Comparison of In-Situ, Model and Ground Based In-Flight Icing Severity

Christopher J. Johnston, David J. Serke, and Daniel R. Adriaansen
National Center for Atmospheric Research, Boulder, Colorado

Andrew L. Reehorst
Glenn Research Center, Cleveland, Ohio

Marcia K. Politovich, Cory A. Wolff, and Frank McDonough
National Center for Atmospheric Research, Boulder, Colorado

December 2011
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA STI Help Desk at 443–757–5803

- Telephone the NASA STI Help Desk at 443–757–5802

- Write to:
 NASA Center for AeroSpace Information (CASI)
 7115 Standard Drive
 Hanover, MD 21076–1320
Comparison of In-Situ, Model and Ground Based In-Flight Icing Severity

Christopher J. Johnston, David J. Serke, and Daniel R. Adriaansen
National Center for Atmospheric Research, Boulder, Colorado

Andrew L. Reehorst
Glenn Research Center, Cleveland, Ohio

Marcia K. Politovich, Cory A. Wolff, and Frank McDonough
National Center for Atmospheric Research, Boulder, Colorado

Prepared for the
15th Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS)
sponsored by the American Meteorological Society
Seattle, Washington, January 27, 2011

National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

December 2011
Acknowledgments

This research is supported by the NASA Aviation Safety Program under the Atmospheric Environment Safety Technologies (AEST) project.

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

Available electronically at http://www.sti.nasa.gov

National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312
Comparison of In-Situ, Model and Ground Based In-Flight Icing Severity

Christopher J. Johnston, David J. Serke, and Daniel R. Adriaansen
National Center for Atmospheric Research
Boulder, Colorado 80307

Andrew L. Reehorst
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Marcia K. Politovich, Cory A. Wolff, and Frank McDonough
National Center for Atmospheric Research
Boulder, Colorado 80307

1.0 Introduction

In-flight icing is a significant hazard for the aviation industry. It occurs when supercooled liquid water (SLW) comes in contact with, and freezes to, the leading surfaces of an aircraft. This can significantly alter the aircraft’s aerodynamic properties by increasing the amount of drag on the aircraft, and reducing the lift. Since practical airborne remote detection hardware has not yet been developed, a ground-based detection system that can provide information to all aircraft entering and departing a terminal area (Fig. 1) is a key element in facilitating icing avoidance (Serke et al., 2010).

Currently there are two systems that are being developed for the detection of in-flight icing. The first detection system is the NASA Icing Remote Sensing System (NIRSS) a testbed that integrates three vertically pointing sensors; a Vaisala Laser Ceilometer, a Metek Ka-band radar, and a Radiometrics Corporation 23-channel radiometer (Fig. 2), (Reehorst et al., 2006). The multichannel microwave radiometer has the ability to derive integrated liquid water (ILW), atmospheric water vapor and temperature profiles (Solheim et al., 1998). A Vaisala laser ceilometer is used to define cloud base heights, and a Metek Kp-band radar is used to delineate cloud top and base heights. NIRSS combines the ILW, radar reflectivity, temperature profile, and cloud top and base heights to determine the presence of in-flight icing conditions in the atmosphere.

The second in-flight icing detection system is the Current Icing Product (CIP) which was developed at the National Center for Atmospheric Research. This system combines visible and infrared satellite imagery, radar reflectivity, lightning observations, Pilot Reports (PIREPs) and standard ground-based weather observations with numerical model output to produce a gridded, hourly, three dimensional representation of icing probability and severity (Bernstein et al., 2005). Each horizontal grid point of CIP is based on a 20 km by 20 km Rapid Update Cycle (RUC) model grid point. First developed during the winter of 1997/98, CIP became an operational National Weather Service product in 2002.

Icing-related PIREPs are voluntary reports made by pilots to report on the presence or absence of in-flight icing conditions and other weather-related conditions. Both a subjective icing severity and icing type (rime, clear or mixed) are included. PIREP reports of no icing are useful as well, since the absence of icing is important information. The shortcomings of PIREPs are well documented and include non-uniformity in time or space and contamination by errors in location, altitude and time (Brown et al., 1997; Kelsch and Wharton, 1996). PIREPs can sometimes be inaccurate due to time lags before the pilot reports the observed icing condition, and whether he or she reports the correct altitude and location. The reported severity is also somewhat subjective as it can vary based on aircraft type, phase of flight, and pilot experience. Nevertheless, PIREPs are our only means of in-situ diagnoses of actual atmospheric conditions encountered by pilots and their aircraft in the absence of expensive icing research flights or specially instrumented fleet aircraft. The objective of this study is to examine how the testbed NIRSS icing severity product and the operational CIP severity product compare to PIREPs of icing severity, and how the NIRSS and CIP compare to each other.

