- **WB: p-tyr**

KD 205 118
Fig. 2A

Fig. 2B

Fig. 2C

% BrdU Positive Myocytes

CONTROL rhGGF2 (40ng/ml)
Fig. 3A

Fig. 3B
Fig. 4

Fig. 5
Fig. 7A

RELATIVE MITT ACTIVITY (% CONTROL)

rhGGF2 (ng/ml)

Fig. 7B

% TUNEL POSITIVE MYOCYTES

CONTROL rhGGF2

*
Fig. 8A

Fig. 8B

Fig. 8C

Fig. 8D
Fig. 14

Fig. 15A

Fig. 15B
METHODS FOR TREATING CONGESTIVE HEART FAILURE

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Divisional Application of application Ser. No. 10/645,268, filed Aug. 22, 2003, now U.S. Pat. No. 7,662,772, which is a Divisional Application of application Ser. No. 09/298,121, filed Apr. 25, 1999, now U.S. Pat. No. 6,635,249. The entire teachings of the above applications are incorporated herein by reference.

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

This work was supported in part by NIH Grants HL-38189, HL-36414, and a NASA award. The government has certain rights in the invention.

FIELD OF THE INVENTION

The field of the invention is treatment and prevention of congestive heart failure.

BACKGROUND OF THE INVENTION

Congestive heart failure, one of the leading causes of death in industrialized nations, results from an increased workload on the heart and a progressive decrease in its pumping ability. Initially, the increased workload that results from high blood pressure or loss of contractile tissue induces compensatory cardiac hypertrophy and thickening of the left ventricular wall, thereby enhancing contractility and maintaining cardiac function. However, over time, the left ventricular chamber dilates, systolic pump function deteriorates, cardiomyocyte hypertrophy and thickening of the left ventricular chamber dilates, systolic pump function deteriorates, cardiomyocyte hypertrophy and thickening of the left ventricular chamber dilates, systolic pump function deteriorates, cardiomyocyte hypertrophy and thickening of the left ventricular chamber, systolic function progressively deteriorates.

Factors that underlie congestive heart failure include high blood pressure, ischemic heart disease, exposure to cardiotoxic compounds such as the anthracycline antibiotics, and genetic defects known to increase the risk of heart failure.

Neuregulins (NRGs) and NRG receptors comprise a growth factor-receptor tyrosine kinase system for cell-cell signalling that is involved in organogenesis in nerve, muscle, epithelia, and other tissues (Lemke, Mol. Cell. Neurosci. 7: 247-262, 1996 and Burden et al., Neuron 18: 847-855, 1997). The NRG family consists of three genes that encode numerous ligands containing epidermal growth factor (EGF)-like, immunoglobulin (Ig), and other recognizable domains. At least 20 (perhaps 50 or more) secreted and membrane-associated isoforms may function as ligands in this signalling system. The receptors for NRG ligands are all members of the EGF receptor (EGFR) family and include EGFR (or ErbB1), ErbB2, ErbB3, and ErbB4, also known as HER1 through HER4, respectively, in humans (Meyer et al., Development 124: 3575-3586, 1997; Orr-Urteger et al., Proc. Natl. Acad. Sci. USA 90: 1867-71, 1993; Marchionni et al., Nature 362: 312-8, 1993; Chen et al., J. Comp. Neurol. 349: 389-400, 1994; Corfas et al., Neuron 14: 103-115, 1995; Meyer et al., Proc. Natl. Acad. Sci. USA 91: 1064-1068, 1994; and Pinkas-Kramarski et al., Oncogene 15: 2803-2815, 1997).

An EGF-like domain is present at the core of all forms of NRGs, and is required for binding and activating ErbB receptors. Dceded amino acid sequences of the EGF-like domains encoded in the three genes are approximately 30-40% identical (pairwise comparisons). Further, there appear to be at least two sub-forms of EGF-like domains in NRG-1 and NRG-2, which may confer different bioactivities and tissue-specific potencies.

Cellular responses to NRGs are mediated through the NRG receptor tyrosine kinases EGFR, ErbB2, ErbB3, and ErbB4 of the epidermal growth factor receptor family. High-affinity binding of all NRGs is mediated principally via either ErbB3 or ErbB4. Binding of NRG ligands leads to dimerization with other ErbB subunits and transactivation by phosphorylation on specific tyrosine residues. In certain experimental settings, nearly all combinations of ErbB receptors appear to be capable of forming dimers in response to the binding of NRG-1 isoforms. However, it appears that ErbB2 is a preferred dimerization partner that may play an important role in stabilizing the ligand-receptor complex. Recent evidence has shown that expression of NRG-1, ErbB2, and ErbB4 is necessary for trabeculation of the ventricular myocardium during mouse development.

In view of the high prevalence of congestive heart failure in the general population, it would be highly beneficial to prevent or minimize progression of this disease by inhibiting loss of cardiac function, and ideally, by improving cardiac function for those who have or are at risk for congestive heart failure.

SUMMARY OF THE INVENTION

We have found that neuregulins stimulate compensatory hypertrophic growth and inhibit apoptosis of myocardocytes subjected to physiological stress. Our observations indicate that neuregulin treatment will be useful for preventing, mini-
by at least 25%, even more preferably by at least 50%, yet completely inhibiting the development of congestive heart failure in a mammal at risk for developing congestive heart failure (as defined in “Consensus recommendations for the management of chronic heart failure.” Am. J. Cardiol., 83(2A):1A-38-A, 1999). Determination of whether congestive heart failure is minimized or prevented by administration of a neuregulin or neuregulin-like polypeptide is made by known methods, such as those described in SOLVD Investigators, supra, and Cohn et al., supra.

By “at risk for congestive heart failure” is meant an individual who smokes, is obese (i.e., 20% or more over their ideal weight), has been or will be exposed to a cardiotoxic compound (such as an anthracycline antibiotic), or has (or had) high blood pressure, ischemic heart disease, a myocardial infarct, a genetic defect known to increase the risk of congestive heart failure, hypertension, ischemic heart disease, a mycardial infarct, a genetic defect, or is an alcoholic or cocaine addict.

By “decreasing progression of myocardial thinning” is meant minimization or prevention of myocardial thinning, or inhibits cardiomyocyte apoptosis.

By “inhibiting myocardial apoptosis” is meant that neuregulin treatment inhibits death of cardiomyocytes by at least 10%, more preferably by at least 15%, still more preferably by at least 25%, even more preferably by at least 50%, yet
more preferably by at least 75%, and most preferably by at least 90%, compared to untreated cardiomyocytes.

By "neuregulin" or "NRG" is meant a polypeptide that is encoded by an NRG-1, NRG-2, or NRG-3 gene or nucleic acid (e.g., a cDNA), and binds to and activates ErbB2, ErbB3, or ErbB4 receptors, or combinations thereof.

By "neuregulin-1," "NRG-1," "heregulin," "GGF-2," or "p185erbB2 ligand" is meant a polypeptide that binds to the ErbB2 receptor and is encoded by the p185erbB2 ligand gene described in U.S. Pat. Nos. 5,530,109; 5,716,930; and U.S. Ser. No. 08/461,097.

By "neuregulin-like polypeptide" is meant a polypeptide that possesses an EGF-like domain encoded by a neuregulin gene, and binds to and activates ErbB2, ErbB3, ErbB4, or a combination thereof.

By "anti-ErbB2 antibody" or "anti-HER2 antibody" is meant an antibody that specifically binds to the extracellular domain of the ErbB2 (also known as HER2 in humans) receptor and prevents the ErbB2 (HER2)-dependent signal transduction initiated by neuregulin binding.

By "transformed cell" is meant a cell (or a descendent of a cell) into which a DNA molecule encoding a neuregulin or polypeptide having a neuregulin EGF-like domain has been introduced, by means of recombinant DNA techniques or known gene therapy techniques.

By "promoter" is meant a minimal sequence sufficient to direct transcription. Also included in the invention are those promoter elements which are sufficient to render promoter-dependent gene expression controllable for cell type or physiological status (e.g., hypoxic versus normoxic conditions), or inducible by external signals or agents; such elements may be located in the 5' or 3' or internal regions of the native gene.

By "operably linked" is meant that a nucleic acid encoding a polypeptide (e.g., a cDNA), and one or more regulatory sequences are connected in such a way as to permit gene expression when the appropriate molecules (e.g., transcriptional activator proteins) are bound to the regulatory sequences.

By "expression vector" is meant a genetically engineered plasmid or virus, derived from, for example, a bacteriophage, adenovirus, retrovirus, poxvirus, herpesvirus, or artificial chromosome, that is used to transfer a polypeptide (e.g., a neuregulin) coding sequence, operably linked to a promoter, into a host cell, such that the encoded peptide or polypeptide is expressed within the host cell.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a representation of a semi-quantitative RT-PCR analysis showing expression of neuregulin receptors during cardiac development and in adult rat cardiomyocytes.

FIG. 1B is a representation of an assay showing tyrosine phosphorylation of the ErbB4 receptor in cardiomyocytes treated with recombinant human glial growth factor 2 (rhGGF2).

FIGS. 2A and 2B are representations of photomicrographs showing staining of neonatal rat ventricular myocytes for myosin heavy chain (FIG. 2A) and BrdU-positive nuclei (FIG. 2B).

FIG. 2C is a graph showing that rhGGF2 stimulates DNA synthesis (indicated by % BrdU-positive myocytes) in neonatal rat ventricular myocytes.

FIGS. 3A and 3B are graphs showing that rhGGF2 stimulates DNA synthesis (indicated by relative 3H-thymidine uptake) in neonatal rat ventricular myocytes.

FIG. 4 is a graph showing that ErbB2 and ErbB4 mediate the effects of GGF2 on relative 3H-thymidine uptake in neonatal rat ventricular myocytes.

FIG. 5 is a graph showing that GGF2 promotes survival in primary cultures of neonatal rat ventricular myocytes.

FIGS. 6A-6C and 6D-6G are representations of photomicrographs showing that GGF2 diminishes apoptotic cell death in primary cultures of neonatal rat ventricular myocytes.

FIG. 6D is a graph showing that rhGGF2 diminishes apoptotic cell death in primary cultures of neonatal rat ventricular myocytes (indicated by a decrease in the percentage of TUNEL-positive myocytes).

FIG. 6H is a graph showing that rhGGF2 diminishes apoptotic cell death in primary cultures of neonatal rat ventricular myocytes (determined by flow cytometry analysis of the sub-G1 fraction following propidium iodide staining of rhGGF2-treated cells).

FIGS. 7A and 7B are graphs showing that rhGGF2 increases survival and decreases apoptotic cell death in primary cultures of adult rat ventricular myocytes.

FIGS. 8A and 8B are representations of photomicrographs showing that GGF2 induces hypertrophic growth of neonatal rat ventricular myocytes.

FIG. 8C is a representation of a Northern blot showing that prepro-atrial natriuretic factor (prepro-ANF), a marker of ventricular hypertrophy, and α-skeletal actin are up-regulated in neonatal rat ventricular myocytes treated with GGF2.

FIG. 8D is a graph showing that GGF2 stimulates protein synthesis (indicated by relative 3H-leucine uptake) in neonatal rat ventricular myocytes.

FIGS. 9A-9C are photomicrographs showing that GGF2 induces hypertrophic growth in primary cultures of adult rat ventricular myocytes.

FIG. 9D is a representation of Northern blots showing that prepro-ANF and α-skeletal actin are up-regulated in adult rat ventricular myocytes treated with GGF2.

FIG. 9E is a graph showing that GGF2 stimulates protein synthesis (indicated by relative 3H-leucine uptake) in adult rat ventricular myocytes.

FIGS. 10A and 10B are representations of ribonuclease protection assays showing expression levels of ErbB2 (FIG. 10A), ErbB4 (FIG. 10B), and β-actin in the left ventricles of control and aortic stenosis rat hearts.

FIG. 11 is a representation of a Northern blot showing expression of ANF and glyceraldehyde phosphate dehydrogenase (GAPDH, a housekeeping gene) in myocytes from left ventricles of control and aortic stenosis rat hearts.

FIGS. 12A and 12B are representations of photomicrographs showing staining of neonatal rat ventricular myocytes for myosin heavy chain (FIG. 12A) and BrdU-positive nuclei (FIG. 12B).

FIGS. 13A and 13B are photomicrographs showing that GGF2 increases survival and decreases apoptotic cell death in primary cultures of adult rat ventricular myocytes.
FIGS. 13C and 13D are representations of a Western blot showing expression levels of ErbB2 in 6-week (FIG. 13C) and 22-week (FIG. 13D) aortic stenosis and control rat hearts. FIG. 14 is a graph showing that cardiac myocyte cultures pre-treated with IGF-1 or NRG-1 are less susceptible to daunorubicin-induced apoptosis. FIG. 15A is a representation of a phosphorylation assay showing that IGF-1 and NRG-1-stimulated phosphorylation of Akt is inhibited by the PI-3 kinase inhibitor wortmannin. FIG. 15B is a graph showing that IGF-1 and NRG-1 inhibition of caspase 3 activation in cells exposed to daunorubicin is PI-3 kinase-dependent.

DETAILED DESCRIPTION OF THE INVENTION

We have found that neuregulins promote survival and hypertrophic growth of cultured cardiac myocytes through activation of ErbB2 and ErbB4 receptors. In addition, we have observed, in animals with experimentally-induced intracardiac pressure overload, that cardiac myocyte ErbB2 and ErbB4 levels are normal during early compensatory hypertrophy and decrease during the transition to early heart failure. Together, our in vitro and in vivo findings show that neuregulins are involved in stimulating compensatory hypertrophic growth in response to increased physiologic stress, as well as inhibiting apoptosis of myocardial cells subjected to such stress. These observations indicate that neuregulin treatment will be useful for preventing, minimizing, or reversing congestive heart disease. While not wishing to be bound by theory, it is likely that neuregulin treatment will strengthen the pumping ability of the heart by stimulating cardiac myocyte hypertrophy, and will partially or completely inhibit further deterioration of the heart by suppressing cardiomyocyte apoptosis.

Neuregulins

Polypeptides encoded by the NRG-1, NRG-2, and NRG-3 genes possess EGF-like domains that allow them to bind to and activate ErbB receptors. Holmes et al. (Science 256: 1205-1210, 1992) has shown that the EGF-like domain alone is sufficient to bind and activate the p185erbB2 receptor. Accordingly, any polypeptide product encoded by the NRG-1, NRG-2, or NRG-3 gene, or any neuregulin-like polypeptide, e.g., a polypeptide having an EGF-like domain encoded by a neuregulin gene or cDNA (e.g., an EGF-like domain containing the NRG-1 peptide subdomains C-C/D or C-C/D'), as described in U.S. Pat. Nos. 5,530,109, 5,716,930, and U.S. Ser. No. 08/461,097; or an EGF-like domain as disclosed in WO 97/09425 may be used in the methods of the invention to bind to and activate ErbB receptors.

Accordingly, neuregulins may be administered to prevent or decrease the rate of congestive heart disease progression in those identified as being at risk. For example, neuregulin administration to a patient in early compensatory hypertrophy may permit maintenance of the hypertrophic state and may prevent the progression to heart failure. In addition, those identified to be at risk, as defined above, may be given cardioprotective neuregulin treatment prior to the development of compensatory hypertrophy.

Neuregulin administration to cancer patients prior to and during anthracycline chemotherapy or anthracycline/anti-ErbB2 (anti-HER2) antibody (e.g., HERCEPTIN®) combination therapy may prevent the patients' cardiomyocytes from undergoing apoptosis, thereby preserving cardiac function. Patients who have already suffered cardiomyocyte loss may also derive benefit from neuregulin treatment, because the remaining myocardial tissue will respond to neuregulin exposure by displaying hypertrophic growth and increased contractility.

Therapy

Neuregulins and polypeptides containing EGF-like domains encoded by neuregulin genes may be administered to patients or experimental animals with a pharmaceutically-acceptable diluent, carrier, or excipient, in unit dosage form. Conventional pharmaceutical practice may be employed to provide suitable formulations or compositions to administer such compositions to patients or experimental animals. Although intravenous administration is preferred, any appropriate route of administration may be employed, for example, parenteral, subcutaneous, intramuscular, intracranial, intraritum, ophthalmic, intraventricular, intracapsular, intraspinal, intracisternal, intraperitoneal, intranasal, aerosol, oral, or topical (e.g., by applying an adhesive patch carrying a formulation capable of crossing the dermis and entering the bloodstream) administration. Therapeutic formulations may be in the form of liquid solutions or suspensions; for oral administration, formulations may be in the form of tablets or capsules; and for intranasal formulations, in the form of powders, nasal drops, or aerosols. Any of the above formulations may be a sustained-release formulation.

Methods well known in the art for making formulations are found in, for example, “Remington's Pharmaceutical Sciences.” Formulations for parenteral administration may, for example, contain excipients, sterile water, or saline, polyalkylene glycols such as polyethylene glycol, oils of vegetable origin, or hydrogenated naphthalenes. Sustained-release, biocompatible, biodegradable lactide polymer, lactide/glycolide copolymer, or poloxamer-poloxylene copolymers may be used to control the release of the compounds. Other potentially useful parenteral delivery systems for administering molecules of the invention include ethylene-vinyl acetate copolymer particles, osmotie pumps, implantable infusion systems, and liposomes. Formulations for inhalation may contain excipients, for example, lactose, or may be aqueous solutions containing, for example, poloxamer-poloxylene-9-lauryl ether, glycocholate and deoxycholate, or may be oily solutions for administration in the form of nasal drops, or as a gel.

Gene Therapy

Neuregulins and neuregulin-like polypeptides containing neuregulin EGF-like domains may also be administered by somatic gene therapy. Expression vectors for neuregulin gene therapy (e.g., plasmids, artificial chromosomes, or viral vectors, such as those derived from adenovirus, retrovirus, poxvirus, or herpesvirus) carry a neuregulin-encoding (or neuregulin-like polypeptide-encoding) DNA under the transcriptional regulation of an appropriate promoter. The...
promoter may be any non-tissue-specific promoter known in the art (for example, an SV-40 or cytomegalo virus promoter). Alternatively, the promoter may be a tissue-specific promoter, such as a striated muscle-specific, an atrial or ventricular cardiomyocyte-specific (e.g., as described in Franz et al., Cardiovasc. Res. 35:560-566, 1997), or an endothelial cell-specific promoter. The promoter may be an inducible promoter, such as the ischemia-inducible promoter described in Prentice et al. (Cardiovasc. Res. 35:157-1574, 1997). The promoter may also be an endogenous neuregulin promoter.

The expression vector may be administered as naked DNA mixed with or conjugated to an agent to enhance the entry of the DNA into cells, e.g., a cationic lipid such as Lipofectin™, Lipofectamine™ (Gibco/BRL, Bethesda, Md.), DOTAP™ (Boeringer-Manheim, Indianapolis, Ind.) or analogous compounds, liposomes, or an antibody that targets the DNA to a particular type of cell, e.g., a cardiomyocyte or an endothelial cell. The method of administration may be any of those described in the Therapy section above. In particular, DNA for somatic gene therapy has been successfully delivered to the heart by intravenous injection, cardiac perfusion, and direct injection into the myocardium (e.g., see Losordo et al., Circulation 98:2800-2804, 1998; Lin et al., Hypertension 33:219-224, 1999; Labhaswar et al., J. Pharm. Sci. 87:1347-1350, 1998; Yayama et al., Hypertension 31:1104-1110, 1998). The therapeutic DNA is administered such that it enters the patient’s cells and is expressed, and the vector-encoded therapeutic polypeptide binds to and activates cardiomyocyte ErbB receptors.

The following Examples will assist those skilled in the art to better understand the invention and its principles and advantages. It is intended that these Examples be illustrative of the invention and not limit the scope thereof.

EXAMPLE I

General Methods

Preparation of Cardiac Myocyte and Non-Myocyte Primary Cultures

Neonatal rat ventricular myocyte (NRVM) primary cultures were prepared as described previously (Springhorn et al., J. Biol. Chem. 267: 14360-14365, 1992). To selectively enrich for myocytes, dissociated cells were centrifuged twice at 500 rpm for 5 min, pre-plated twice for 75 min, and finally plated at low density (0.7-1x10⁴ cells/cm²) in Dulbecco’s modified Eagle’s (DME) medium (Life Technologies Inc., Gaithersburg, Md.) supplemented with 7% fetal bovine serum (FBS) (Sigma, St. Louis, Mo.). Cytosine arabinoside (AraC; 10 µM; Sigma) was added to cultures during the first 24-48 h to prevent proliferation of non-myocytes, and the vector-encoded therapeutic polypeptide binds to and activates cardiomyocyte ErbB receptors. Treatment with recombinant human glial growth factor 2 (rhGFG2) at 20 ng/ml for 5 min at 37°C. Cells were quickly rinsed twice with ice-cold phosphate-buffered saline (PBS) and lysed in cold lysis buffer containing 1% NP40, 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM ethylene glycol-bis (β-aminoethyl) ether)-N,N,N’,N’-tetraacetic acid (EGTA), 1 mM ethylenediaminetetraacetic acid (EDTA), 0.5% sodium deoxycholate, 0.1% SDS, 1 mM sodiumorthovanadate, 10 mM sodium molybdate, 8.8 g/L sodium pyrophosphate, 4 g/L NaF, 1 mM phenylmethylsulfonyl fluoride (PMSF), 10
µg/ml apronin, and 20 µM leupeptin. Lysates were centrifuged at 12,000g at 4°C for 20 min, and aliquots of 500 µg (neonatal myocytes) or 2000 µg (adult myocytes) of supernatant were incubated with antibody specific to ErbB2 or ErbB4 (Santa Cruz Biotechnology Inc., Santa Cruz, Calif.) overnight at 4°C and precipitated with protein A-agarose (Santa Cruz Biotechnology, Inc.). Immunoprecipitates were collected and released by boiling in sodium dodecyl sulfate (SDS) sample buffer. Samples were fractionated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), transferred to polyvinylidene difluoride (PVDF) membranes (Biorad Laboratories, Hercules, Calif.) and blotted with a monoclonal antibody to ErbB2 (Ab-2; Oncogene Research Products, Cambridge, Mass.).