2.0 Methodology

A 3-year database of CIP, NIRSS and PIREP data was compiled focusing on winter periods from early November 2008 to late March 2010. During these three winter seasons, 917 icing PIREPS were collected within 40 km of the NIRSS system located in Cleveland, Ohio. CIP icing severity output from the nearest RUC gridpoint to the NIRSS location was archived and icing severity values were extracted at the time and height of each icing PIREP. A similar process was conducted for NIRSS severity output. If there was no icing data at the exact PIREP altitude, a vertical search was performed for the nearest altitude with icing severity data. Once this temporal and spatial matching was completed for all PIREPs, a statistical comparison was begun. Analysis occurred from the ground level to ~ 30,000 ft (or 9,144 m). For this study, a PIREP reported over a range of heights is treated as multiple PIREPs spread over 1000 ft increments (Wolff et al., 2010).
3.0 Analysis and Discussion

3.1 Case Study Comparison—December 15, 2009

An example icing case study is presented here to illustrate how the comparison of NIRSS, CIP and PIREP severity looked for a single event. In the next section, statistics for 3 years of such cases are discussed.

On December 15, 2009, at 0000 UTC, a surface low was dominant over the central Great Lakes region (Fig. 3). The warm front extended from the southeast portion of Lake Huron eastward into southeastern New York. The cold front was oriented from north central Ohio through southwest Ohio. The cloud top temperatures over the Cleveland area were between −5 and −15 °C (color scale). This temperature range has been shown in previous research to be conducive to supercooled liquid water (Rogers and Floyd, 1989).

At approximately 0300 UTC, the cold front passed through Cleveland, Ohio. In the hours following the cold frontal passage, drizzle and rain fell over the metropolitan area, which changed to snow by 1500 UTC.

Figure 4 shows time versus height of icing severity from NIRSS (top), PIREPs (top numerals) and CIP (bottom) for December 15, 2009. A zero to eight scale for icing severity was used for these plots, and the comparisons throughout the rest of this study where zero is no icing, one is trace amount of icing, two to three is light, four to five is moderate and six to eight is heavy.

Twenty-eight positive icing PIREPs were recorded between 1100 and 2200 UTC around Cleveland. In addition, three negative PIREPS were recorded during this time period. NIRSS diagnosed significant icing between 0900 and 2400 UTC from 1 to 6 kft AGL. CIP diagnosed icing from 0900 to 2400 UTC as well, from roughly 1 to 9 kft AGL. For this case, the temporal variability and the magnitude of the severities generally match between the two products despite the fact that CIP has a 1-hr time resolution and NIRSS has one-minute resolution. CIP has a conservative cloud top and base estimate scheme (done purposely to insure thorough warnings).

3.2 3-Year Archive Comparison

In the previous section we explored the comparison of icing products for a day-long icing case. This section will be a statistical intercomparison of all three icing detection methods for the full 3-year study period. Similar to the case study presented above, the closest NIRSS and CIP icing severity measurements were found to each of the 917 PIREPs within 40 km of the NIRSS location. The matched severity categories were plotted in Figures 5 to 7.
NIRSS versus PIREP severity is shown in Figure 5, with one-to-one severity correlation bins highlighted in orange. The numbers in each bin represent the total number of icing severity matchups recorded for the 3-year period. A linear best-fit line is overlain in blue. Taking the square root of the resulting R-squared value gives NIRSS a severity category correlation coefficient of 0.35 to the PIREP severity category. NIRSS appears to do well locating negative PIREPs, as well as finding moderate icing PIREPs. Very few severe or heavy PIREPs were reported during this time period. There are a significant number of positive PIREPs that NIRSS identifies as negative severity, possibly due to the high time resolution of NIRSS’s ILW algorithm when viewing localized SLW cases.

CIP versus PIREP severity is shown in Figure 6. A linear best-fit line is again overlain in blue, with CIP having a severity category correlation of 0.21 to the PIREP severity category. CIP and NIRSS both do well at finding PIREPs from light to moderate values. CIP seems to correctly identify a much smaller fraction of negative PIREPs than NIRSS. This could be a result of the conservative cloud base and top diagnosis in CIP.

NIRSS versus CIP severity is shown in Figure 7. The operational CIP product is treated as ‘truth’ in this comparison, as NIRSS is still a testbed. A linear best-fit line is again shown in blue, with NIRSS having a severity category correlation of 0.18 to the CIP severity category. There seems to be a significant spread in the collocated severity values between the two products during the 3-year study period. This spread is likely due to the difference in temporal resolution of the products, and the fact that the two products arrive at hazard estimates based on different input datasets.
Probability of Detection (POD). These statistics are termed
NASA/TM—2011-217141

Similarly, POD$_y$ is the fraction of positive icing PIREPs of any
(Total cases PIREP icing severity > 0)

POD$_y$ = \frac{\text{Total cases product icing severity > 0 when PIREP severity > 0}}{\text{Total cases PIREP icing severity > 0}} \tag{2}

For the 3-year study period, POD$_y$ and POD$_n$ were calcu-
late for the product comparisons shown in Figures 5 to 7. The
results are shown in Table 1.