Incorporation of [3H]Thymidine and [3H]leucine
As an index of DNA synthesis, [3H]thymidine incorporation was measured as described previously (Berk et al., Hypertension 13:305-314, 1989). After incubation for 36 to 48 h in serum-free medium (DME plus ITS), the cells were stimulated with different concentrations of rhGGF2 (Cambridge NeuroScience Co., Cambridge, Mass.) for 19 h. [3H] thymidine (0.7 Ci/mmol; Dupont) was then added to the medium at a concentration of 5 µCi/ml and the cells were cultured for another 8 h. Cells were washed with PBS twice, 10% TCA once, and 10% TCA was added to precipitate protein at 4°C for 45 min. Parallel cultures of myocytes not exposed to rhGGF2 were harvested under the same conditions as controls. The precipitate was washed twice with 95% ethanol, resuspended in 0.15 M NaOH and saturated with 1 M HCl, then aliquots were counted in a scintillation counter. The results are expressed as relative cpm/dish normalized to the rate of [3H]leucine uptake used as an index of protein synthesis. For these experiments, 10 µM cytosine arabinoside was added to the culture medium. Cells were grown in serum-free medium for 36 to 48 h and then stimulated with different doses of rhGGF2. After 40 h, [3H]leucine (5µCi/ml) was added for 8 h, and cells were washed with PBS and harvested with 10% TCA. TCA-precipitable radioactivity was determined by scintillation counting as above.

5-Bromo-2'-Deoxy-Uridine Incorporation and Immunofluorescence Staining
Nuclear 5-bromo-2'-deoxy-uridine (BrdU) incorporation and a cardiac muscle-specific antigen, myosin heavy chain (MHC), were simultaneously visualized using double-indirect immunofluorescence. Primary NRVM cultures were maintained in DME plus ITS for 48 h and then stimulated with rhGGF2 (40 ng/ml) for 30 h. Control cultures were prepared similarly but without rhGGF2. BrdU (10 µM) was added for the last 24 h. Cells were fixed in a solution of 70% ethanol in 50 mM glycine buffer, pH 2.0, for 30 min at -20°C, rehydrated in PBS and incubated in 4 N HCl for 20 min. Cells were then neutralized with three washes in PBS, incubated with 1% FBS for 15 min, followed by a mouse monoclonal anti-MHC (1:300; Biogenesis, Sandown, N.H.) for 60 min at 37°C. The primary antibody was detected with TRITC-conjugated goat anti-mouse IgG (1:300, The Jackson Laboratory, Bar Harbor, Me.), and nuclear BrdU incorporation was detected with fluorescein-conjugated anti-BrdU antibody from an in situ cell proliferation kit (Boehringer Mannheim Co. Indianapolis, Ind.). The coverslips were mounted with Flu-mount (Fisher Scientific; Pittsburgh, Pa.) and examined by immunofluorescence microscopy. About 500 myocytes were counted in each coverslip and the percentage of BrdU-positive myocytes was calculated.

For examination of changes in myocyte phenotype with rhGGF2, cells were fixed in 4% paraformaldehyde for 30 min at room temperature, rinsed with PBS, permeabilized with 0.1% Triton X-100 for 15 min, and then incubated with 1% FBS for another 15 min, followed by incubation with anti-MHC (1:300) and visualized with TRITC-conjugated (NRVM) or FITC-conjugated (ARVM) secondary antibody. ARVM were examined using a MRC 600 confocal microscope (BioRad; Hercules, Calif.) with a Kr/Ar laser.

Cell Survival Assay And Detection of Apoptosis
Cell viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT, Sigma) cell respiration assay, which is dependent on mitochondrial activity in living cells (Mosman, J. Immunol. Meth. 65:55-63, 1983). Primary cultures of NRVM after 2 days in serum-free medium were stimulated with different concentrations of rhGGF2 for either 4 or 6 days. ARVM were maintained in ACCTT medium or ACCTT medium plus different concentrations of rhGGF2 for 6 days. MTT was then incubated with the cells for 3 h at 37°C. Living cells transform the tetrazolium ring into dark blue formazan crystals that can be quantified by reading the optical density at 570 nm after cell lysis with dimethylsulfoxide (DMSO; Sigma).

Apoptosis was detected in neonatal and adult myocytes using the terminal deoxynucleotidyltransferase (TdT)-mediated dUTP nick end-labeling (TUNEL) assay. 3-end labeling of DNA with fluorescein-conjugated dUTP was done using an in situ cell death detection kit (Boehringer Mannheim, Indianapolis, Ind.) following the manufacturer’s instructions. Cells were counterstained with an anti-MHC antibody as described above, and the nuclei were also stained with Hoechst 33258 (10 µM, Sigma) for 5 min. More than 500 myocytes were counted in each coverslip and the percentage of TUNEL positive myocytes was calculated.

Flow cytometric analysis of neonatal myocytes fixed in 70% ethanol/PBS and stained with propidium iodide was also performed to quantify the percentage of cells undergoing apoptosis. This method is based upon the observation that cells undergoing apoptosis have a hypo-diploid quantity of DNA and localize in a broad area below the 40/41 peak on a DNA histogram. Briefly, cells were collected by trypsinization, pooled with nonattached cells, and fixed in 70% ethanol. After being rinsed once with PBS, cells were incubated with a propidium iodide (20 µg/ml, Sigma) solution containing RNase A (5 Kunitz units/ml) at room temperature for 30 min. Data were collected using a FACScan (Becton-Dickinson, San Jose, Calif.). For each sample, 10,000 events were collected. Aggregated cells and extremely small cellular debris were gated out.

Isolation and Hybridization of RNA
Total cellular RNA was isolated by a modification of the acid guanidinium thiocyanate phenol/chloroform extraction method (Chomczynski and Sacchi, Anal. Biochem. 162:156-159, 1987) using the TRIZOL reagent (Life Technologies Inc., Gaithersburg, Md.). RNA was size-fractionated by formaldehyde agarose gel electrophoresis, transferred to nylon filters (Dupont, Boston, Mass.) by overnight capillary blotting and hybridized with cDNA probes labelled with [α-32P]dCTP by random priming (Life Technologies Inc.).
The filters were washed under stringent conditions and exposed to X-ray film (Kodak X-Omat AR, Rochester, N.Y.). Signal intensity was determined by densitometry (Ultrascan XL, Pharmacia). The following cDNA probes were used: rat prepro-atrial natriuretic factor (prepro-ANF; a marker of cardiac myocyte hypertrophy) (0.6 kb of coding region) (Shi et al., Nucleic Acids Res. 9:579-589, 1981). A rat glyceroldehyde-3-phosphate dehydrogenase (GAPDH; a housekeeping gene) cDNA probe (240 by of the coding region) (Tso et al., Nucleic Acids Res. 13:2458-2502, 1995) was used as control for loading and transfer efficiency.

Aortic Stenosis Model

Ascending aortic stenosis was performed in male Wistar weanling rats (body weight 50-70 g, 3-4 weeks, obtained from Charles River Breeding Laboratories, Wilmington, Mass.), as previously described (Schunkert et al., Circulation, 87:1328-1339, 1993; Weinberg et al. Circulation, 90:1410-1422, 1994; Feldman et al., Circ. Res., 73:184-192, 1993; Schunkert et al., J. Clin. Invest. 96:2768-2774, 1995; Weinberg et al., Circulation, 95:1592-1600, 1997; Litwin et al., Circulation, 91:2642-2654, 1995). Sham-operated animals served as age-matched controls. Aortic stenosis animals and age-matched sham-operated controls were sacrificed after anesthesia with intraperitoneal pentobarbital 65 mg/kg at 6 and 22 weeks after surgery (n=20-29 per group). Hemodynamic and echocardiographic studies in this model have shown that compensatory hypertrophy with normal left ventricular (LV) cavity dimensions and contractile indices is present 6 weeks after banding, whereas animals develop early failure by 22 weeks after banding, which is characterized by onset of LV cavity enlargement and mild depression of ejection indices and pressure development per gram LV mass. In the present study, in vivo LV pressure measurements were performed prior to sacrifice as previously described (Schunkert et al., Circulation, 87:1328-1339, 1993; Weinberg et al. Circulation, 90:1410-1422, 1994; Feldman et al., Circ. Res., 73:184-192, 1993; Schunkert et al., J. Clin. Invest. 96:2768-2774, 1995; Weinberg et al., Circulation, 95:1592-1600, 1997; Litwin et al., Circulation, 91:2642-2654, 1995). The animals were also inspected for clinical markers of heart failure, including the presence of tachycardia, ascites, and pleural effusions. Both body weight and LV weight were recorded.

LV Myocyte Isolation for RNA Extraction

In a subset of animals (n=10 per group), the heart was rapidly excised and attached to an aortic cannula. Myocyte dissociation by collagenase perfusion was performed as previously described (Kagaya et al., Circulation, 94:2915-2922, 1996; Ito et al., J. Clin. Invest. 99:125-135, 1997; Tajima et al., Circulation, 99:127-135, 1999). To evaluate the percentage of myocytes in the final cell suspension, aliquots of myocytes were fixed, permeabilized and blocked. The cell suspension was then incubated with antibodies against α-sarcromere actin (mAb, Sigma, 1:20) and von Willebrand Factor (pAb, Sigma, 1:200) to distinguish between myocytes and endothelial cells. Secondary antibodies (goat anti-rabbit, goat anti-mouse pAb, Molecular probes, 1:400) with a Texas Red (or Oregon Green) conjugate were used as a detection system. Ninety-eight percent myocytes and less than 2% fragments of endothelial cells or unstained cells (fibroblasts) were routinely obtained.

RNA Analysis

Total RNA was isolated from control and hypertrophied myocytes (n=10 hearts in each group), and from LV tissue (n=10 hearts in each group) using TRI Reagent (Sigma). Tissue and myocyte RNA were used for the following protocols. Using myocyte RNA, Northern blots were used to assess message levels of atrial natriuretic peptide which were normalized to GAPDH (Feldman et al., Circ. Res. 73:184-192, 1993; Tajima et al., Circulation, 99:127-135, 1999). These experiments were done to confirm the specificity of myocyte origin of the RNA using this molecular marker of hypertrophy.

We also performed reverse transcription-polymerase chain reactions (RT-PCRs) for initial estimation of the presence of ErbB2, ErbB4 and neuregulin in samples derived from adult rat heart and adult myocytes using the following pairs of primers: ErbB2 sense 5’GGT GGG TCC GAT GTA TTT GAT GGT 3’ (SEQ ID NO: 7), ErbB2 antisense 5’GTT CTG TCG CTT AGG TGT CCC TTT 3’ (SEQ ID NO: 8) (Sarkar et al., Diagn. Mol. Pathol. 2:210-218, 1993); ErbB3 sense 5’GCT TAA GGT TCT TGG CTC GGG TGT C3’ (SEQ ID NO: 3), ErbB3 antisense 5’TCT TAC ACA CTG ACA TCT TCT CTT 3’ (SEQ ID NO: 4) (Kraus et al., Proc. Natl. Acad. Sci. USA 86:9193-9197; 1989); ErbB4 sense 5’AAT TCA CCC ATC AGA GGT ACG TTG GTG G 3’ (SEQ ID NO: 5), ErbB4 antisense 5’TCC TGA AGG TAG TCT GGG TGC TG 3’ (SEQ ID NO: 6) (Plowman et al., Proc. Natl. Acad. Sci. USA 90:1746-1750, 1993); neuregulin sense 5’GCA TCA CTG GAT TCT GGA G 3’ (SEQ ID NO: 9), neuregulin antisense 5’CAAT CGG GTT ATG TGT AGC A 3’ (SEQ ID NO: 10). The latter primers recognize nucleic acids encoded by the NRG-1 gene, but do not discriminate between its isoforms. The amplification was initiated by 1 min of denaturation, 2 min of annealing at the gene specific temperature and 2 min extension at 72°C. The whole PCR reaction was electrophoresed on a 1% agarose gel and the PCR products of expected size were gel-purified.

After cloning these fragments into pGEM-T vector (Promega, Madison, Wis.), the correctness and orientation of those fragments within the vector was confirmed by sequencing. Cloned PCR fragments were used to generate a radiolabeled riboprobe using the MAXIscript in vitro transcription kit (Ambion, Inc., Austin, Tex.) and c-32-P-UTP. The plasmids containing the ErbB2, ErbB4 or neuregulin fragment were linearized and a radiolabeled probe was synthesized by in vitro transcription with T7 or T3 RNA polymerase. The β-actin probe provided by the kit was transcribed with T7 or T3 polymerase and resulted in a 300 and 300 by fragment, respectively. 20 µg of total RNA was hybridized to 5x10^5 cpm of ErbB2, ErbB4 or neuregulin c-RNA together with 2x10^6 cpm of β-actin for later normalization according to the RPA II kit (Ambion) protocol.

After digestion with RNase A/RNase T1, the samples were precipitated, dried, redissolved and finally separated on a 5% polyacrylamide gel for 2 hours. The gel was exposed to Kodak MR film for 12-48 hours, and the assay was quantified by densitometric scanning of the autoradiograph using Image Quant software (Molecular Dynamics, Inc., Sunnyvale, Calif.). ErbB2, ErbB4 and neuregulin mRNA levels were normalized to β-actin.

Western Blotting of ErbB2 and ErbB4

LV tissue (n=5 hearts per group) was rapidly homogenized in a RIPA buffer containing 50 mmol/L Tris HCl, pH 7.4, 1% NP-40, 0.1% SDS, 0.25% Na-deoxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1 Aprotinin, 1 µg/ml leupeptin, 1 µg/ml pepstatin and 1 mM Na3PO4. Proteins were quantified using the Lowry assay kit (Sigma). 50 µg of protein in Laemmli SDS sample buffer were boiled for 5 minutes and after centrifugation loaded onto a 10% SDS-PAGE gel. After electrophoresis, proteins were transferred to a nitrocellulose membrane at 100 mA overnight. The filters were blocked
In Situ Hybridization for Neuregulin

10-µm cryostat sections of left ventricular tissue (n=2 control and 6-week aortic stenosis hearts) were used for in situ hybridizations. Antisense and sense RNA probe was synthesized from cDNA fragments in pBluescript with either T7 or T3 RNA polymerase and digoxigenin-labeled UTP (DIG RNA Labeling Mix, Boehringer Mannheim). Tissue sections were first treated with 4% paraformaldehyde for 20 minutes, followed by 30 minutes digestion with proteinase K (10 µg/ml) at 37° C, and another 5 minutes of fixation in 4% paraformaldehyde.

Following the fixation, the slides were washed in PBS three times for 5 minutes, after which the sections were immersed in 0.1 M triethanolamine chloride buffer with 0.25% acetic anhydride for 10 minutes to block polar and charged groups on the section and hence prevent nonspecific probe binding. After washing the slides in 2xSSC, they were then prehybridized (50% formamide, 2xSSC, 5% deoxysulfate, 0.1% SDS, 1xDenhardt’s, 400 µg/ml denatured salmon sperm DNA) at 45° C for 60 minutes in a moist chamber charged with 50% anhydride for 10 minutes to block polar and charged groups. Following overnight hybridization, slides were twice washed in 4xSSC for 30 minutes at 45° C, while shaking, and then incubated with RNaseA (40 µg/ml) in 500 mM NaCl, 10 mM Tris, 1 mM EDTA, pH 8.0, for 30 minutes at 37° C. to remove unhybridized probe. After RNase treatment, sections were immersed in 2xSSC at 50° C for 30 minutes and then in 0.2xSSC at the same temperature for another 30 minutes. The slides were equilibrated with TBS I buffer (100 mM Tris, 150 mM NaCl, pH 7.5) and then blocked with blocking reagent for 30 minutes at room temperature according to the manufacturer’s protocol (DIG Nucleic Acid Detection Kit, Boehringer Mannheim).

After removing the blocking reagent, the slides were immersed in TBS I for 1 minute and then the anti-DIG AP conjugate solution (DIG Nucleic Acid Detection Kit, Boehringer Mannheim) was applied to each section for 1.5 hours at room temperature in a humid chamber. Afterwards, the slides were washed in TBS I three times, 10 minutes per wash, to wash off the excess antibody and equilibrated in TBS II (100 mM Tris, 100 mM NaCl, pH 9.5, 50 mM MgCl₂/Tris) for 5 minutes. The color substrate was prepared according to the manufacturer’s instructions and applied to each section until a blue-colored reaction became visible. The reaction was stopped and the slides were washed in PBS and distilled water for 5 minutes each. After a nuclear counter-staining the sections were dehydrated through an ethanol series, immersed in xylene and mounted by cover-slipping in Permount.

Statistical Analysis

All values are expressed as mean±SEM. Statistical analysis of differences observed between the aortic stenosis groups (6 and 22 weeks after banding) and the age-matched control groups was done by ANOVA comparison. An unpaired Student’s t-test was used for comparison among the groups at the same age post-banding. Statistical significance was accepted at the level of p<0.05.

EXAMPLE II

Neuregulins Promote Survival and Growth of Cardiac Myocytes

Expression of Neuregulin Receptors in the Heart

To determine which of the NRG receptors (i.e., ErbB2, ErbB3, ErbB4) are expressed in rat myocardium, RNA from rat heart tissues at successive stages of development, and from freshly isolated neonatal and adult ventricular myocytes, were reverse-transcribed and amplified by PCR, using primers that flank the variable C-termini of ErbB receptors. FIG. 1A shows the semiquantitative RT-PCR analysis of neuregulin receptor mRNA levels during cardiac development. Total RNA from embryonic (E14, E16, and E19), neonatal (P1) or adult (Ad) rat heart, and from freshly isolated neonatal rat ventricular myocytes (NRVM) or adult rat ventricular myocytes (ARVM) was reverse-transcribed into cDNA and amplified with receptor isoform-specific primers (see Methods). GAPDH was used as a control for reverse transcription, PCR amplification, and gel loading (“M” denotes 1 kb or 120 bp by DNA molecular weight standards). The RT-PCR products were verified by DNA sequencing.

All three ErbB receptors were expressed in the developing rat heart at mid-embryogenesis (E14), with the following rank order of their relative mRNA abundances: ErbB4>ErbB2>ErbB3. The expression of ErbB receptors was down-regulated later in embryogenesis. At E16 and E19, and at post-natal day 1 (P1), only ErbB2 and ErbB4 mRNAs could be detected. In adult rat heart, ErbB4 was still detectable, but its mRNA abundance was lower than that detected in embryonic and neonatal hearts, whereas ErbB2 mRNA and, rarely, ErbB3 mRNA could be detected only at low levels in adult myocardium. In freshly isolated neonatal and adult rat ventricular myocyte primary cultures, both ErbB2 and ErbB4 mRNA were readily detectable by RT-PCR, although ErbB4 expression levels were consistently higher than those of ErbB2. Furthermore, when using receptor-specific cDNA probes for ErbB2, ErbB3 and ErbB4, only transcripts for ErbB4 were readily detectable in freshly isolated neonatal and adult rat ventricular myocytes by Northern blot.

To determine which of the ErbB receptors were tyrosine-phosphorylated following neuregulin treatment, primary cultures of NRVM or ARVM, maintained in serum-free medium for 24 to 48 h, were treated either with or without neuregulin, i.e., recombinant human glial growth factor 2 (rhGGF2) (20 ng/ml) for 5 min. ErbB4 receptor protein was immunoprecipitated with an anti-ErbB4 antibody from 500 µg of NRVM lysates or 2000 µg of ARVM lysates, and phosphorylated form of ErbB4 was detected by an anti-phosphotyrosine antibody. The blot shown in FIG. 1B is representative of 3 independent experiments. As shown in FIG. 1B, phosphorylated ErbB4 is quite prominent in neonatal myocytes and less robust, but detectable, in adult myocytes, which is consistent with the levels of ErbB4 mRNA abundance we observed above. Phosphorylated forms of ErbB2 and ErbB3 could not be detected even if immunoprecipitated with biotinylated-antiphosphotyrosine antibody, consistent with the much-reduced mRNA abundances for these two neuregulin receptors in post-natal cardiac myocytes.
GGF2 Stimulates DNA Synthesis in Neonatal Rat Ventricular Myocytes

To investigate the ability of GGF2 to stimulate DNA synthesis in NRVM primary cultures, myocytes maintained in serum-free medium for 2 days were subsequently treated with 40 ng/ml rhGGF2 or FGF2 for 30 h. DNA synthesis was monitored by measuring the incorporation of either BrdU (FIG. 2B) or [3H]thymidine (FIGS. 3A and 3B), which were added to the media either 24 h or 8 h, respectively, before termination of each experiment.

FIG. 2A shows myocyte myosin heavy chain in NRVM, visualized with a TRITC-conjugated goat anti-mouse antibody (red). FIG. 2B shows BrdU-positive nuclei visualized with a fluorescein-conjugated mouse anti-BrdU antibody (green). The scale bar for FIGS. 2A and 2B is equivalent to 10 µm. FIG. 2C shows the percentage of BrdU-positive myocytes under control conditions and in the presence of GGF2 (data are mean±SD for 3 experiments; *p<0.01). As displayed in FIG. 2C, 40 ng/ml (approximately 0.7 nM) of rhGGF2 increased the percentage of BrdU-labelled myocytes (from postnatal day 1 rat heart ventricles) by about 80%, an increase in magnitude that was similar to that observed with [3H]thymidine incorporation (FIG. 3A).

FIGS. 3A and 3B show the effects of GGF2 on DNA synthesis in myocyte-enriched and non-myocyte fractions from rat ventricular myocyte primary isolates. In FIG. 3A, NRVM-enriched primary isolates or a “non-myocyte”-enriched fraction (see Methods) were exposed to control (i.e., serum-free) medium alone (CI) or to medium containing either 40 ng/ml rhGGF2 (GGF) or 7% fetal bovine serum (FBS). In FIG. 3B, concentration-dependent effect of GGF2 on NRVM DNA synthesis is shown. DNA synthesis was assessed by [3H]thymidine incorporation, and the data are expressed as relative cpm/dish normalized to the mean cpm of control cells in each experiment (mean±SD of triplicate analyses from three independent experiments; *p<0.01 vs control). Twenty ng/ml of rhGGF2 provoked an approximate 60% increase in [3H]thymidine incorporation into NRVM, which was about half that observed with 7% FBS. The mitogenic effect of rhGGF2 on NRVM was concentration-dependent, with about an 80% increase at 50 ng/ml (i.e., 0.9 nM) (FIG. 3B). GGF2 had similar mitogenic effects on BrdU or [3H]thymidine incorporation on rat embryonic ventricular myocytes (E19) and postnatal ventricular myocytes (P5), whereas concentrations of GGF2 as high as 100 ng/ml had no effect on DNA synthesis in adult rat ventricular myocyte primary cultures.

The effects of rhGGF2 on non-myocyte fractions obtained following the preplating steps of the neonatal rat ventricular myocyte isolation procedure also were investigated. As shown in FIG. 3A, rhGGF2 did not induce any significant change in [3H]thymidine incorporation into non-myocytes. This was in contrast to 7% FBS, which induced nearly a 10-fold increase in [3H]thymidine incorporation into non-myocytes. Therefore, GGF2 shows a relatively specific action on cardiac myocytes compared to a myocyte-depleted cell population which, using the method of myocyte isolation we employed here, is composed largely of fibroblasts and endothelial cells.

To determine which of the known neuregulin receptors mediate the mitogenic effect of GGF2 on fetal and neonatal ventricular myocytes, DNA synthesis was measured in primary NRVM cultures after incubation with antibodies specific for ErbB2, ErbB3 and ErbB4. Neonatal myocytes were cultured for two days in serum-free medium, after which they were treated for 30 h either without (control), or with rhGGF2 (10 ng/ml), or with rhFGF2 (20 ng/ml), or with GGF2/FGF2 and antibodies to ErbB2, ErbB3 or ErbB4, either alone or in combination as illustrated. Antibodies (0.5 µg/ml/antibody) were preincubated with cells for 2 h before the addition of either GGF2 or FGF2. [3H]thymidine was added during the last 8 h (data are expressed as relative cpm/dish normalized to the mean cpm of control cells in each experiment, and are presented as mean±SD; n=3 independent experiments; *p<0.04 vs rhGGF2 alone; #p<0.1 vs rhFGF2 alone).

As shown in FIG. 4, a monoclonal antibody against the extracellular domain of c-neu/ErbB2, inhibited the GGF2-dependent increase in [3H]thymidine incorporation into NRVM by GGF2 could be inhibited. Similarly, an antibody directed against the C-terminus of ErbB4 also blocked about 50% of the increase in [3H]thymidine incorporation induced by GGF2. A combination of these two antibodies had the same effect as either the anti-ErbB2 or anti-ErbB4 antibodies alone. In contrast, an antibody to ErbB3 had no effect on GGF2-induced DNA synthesis. To verify that the effects seen with the ErbB2 and ErbB4 antibodies were specific for GGF, sister NRVM primary cultures were treated with 20 ng/ml rhFGF2 (recombinant human bFGF). Neither antibody had any effect on the approximately 2-fold increase in [3H]thymidine incorporation with rhFGF2. These results suggest that at least two of the known neuregulin receptor tyrosine kinases were present and coupled to downstream signalling cascades in the neonatal ventricular myocyte.

GGF2 Promotes Cardiac Myocyte Survival In Vitro

During development, the net increase in the number of functional embryonic myocytes is dependent on both myocyte proliferative capacity and survival. Therefore, it was of interest to determine whether GGF2 could promote survival of cardiac myocytes in addition to proliferation. Primary cultures of NRVM maintained in serum-free medium, with or without 10 µM of cytosine arabinoside (AraC), were treated with the indicated concentrations of GGF2 for 4 days, and the relative numbers of metabolically active cells were determined by a MTT cell respiration assay (see Methods). Data are expressed as a percentage of the mean MTT activity of myocytes in triplicate culture dishes on day 0 at the time of the addition of GGF2. Data are shown as mean±SD (n=3 experiments; *p<0.05 vs control). We observed that approximately 25% of cells die by day 4. In contrast, addition of GGF2 resulted in a 30% increase in MTT activity compared to controls. The effect was concentration-dependent with an EC50 of 0.2 ng/ml (FIG. 5). This survival effect was observed in NRVM primary cultures for up to 7 days; it was also observed in the presence of cytosine arabinoside (AraC), an antiproliferative agent. As shown in FIG. 5, the survival effect of GGF2 was observed at 4 days in the continuous presence of cytosine arabinoside, with about 90% myocyte viability in the presence of 50 ng/ml rhGGF2 compared to approximately 70% viability in control cultures. In contrast, GGF2 had no significant effect on the survival of myocyte-depleted, “non-myocyte”-enriched primary isolates at 4 days.

We examined next whether the survival effect of GGF2 was mediated by inhibition of programmed cell death (apoptosis). Primary cultures of NRVM 2 days in serum-free medium were maintained in either the absence of rhGGF2 (FIG. 6A-6C) or in the presence of 20 ng/ml of rhGGF2 (FIG. 6D-6G) for 4 days. Cells were then fixed and stained with anti-fragile antibody and a TRITC-conjugated secondary antibody to visualize myocytes (FIGS. 6A and 6E) or with fluorescein-conjugated dUTP (i.e., TUNEL) to reveal apoptotic cells (FIGS. 6B and 6F). The TUNEL-positive myocytes displayed cell shrinkage and chromatin condensation, which were also identified by Hoechst 33258-staining (FIGS. 6C and 6G). Apoptosis was quantified either by counting the...
GGF2 Induces Hypertrophic Growth of Cardiac Myocytes

In order to investigate whether neuregulin signaling can induce a hypertrophic (growth) response in cardiac myocytes, we examined the effects of GGF2 on induction of myocyte hypertrophy in both neonatal and adult rat ventricular myocyte primary cultures. FIGS. 8A and 8B show photomicrographs of subconfluent NRVM primary cultures incubated either without (FIG. 8A) or with (FIG. 8B) rhGGF2 (20 ng/ml) for 3 days. After fixation with 4% paraformaldehyde, myocytes were visualized with an anti-MHC antibody and a TRITC-conjugated secondary antibody, and apoptotic cells were identified by TUNEL staining. About 500 myocytes were counted on each coverslip (data are mean±S.D of three independent experiments; *, p<0.05 versus control). When compared to untreated NRVM primary cultures, which in which more than 10% of cells were positive for TUNEL labelling, rhGGF2 (20 ng/ml)-treated adult myocyte cultures exhibited only about 3% TUNEL-positive staining (FIG. 7B). These results indicate that GGF2 stimulates hypertrophic growth and reexpression of a number of fetal genes in NRVM primary cultures. FIG. 8C shows a Northern blot analysis for prepro-ANF and skeletal a-actin mRNA from total RNA (20 µg/lane) from NRVM incubated either with or without rhGGF2 (20 ng/ml) for the times indicated. Equal loading and transfer of RNA were confirmed by GAPDH hybridization. RhGGF2 (20 ng/ml) increased mRNA levels for prepro-ANF and skeletal-actin within 60 min, approximately doubling by 16 h.

To test the effect of GGF2 on protein synthesis, NRVM were cultured in serum-free medium for 24 h, after which they were treated with the indicated concentrations of rhGGF2 for 40 h, and pulsed with [3H]leucine for 8 h before termination of GGF2 stimulation. The incorporation of [3H]leucine at each concentration of GGF2 was normalized to the protein content of each dish, and data are expressed as relative cpm/dish normalized to the mean cpm of untreated control cells in each experiment (mean±S.D.; n=3 experiments; *, p<0.01 vs control). FIG. 8D shows that GGF2 also stimulated [3H]leucine incorporation, with about a 120% increase at 48 h, at a concentration of 5 ng/ml. To minimize possible confounding effects of GGF2 on the rate of [3H]leucine uptake into non-myocyte contaminant cells, these experiments were repeated in the continuous presence of cytosine arabinoside with similar results.

GGF2 also caused hypertrophic responses in cultured adult rat ventricular myocytes (ARVM). Primary cultures of ARVM were plated on coverslips in 24-well dishes and maintained for 5 days in ACC1177 medium either without (FIG. 8B) or with rhGGF2 (20 ng/ml) (FIG. 9B and 9C). Cells were fixed in 4% paraformaldehyde, stained with an antibody to myosin heavy chain (green, FITC), and examined by confocal microscopy. The scale bars represent 10 µM. By 72 h in the continuous presence of 20 ng/ml of rhGGF2, some adult myocytes had begun to develop “pseudopod”-like extensions, primarily from the region of the intercalated discs, and by 5 days, more than 60% of the GGF2-treated adult cardiomyocytes displayed phenotypic changes consistent with those illustrated in FIGS. 9B and 9C, whereas more than 80% of untreated ARVM maintained the phenotype exhibited in FIG. 9A.

GGF2 also enhanced expression of prepro-ANF and skeletal a-actin in ARVM. Primary isolates of ARVM were stimulated either with or without 20 ng/ml rhGGF2 for the times indicated. Total RNA was isolated and analyzed by Northern blot (25 µg/lane) using prepro-ANF and skeletal a-actin cDNA probes. Equal loading and transfer conditions were confirmed by GAPDH hybridization. Phenylephrine (PE, 10 µM) was used as a positive control for hypertrophic growth. As shown in FIG. 9D, rhGGF2 (20 ng/ml) doubled prepro-ANF mRNA abundance in ARVM primary cultures after 8 h, and this had increased 3- to 4-fold within 20 h. An increase in skeletal a-actin mRNA abundance was also observed that was greater than that seen with phenylephrine (10 µM), an a-adrenergic agonist known to induce hypertrophic growth and reexpression of a number of fetal genes in adult rat ventricular myocytes. Within 7 h, skeletal a-actin mRNA levels were easily detectable, and increased by an additional 250% by 30 h treatment with GGF2. Neither GGF2 nor phenylephrine had any effect on GAPDH mRNA abundance under the conditions employed here.
To test the effect of GGF2 on protein synthesis, ARVM (2 Expression of LV ErbB2, ErbB4 and Neuregulin in Aortic days in ACCITT medium) were stimulated with increasing Stenosisconcentrations of rhGGF2 for 40 h and [3H]leucine was added during the last 14 h. [3H]leucine uptake in GGF2-treated cultures was normalized to the mean of [3H]leucine uptake in non-stimulated control myocytes. Data were also normalized to protein content of each dish to adjust for any variability in cell number among dishes (mean±S.D; n=4; *, p<0.01 vs control). As illustrated in FIG. 9E, GGF2 induced a dose-dependent increase in [3H]leucine incorporation, with a 70% increase at a concentration of 5 ng/ml. Thus, this neuregulin induces phenotypic changes consistent with hypertrophic adaptation in both neonatal and adult rat ventricular myocyte phenotypes at subnanomolar concentrations.

EXAMPLE III

ErbB2 and ErbB4 Expression Levels Decrease in Aortic Stenosis Rats in Transition from Chronic Hypertrophy to Early Heart Failure

LV Hypertrophy and Hemodynamics

As shown in Table 1, left ventricular (LV) weight and the LV/body weight ratio were significantly (p<0.05) increased in the 6-week and 22-week aortic stenosis animals compared with age-matched controls. The in vivo LV systolic pressure was significantly increased in both 6-week and 22-week aortic stenosis animals compared with age-matched controls. In vivo LV end-diastolic pressure was also higher in aortic stenosis animals compared to age-matched controls. Consistent with prior studies in this model, LV systolic developed pressure per gram was significantly higher in 6-week aortic stenosis animals in comparison with age-matched controls, but depressed in 22-week aortic stenosis animals. At 22-week post banding, the aortic stenosis animals also showed clinical markers of failure including tachypnea, small pleural and pericardial effusions.

TABLE 1

<table>
<thead>
<tr>
<th>Left Ventricular Hypertrophy and Hemodynamics</th>
<th>C (6 wks)</th>
<th>LVH (6 wks)</th>
<th>C (22-wks)</th>
<th>LVH (22 wks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW (g)</td>
<td>397 ± 10</td>
<td>378 ± 15</td>
<td>590 ± 10</td>
<td>564 ± 19</td>
</tr>
<tr>
<td>LV Wt (g)</td>
<td>1.25 ± 0.05</td>
<td>1.58 ± 0.66*</td>
<td>1.64 ± 0.07</td>
<td>2.46 ± 0.10*</td>
</tr>
<tr>
<td>LV Wt/BW (g/kg)</td>
<td>3.18 ± 0.13</td>
<td>4.40 ± 0.21*</td>
<td>2.84 ± 0.14</td>
<td>4.41 ± 0.20*</td>
</tr>
<tr>
<td>LVEDP (mmHg)</td>
<td>4.8 ± 0.3</td>
<td>12.4 ± 0.7*</td>
<td>6.5 ± 0.8</td>
<td>15.7 ± 1.0*</td>
</tr>
<tr>
<td>LVSP (mmHg)</td>
<td>104 ± 5</td>
<td>181 ± 7*</td>
<td>129 ± 5</td>
<td>182 ± 9*</td>
</tr>
<tr>
<td>LVdevP/g (mmHg/g)</td>
<td>64.2 ± 5.2</td>
<td>108.1 ± 6.8*</td>
<td>82.4 ± 7.8</td>
<td>68.1 ± 4.2*</td>
</tr>
</tbody>
</table>

Table 1 Legend:
LVH, hearts with left ventricular hypertrophy, 6 and 22 weeks after aortic stenosis; C, age-matched controls; BW, body weight; LV Wt, left ventricular weight; LVEDP, LV end-diastolic pressure; LVSP, LV systolic pressure; LV devP, LV develop pressure per gram. Values are mean ± SEM; *p < 0.05 vs. age-matched controls; **p < 0.05 vs. 6-weeks LVH. n = 14-20 per group.
We next examined gene expression in RNA from LV myocytes of 6-week and 22-week aortic stenosis animals and controls. The specificity of expression in myocytes was determined by examining message levels of atrial natriuretic peptide (ANP), a positive molecular marker of pressure overload hypertrophy, using myocyte RNA and normalized to levels of GAPDH. As shown in FIG. 11, ANP was upregulated in myocytes from both 6-week (710±16 vs. 230±40 units, p<0.05) and 22-weeks aortic stenosis animals (898±52 vs. 339±13 units, p<0.05) in comparison with controls (n=5 per group). Neuregulin was not detectable by RPA in RNA derived from myocytes in any group. ErbB2 (n=5 per group) and ErbB4 (n=3-4 per group) message levels were also measured in myocyte RNA from both aortic stenosis groups (FIG. 12 and Table 2). FIG. 12A shows a ribonuclease protection assay demonstrating LV myocyte ErbB2 and β-actin mRNA expression in 6-weeks aortic stenosis hearts and controls, and 22-weeks aortic stenosis hearts and controls. FIG. 12B shows a ribonuclease protection assay demonstrating LV myocyte ErbB4 and β-actin mRNA expression in 6-week aortic stenosis hearts and controls, and 22-week aortic stenosis hearts and controls. Consistent with the measurements in LV tissue samples, cardiomyocyte ErbB2 and ErbB4 mRNA levels, normalized to β-actin levels, are preserved relative to controls in 6-week aortic stenosis animals at the stage of compensatory hypertrophy (NS). However, both ErbB2 and ErbB4 expression are significantly downregulated in 22-week aortic stenosis animals at the transition to failure (p<0.01). LV protein levels were measured in LV tissue to = 5 per group) by Western blotting and normalized to β-actin. Values are mean ± SEM.

Table 2 Legend:
LVH, hearts with left ventricular hypertrophy, 6 and 22 weeks after aortic stenosis; C, age-matched controls. LV mRNA levels were measured by ribonuclease protection assay and normalized to β-actin; LV mRNA levels were measured in RNA from both LV tissue (mRNA, LV; n = 5 hearts per group) and from LV myocytes (mRNA, myocyte; ErbB2 = 5 hearts per group; ErbB4 = 3-4 hearts per group). LV protein levels were measured in LV tissue (n = 5 per group) by Western blotting and normalized to β-actin.

As shown in FIGS. 13A-13D and Table 2, ErbB2 and ErbB4 mRNA expression is preserved relative to controls in 6-weeks aortic stenosis animals at the stage of compensatory hypertrophy (NS) but ErbB2 (p<0.05) and ErbB4 (p<0.01) are downregulated in 22-week aortic stenosis animals during early failure. Thus, a decrease in both LV message and protein levels of ErbB2 and ErbB4 is present at the stage of early failure in this model of pressure overload.

In Situ Hybridization for Neuregulin

Antisense digoxigenin-labeled mRNA of neuregulin generated reproducible hybridization signals on LV cryosections, whereas the corresponding sense transcript generated no signal above background. Neuregulin signals in adult heart cryosections were observed in the endothelial cells of the cardiac microvasculature with minimal or no signal in other cell compartments. There was no difference between control and aortic stenosis animals.

EXAMPLE IV

Inhibition of Heart Failure in Aortic Stenosis Mice by Polypeptides that Contain a Neuregulin-1 EGF-Like Domain

The Examples above describe data showing that rhGGF2 suppresses apoptosis and stimulates cardiomyocyte hypertrophy in an ErbB2- and ErbB4-dependent fashion. Moreover, ErbB2 and ErbB4 receptors are down-regulated in the left ventricles of rats with pressure overload-induced heart failure. Cardiomyocyte apoptosis is extremely rare during the early compensatory hypertrophic stage in aortic stenosis mice (i.e., 4 weeks after aortic banding), but consistently appears during the transition to early heart failure (i.e., 7 weeks after aortic banding).

These above observations indicate that administration of polypeptides that have an EGF-like domain encoded by a neuregulin gene will be useful in inhibiting the progression of and/or protecting against congestive heart failure. While not wishing to be bound by theory, it is likely that neuregulin treatment will strengthen the pumping ability of the heart by stimulating cardiomyocyte hypertrophy, and partially or...
completely prevent further deterioration of the heart by suppressing cardiomyocyte apoptosis.

One of ordinary skill in the art can readily determine the optimal dosage regimen required for providing prophylaxis against congestive heart disease or for slowing or halting progression of already-existent heart disease, using one of the many animal models for congestive heart failure that are known in the art. For example, as a starting point, the relative efficacy of a 0.3 mg/kg dose of GGF2 administered at early stages and late stages of cardiac disease in the aortic stenosis mouse model may be assessed as follows.

Group 1 (n=6); treated: injections of rhGGF2 (0.3 mg/kg given on alternate days), initiated 48 hours after aortic banding and continued through week 7.

Group 2 (n=6); treated: injections of rhGGF2 (0.3 mg/kg given on alternate days), initiated at the beginning of week 4 after aortic banding and continued through week 7.

Group 3 (n=6); control: sham injections, initiated 48 hours after aortic banding and continued through week 7.

Group 4 (n=6); control: sham injections, initiated at the beginning of week 4 after aortic banding and continued through week 7.

Animals are sacrificed at the end of week 7. Prior to sacrifice, left ventricular hemodynamics are measured as described in Example I above, or using any standard protocol. Confocal microscopy may be used to quantitate myocyte growth (hypertrophy) and myocyte apoptosis by in situ nick-end labeling (TUNEL) or similar techniques for measuring cell death, using standard protocols or as described in Example I.

One of skill in the art will fully comprehend and know how to perform the experiments needed to determine the optimal neuregulin dosage regimen (e.g., amount of dose, frequency of administration, optimal time during the disease course to initiate neuregulin treatment) for minimizing, preventing, or even reversing congestive heart disease.

EXAMPLE V

NRG-1 Inhibits Anthracycline-Induced Apoptosis in Rat Cardiac Myocytes

The anthracycline antibiotics (e.g., daunorubicin, and doxorubicin) have been a mainstay of cancer chemotherapy for more than 20 years. However, the short- and long-term cardiotoxicity of these drugs limits both the individual dose and the cumulative dose that can be delivered to a patient.

There are two clinical types of anthracycline-induced cardiotoxicity. The acute type, which can occur after a single dose of anthracycline, is characterized by electrocardiographic changes, arrhythmias, and a reversible decrease in ventricular contractile function. The chronic, delayed type is characterized by a largely irreversible decrease in ventricular contractile function which progresses to dilated cardiomyopathy and congestive heart failure. The incidence of this chronic cardiotoxicity is in direct proportion to the cumulative anthracycline dose.

We have found that GGF2 (NRG-1) inhibits anthracycline-induced apoptosis in rat cardiac myocytes. FIG. 14 shows that rat cardiomyocyte cultures pre-treated with IGF-1 or NRG-1 are less susceptible to apoptosis (indicated by TUNEL staining) induced by 1 μM daunorubicin. For IGF-1 this protective effect is rapid, and can be achieved within 30 minutes of pre-incubation, similar to what was reported for fetal cardiac myocytes. In contrast, this effect takes 24 hours of pre-incubation with NRG-1.

FIG. 15A shows that both IGF-1 and NRG-1 cause rapid phosphorylation of Akt (FIG. 15A), and that this is inhibited by the PI-3 kinase inhibitor wortmannin. Akt has been implicated in mediating survival signals in some systems through phosphorylation and inactivation of the pro-apoptotic protein caspase 3. Either thirty minutes of pre-incubation with IGF-1 or 24 hours of pre-incubation with NRG-1 prevent anthracycline-induced activation of caspase 3. This effect, as well as the survival effect of IGF-1, is completely prevented by wortmannin (FIG. 15B). Thus, activation of PI-3 kinase is necessary for the cytoprotective effect of IGF on myocytes. However, the lack of cytoprotection by NRG-1 over the same time course indicates that activation of PI-3 kinase and Akt is not sufficient for cytoprotection. The relatively long NRG-1 exposure period needed for cytoprotection suggests that NRG-1-dependent protection of cardiomyocytes against apoptosis requires de novo protein synthesis. Consistent with this observation, treatment of the cells with cycloheximide inhibits the anti-apoptotic effect of NRG-1 on cardiomyocytes.

The results described above show that NRG-1 effectively inhibits anthracycline-induced apoptosis. Therefore, NRG-1 could be used to limit or prevent cardiotoxicity in patients undergoing anthracycline chemotherapy and to treat patients that have congestive heart failure caused by cardiotoxicity induced by anthracyclines or other cardiotoxic agents.

These models may be used to determine the optimal neuregulin or neuregulin-like polypeptide treatment regimen (e.g., amount and frequency of dosage, and timing relative to anthracycline administration) for minimizing, preventing, or reversing anthracycline-induced cardiotoxicity.

EXAMPLE VI

Neuregulin-Dependent Inhibition of Cardiac Failure Induced by Anthracycline/Anti-ErbB2 (Anti-HER2) Combination Therapy

Various types of cancer cells display increased expression or increased biological activity of ErbB receptors. These transmembrane receptor tyrosine kinases bind growth factors belonging to the neuregulin (also known as heregulin) family. Expression of the ErbB2 receptor (also known as HER2 and neu) in cancer cells has been correlated with increases in proliferation of carcinoma cells derived from various tissues, including, but not limited to, breast, ovary, prostate, colon, pancreas, and salivary gland.

Recently, it has been shown that HERCEPTIN® (Trastuzumab; Genentech, Inc., South San Francisco, Calif.), a humanized monoclonal antibody that specifically binds the extracellular domain of the human ErbB2 (HER2) receptor, inhibits the growth of breast carcinoma cells in vitro and in vivo by down-regulating ErbB2 activity. A Phase III clinical trial evaluating the safety and efficacy of combining HERCEPTIN® therapy with traditional anthracycline (doxorubicin) chemotherapy in breast cancer patients showed that patients receiving the combination therapy displayed greater tumor shrinkage and inhibition of cancer progression than patients receiving either therapy alone. However, patients
receiving combination therapy also suffered increased cardio
toxicity relative to patients receiving anthracycline
therapy alone, indicating that anti-ErbB2 (anti-HER2) anti-
bodies such as HERCEPTIN® increase anthracycline-in-
duced cardiotoxicity. In addition, patients that had previously
been treated with doxorubicin and later received HERCEPT-
FIN® also showed an increased incidence of cardiotoxicity,
relative to patients treated with doxorubicin alone.

Given the recently-shown success of HERCEPTIN®/an-
thracyline combination therapy in ameliorating ErbB2-over-
expressing breast tumors, it is likely that similar combination
therapies will soon be used to treat other ErbB2-overexpress-
ing tumors. However, the benefit/risk ratio of anti-ErbB2
antibody/anthracycline combination therapy would be
greatly improved if its associated cardiotoxicity could be
decreased or prevented.

Animal models of anthracycline-induced cardiotoxicity
(see, e.g., Herman and Ferrans, Semin. Oncol. 25:15-21, 1998
and Herman et al. Cancer Res. 58:195-197, 1998) are well-
known in the art. Moreover, antibodies that block neuregulin
binding to ErbB2 receptors, such as those described above,
are well-known. By inducing anthracycline/anti-ErbB2 anti-
body-dependent heart failure in known animal models for
anthracycline toxicity, one of skill in the art will readily be
able to determine the neuregulin dosage regimen required to
minimize or prevent such heart failure.

Other Embodiments

All publications and patent applications mentioned in this
specification are herein incorporated by reference to the same
extent as if each independent publication or patent applica-
tion was specifically and individually indicated to be incor-
porated by reference.

While the invention has been described in connection with
specific embodiments thereof, it will be understood that it is
capable of further modifications and this application is
intended to cover any variations, uses, or adaptations of the
invention following, in general, the principles of the invention
and including such departures from the present disclosure
come within known or customary practice within the art to
which the invention pertains and may be applied to the essen-
tial features hereinbefore set forth, and follows in the scope of
the appended claims.

SEQUENCE LISTING

- Number of SEQ ID Nos: 14
- SEQ ID No 1
 - Length: 25
 - Type: DNA
 - Organism: Artificial Sequence
 - Feature: Synthetic primer
 - Sequence: tgtgctagtc aagagtccca accac

- SEQ ID No 2
 - Length: 25
 - Type: DNA
 - Organism: Artificial Sequence
 - Feature: Synthetic primer
 - Sequence: ccttctctcg gtactaagta ttcag

- SEQ ID No 3
 - Length: 25
 - Type: DNA
 - Organism: Artificial Sequence
 - Feature: Synthetic primer
 - Sequence: gcttaaagtg cttggctcgg gtgtc

- SEQ ID No 4
 - Length: 24
 - Type: DNA
 - Organism: Artificial Sequence
 - Feature: Synthetic primer
 - Sequence: tcctacacac tgacactttc tctt
<210> SEQ ID NO 5
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer

<400> SEQUENCE: 5
aattcacca tcagagtgac gtttgg

<210> SEQ ID NO 6
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer

<400> SEQUENCE: 6
tctgcaaggt agtctgggtg ctg

<210> SEQ ID NO 7
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer

<400> SEQUENCE: 7
gctggctccg atgtatttga tggt

<210> SEQ ID NO 8
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer

<400> SEQUENCE: 8
gttctctgcc gtaggtgtcc cttt

<210> SEQ ID NO 9
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer

<400> SEQUENCE: 9
gcataccttg ctgattctgg ag

<210> SEQ ID NO 10
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer

<400> SEQUENCE: 10
cacatgcgg ttatggtcag ca

<210> SEQ ID NO 11
<211> LENGTH: 754
<212> TYPE: PRT
<213> ORGANISM: Rattus norvegicus

<400> SEQUENCE: 11
<table>
<thead>
<tr>
<th>Residue</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
<td>Arg Arg Arg Pro Ala Pro Gly Phe Ser Met Leu Leu Phe Gly Val</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Ser</td>
<td>Leu Ala Cys Tyr Ser Pro Ser Leu Lys Ser Val Gln Asp Gln Ala</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Tyr</td>
<td>Lys Ala Pro Val Val Val Gly Lys Val Gln Gly Leu Ala Pro</td>
</tr>
<tr>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>Ala</td>
<td>Gly Gly Ser Ser Ser Asn Ser Thr Arg Glu Pro Pro Ala Ser Gly</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>Arg</td>
<td>Val Ala Leu Val Lys Val Leu Asp Lys Trp Pro Leu Arg Ser Gly</td>
</tr>
<tr>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>Gly</td>
<td>Leu Gin Arg Glu Gln Val Ile Ser Val Gly Ser Cys Ala Pro Leu</td>
</tr>
<tr>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>Glu</td>
<td>Arg Asn Gln Arg Tyr Ile Phe Phe Leu Glu Pro Thr Glu Gln Pro</td>
</tr>
<tr>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>Leu</td>
<td>Val Phe Lys Thr Ala Phe Ala Pro Val Asp Pro Asn Gly Lys Asn</td>
</tr>
<tr>
<td>115</td>
<td>120</td>
</tr>
<tr>
<td>Ile</td>
<td>Lys Gln Val Gly Lys Ile Leu Cys Thr Asp Cys Ala Thr Arg</td>
</tr>
<tr>
<td>130</td>
<td>135</td>
</tr>
<tr>
<td>Pro</td>
<td>Lys Leu Lys Met Lys Ser Gin Thr Gly Gln Val Gly Gln Lys</td>
</tr>
<tr>
<td>145</td>
<td>150</td>
</tr>
<tr>
<td>Gln</td>
<td>Ser Leu Lys Cys Gln Ala Ala Ala Gly Asn Pro Gin Pro Ser Tyr</td>
</tr>
<tr>
<td>165</td>
<td>170</td>
</tr>
<tr>
<td>Arg</td>
<td>Trp Phe Lys Asp Gly Lys Leu Asn Arg Ser Arg Asp Ile Arg</td>
</tr>
<tr>
<td>180</td>
<td>185</td>
</tr>
<tr>
<td>Ile</td>
<td>Lys Tyr Gly Asn Gly Arg Lys Asn Ser Arg Leu Gin Phe Asn Lys</td>
</tr>
<tr>
<td>195</td>
<td>200</td>
</tr>
<tr>
<td>Val</td>
<td>Lys Val Glu Asp Ala Gly Gln Tyr Val Cys Gln Ala Glu Asn Ile</td>
</tr>
<tr>
<td>210</td>
<td>215</td>
</tr>
<tr>
<td>Leu</td>
<td>Gly Lys Asp Thr Val Arg Gln Gin Arg Leu Gin Val Asn Ser Val Ser</td>
</tr>
<tr>
<td>225</td>
<td>230</td>
</tr>
<tr>
<td>Thr</td>
<td>Thr Leu Ser Ser Thr Ser Ser Gin Gin Gin Gin Gin Gin Gin Gin</td>
</tr>
<tr>
<td>245</td>
<td>250</td>
</tr>
<tr>
<td>Ala</td>
<td>Lys Ser Tyr Cys Val Gin Gly Lys Tyr Tyr Tyr Ile Gin Glu</td>
</tr>
<tr>
<td>260</td>
<td>265</td>
</tr>
<tr>
<td>Ile</td>
<td>Asn Gln Leu Ser Cys Lys Cys Ser Val Val Asp Arg</td>
</tr>
<tr>
<td>275</td>
<td>280</td>
</tr>
<tr>
<td>Cys</td>
<td>Gin Gin Phe Ala Met Val Gin Gin Gin Gin Gin Gin Gin Gin</td>
</tr>
<tr>
<td>290</td>
<td>295</td>
</tr>
<tr>
<td>Leu</td>
<td>Lys Gin Ala Glu Leu Tyr Gin Gin Gin Gin Gin Gin Gin Gin</td>
</tr>
<tr>
<td>305</td>
<td>310</td>
</tr>
<tr>
<td>Gly</td>
<td>Ile Cys Val Ala Leu Leu Val Val Gly Gin Val Cys Val Val Ala</td>
</tr>
<tr>
<td>320</td>
<td>325</td>
</tr>
<tr>
<td>Tyr</td>
<td>Cys Lys Thr Lys Gin Gin Gin Gin Gin Gin Gin Gin Gin Gin</td>
</tr>
<tr>
<td>335</td>
<td>340</td>
</tr>
<tr>
<td>Gln</td>
<td>Asn Gin Gin</td>
</tr>
<tr>
<td>350</td>
<td>355</td>
</tr>
<tr>
<td>Ser</td>
<td>His Pro Arg Leu Asp Pro Glu Glu Ile Gin Met Ala Gin Gin Gin</td>
</tr>
<tr>
<td>365</td>
<td>370</td>
</tr>
<tr>
<td>Ser</td>
<td>Lys Gin Val Pro Ala Thr Gin丝 Ser Gin Gin Gin Gin Gin Gin</td>
</tr>
<tr>
<td>380</td>
<td>385</td>
</tr>
<tr>
<td>Thr</td>
<td>Thr Gin Gin</td>
</tr>
<tr>
<td>395</td>
<td>400</td>
</tr>
<tr>
<td>Thr</td>
<td>Ala Thr Pro Thr Ser Ser Ser Ser Ser Gin Gin Gin Gin Gin Gin</td>
</tr>
<tr>
<td>410</td>
<td>415</td>
</tr>
<tr>
<td>Leu</td>
<td>Glu</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>His</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Ile</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Tyr</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>His</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>His</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```<210> SEQ ID NO 12
<211> LENGTH: 330
<212> TYPE: PRT
<213> ORGANISM: Rattus norvegicus
<400> SEQUENCE: 12

Met Arg Arg Asp Pro Ala Pro Gly Phe Ser Met Leu Leu Phe Gly Val  
1      5     10      15  
Ser Leu Ala Cys Tyr Ser Pro Ser Leu Lys Ser Val Gin Asp Glu Ala  
20     25     30  
Tyr Lys Ala Pro Val Val Val Gly Lys Val Gin Gly Leu Ala Pro  
35     40     45```
Ala Gly Gly Ser Ser Ser Asn Ser Thr Arg Glu Pro Pro Ala Ser Gly  
50	 55	 60  
Arg Val Ala Leu Val Lys Val Leu Asp Lys Trp Pro Leu Arg Ser Gly  
65	 70	 75	 80  
Gly Leu Glu Arg Glu Gln Glu Val Ile Ser Val Gly Ser Cys Ala Pro Leu  
85	 90	 95  
Glu Arg Asn Gln Arg Tyr Ile Phe Phe Leu Glu Pro Thr Glu Gln Pro  
100	 105	 110  
Leu Val Phe Lys Thr Ala Phe Ala Pro Val Asp Pro Asn Gly Lys Asn  
115	 120	 125  
Ile Lys Lys Glu Val Gly Lys Ile Leu Cys Thr Asp Cys Ala Thr Arg  
130	 135	 140  
Pro Lys Leu Lys Met Lys Ser Gln Thr Gly Val Gly Glu Lys  
145	 150	 155	 160  
Gln Ser Leu Lys Cys Glu Ala Ala Gly Asn Pro Gln Pro Ser Tyr  
165	 170	 175  
Arg Trp Phe Lys Asp Gly Lys Glu Leu Asn Arg Ser Asp Arg Ser Arg Ile Arg  
180	 185	 190  
Ile Lys Tyr Gly Asn Gly Arg Lys Ser Arg Leu Glu Glu Lys Pro Ser  
195	 200	 205  
Val Lys Val Glu Asp Ala Gly Glu Tyr Val Cys Glu Ala Glu Aen Ile  
210	 215	 220  
Leu Gly Lys Asp Thr Val Arg Gly Arg Leu His Val Aen Ser Val Ser  
225	 230	 235	 240  
Thr Thr Leu Ser Ser Trp Ser Ser Gly Thr His Ala Arg Lys Cys Aen Glu Thr  
245	 250	 255  
Ala Lys Ser Tyr Cys Val Aen Gly Glu Val Cys Tyr Tyr Ile Glu Gly  
260	 265	 270  
Ile Asn Gin Leu Ser Cys Lys Cys Pro Asn Gly Phe Phe Gly Gin Arg  
275	 280	 285  
Cys Leu Glu Lys Leu Pro Leu Arg Arg Tyr Met Pro Aen Pro Lys Gin  
290	 295	 300  
Ser Val Leu Trp Asp Thr Pro Gly Gly Val Ser Ser Ser Ser Gin Gin  
305	 310	 315	 320  
Ser Thr Ser Pro Ser Thr Leu Aen Leu Aen  
325	 330  

<210> SEQ ID NO 13  
<211> LENGTH: 182  
<212> TYPE: PRT  
<213> ORGANISM: Homo sapiens  
<400> SEQUENCE: 13  
Arg Gly Glu Gly Ile Ser Phe Pro Ser Lys Leu Gin Gly His Cys Gly  
1	 5	 10	 15  
Ser Val Glu Arg Gly Asn Arg Trp Val Thr Ala Gin Glu Pro Gin Pro  
20	 25  
Ala Leu Ala His Ala Ser Pro Pro Phe Ile Pro Ser Leu Thr Arg Lys  
35	 40	 45  
Asn Ser Arg Leu Gin Phe Asn Lys Val Lys Val Glu Asp Ala Gin Glu  
50	 55	 60  
Tyr Val Cys Glu Ala Gin Leu Gly Lys Asp Thr Val Arg Gly  
65	 70	 75	 80  
Arg Leu Tyr Val Aen Ser Val Ser Thr Thr Leu Ser Ser Trp Ser Gin  
85	 90	 95
His Ala Arg Lys Cys Asn Glu Thr Ala Lys Ser Tyr Cys Val Aen Gly 100 105 110
Gly Val Cys Tyr Tyr Ile Glu Gly Ile Aen Glu Leu Ser Cys Lys Cys 115 120 125
Pro Aen Gly Phe Phe Gly Gln Arg Cys Leu Glu Lys Leu Pro Leu Arg 130 135 140
Leu Tyr Met Pro Asp Pro Lys Gln Ser Val Leu Trp Asp Thr Pro Gly 145 150 155 160
Thr Gly Val Ser 165 170 175
Cys Thr Arg Arg Gly Ser 180

<210> SEQ ID NO 14
<211> LENGTH: 3020
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 14
cctccaggtc ctggcgcaca gggtgggagc gctgcgctgc gccgcgctgc gcatcgcggc 60
cctgcttgccg cctgccccct gccctagctg ggccacctcc ccgggctgcc ggtggagggc 120
taxaggggcga taacgttacg ctgtttccgg ttttccagcg ggctctgttt cccctcccaa 180
ggcggcgcc gctggagcgc ggagcccccc aaatggcctg gccagatgcg gcaggtttgc 240
tgctcagcgc tgccgccgcc gccactggag aagggtcggt gcagcagcta cagcgacagc 300
dacgccgaca gcagcagcag cacaagcagc acctctgctgc gcctgcgctgc gcc 360
cgcagcagga gatagccgca aacaagccgc aacaagcagc acctctgctgc gcctgcgctgc gcc 420
cgcagcagga gatagccgca aacaagccgc aacaagcagc acctctgctgc gcctgcgctgc gcc 480
tggctcgtgc tgaacctgct gagcagcagc aaaaacccggc aaaaacccggc aaaaacccggc aaaaacccggc 540
gggcgctgcc gccctgccg ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc 600
ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc 660
tggctcgtgc tgaacctgct gagcagcagc aaaaacccggc aaaaacccggc aaaaacccggc aaaaacccggc 720
ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc 780
ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc 840
ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc 900
ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc 960
ccccgggctgcc gccctgccg ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc 1020
ccccgggctgcc gccctgccg ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc 1080
ccccgggctgcc gccctgccg ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc 1140
ccccgggctgcc gccctgccg ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc 1200
ccccgggctgcc gccctgccg ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc 1260
ccccgggctgcc gccctgccg ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc 1320
ccccgggctgcc gccctgccg ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc 1380
ccccgggctgcc gccctgccg ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc 1440
ccccgggctgcc gccctgccg ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc 1500
ccccgggctgcc gccctgccg ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc 1560
ccccgggctgcc gccctgccg ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc ggcgccgctg ctgccccccc 1620
What is claimed is:

1. Method for treating congestive heart failure in a mammal, said method comprising administering an NRG-3 polypeptide comprising an epidermal growth factor-like (EGF-like) domain in an amount effective to treat congestive heart failure in said mammal.

2. The method of claim 1, wherein said polypeptide is encoded by the NRG-3 gene.

3. The method of claim 1, wherein said mammal is a human.

4. The method of claim 1, wherein said polypeptide is administered prior to exposure to said cardiotoxic compound.

5. The method of claim 1, wherein said cardiototoxic compound is an anthracycline; alcohol; or cocaine.

6. The method of claim 1, wherein said polypeptide is administered after the diagnosis of congestive heart failure in said mammal.

7. The method of claim 1, wherein administration of said polypeptide maintains left ventricular hypertrophy.

8. The method of claim 1, wherein said cardiotoxic compound is an anti-ErbB2 or anti-HER2 antibody.

9. The method of claim 4, wherein said cardiotoxic compound is an anti-ErbB2 or anti-HER2 antibody.

10. The method of claim 4, wherein said polypeptide is administered prior to exposure to said cardiotoxic compound.

11. The method of claim 4, wherein said polypeptide is administered during exposure to said cardiotoxic compound.

12. The method of claim 4, wherein said polypeptide is administered after exposure to said cardiotoxic compound.

13. The method of claim 4, wherein said polypeptide is administered prior to the diagnosis of congestive heart failure in said mammal.

14. The method of claim 1, wherein said polypeptide is administered to a mammal that has undergone compensatory cardiac hypertrophy.

15. The method of claim 1, wherein said polypeptide is administered to a mammal that has undergone compensatory cardiac hypertrophy.

16. The method of claim 1, wherein administration of said polypeptide prevents progression of myocardial thinning.

17. The method of claim 1, wherein administration of said polypeptide inhibits cardiomyocyte apoptosis.