Another useful statistic is the probability that each product
will detect negative and positive icing PIREPs, or the
Probability of Detection (POD). These statistics are termed
POD$_n$ and POD$_y$, respectively. To get POD$_n$, the fraction of
negative icing PIREPs that the respective product identifies as
negative icing is determined and then divided by the total
cases where PIREP icing severity is equal to zero (Eq. (1)).

POD$_n$ = \frac{\text{Total Cases product icing severity = 0 when PIREP severity = 0}}{\text{Total cases PIREP icing severity = 0}} \tag{1}

Similarly, POD$_y$ is the fraction of positive icing PIREPs of any
category (one through eight) that the respective product
identifies as positive icing divided by the total cases where
PIREP severity is greater than zero (Eq. (2)).

TABLE 1.—OVERALL POD$_n$ AND POD$_y$ STATISTICS

<table>
<thead>
<tr>
<th>N versus P (NIRSS versus PIREPS), C versus P (CIP versus PIREPS), N versus C (NIRSS versus CIP)</th>
<th>POD$_n$</th>
<th>POD$_y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N versus P</td>
<td>0.78</td>
<td>0.71</td>
</tr>
<tr>
<td>C versus P</td>
<td>0.90</td>
<td>0.29</td>
</tr>
<tr>
<td>N versus C</td>
<td>0.79</td>
<td>0.59</td>
</tr>
</tbody>
</table>

NIRSS detected greater than 70 percent of both positive and
negative PIREPs. CIP detected 90 percent of positive PIREPs
but only 29 percent negative PIREPs. The percentage of the
time averaged vertical profile that a product has identified a
positive severity value is termed the warning volume. The
warning volume for this study is calculated from the surface to
the average height of the tropopause. A successful product
must find an optimal balance between POD yes and no and
warning volume because it would not be very useful for a
product to have a POD$_y$ of 1.0 (perfect icing detection) if the
entire column is warned on at all times. Ideally, a product
would have a maximized POD$_y$ and POD$_n$ with a minimized
warning volume. For the 3-year study period, NIRSS had a
mean warning volume of 13 percent, and CIP had a mean
warning volume of 34 percent. CIP detected 10 percent more
positive PIREPs in over twice the warning volume. Further-
more, CIP’s high warning volume causes it to classify regions
as positive icing where they should be devoid of icing, based
on negative PIREPs.

Summary

In-flight icing detection is crucial to achieving a high safety
standard for the national fleet of commercial and general
aviation aircraft. In this study a comparison was done showing
the quantitative severity categories of negative and positive
inging PIREPs to the quantitative icing severity derived from
the prototype NIRSS icing detection algorithm and operational
CIP icing algorithm. An icing case study from December 15,
2009, over the NIRSS location in Cleveland, Ohio, was
discussed to illustrate how the PIREP and icing product
severities were compared. A statistical analysis over the full
3-year study period found that NIRSS detected in-flight icing
and negative icing at least as good as CIP when compared to
all PIREPs within a 40 km radius. NIRSS detected almost
80 percent of positive PIREPs and over 70 percent of negative
PIREPs in a relatively smaller warning volume. CIP detected
slightly more positive PIREPs than NIRSS but did fairly poor
in detecting negative PIREPs. This occurred in a warning
volume over twice the percent of NIRSS’s warning volume.
CIP did very well at detecting positive PIREPs. NIRSS
displayed respectable probabilities of icing detection with
lower warning volumes than CIP. This is due to NIRSS having
a higher time resolution and utilizing physically based vertical
profiles of ILW, temperature and radar reflectivity. Therefore,
the NIRSS testbed in-flight icing severity product seems to be at least as good as CIP. A shortfall of NIRSS is that it currently lacks volumetric scanning capability. This is being addressed by the addition of a 1° beamwidth multichannel scanning radiometer (Serke et al., 2010). Future work with NIRSS will include exploring Doppler fall velocities to detect possible freezing drizzle and freezing rain, and comparing NIRSS hazard detection to the polarimetric data from future upgraded NEXRAD.

References

Technical Memorandum

4. TITLE AND SUBTITLE
Comparison of In-Situ, Model and Ground Based In-Flight Icing Severity

6. AUTHOR(S)
Johnston, Christopher, J.; Serke, David, J.; Adriaansen, Daniel, R.; Reehorst, Andrew, L.; Politovich, Marcia, K.; Wolff, Cory, A.; McDonough, Frank

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

11. SPONSORING/MONITORING AGENCY REPORT NUMBER
NASA/TM-2011-217141

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Category: 03
Available electronically at http://www.sti.nasa.gov
This publication is available from the NASA Center for AeroSpace Information, 443-757-5802

14. ABSTRACT
As an aircraft flies through supercooled liquid water, the liquid freezes instantaneously to the airframe thus altering its lift, drag, and weight characteristics. In-flight icing is a contributing factor to many aviation accidents, and the reliable detection of this hazard is a fundamental concern to aviation safety. The scientific community has recently developed products to provide in-flight icing warnings. NASA's Icing Remote Sensing System (NIRSS) deploys a vertically-pointing Ka-band radar, a laser ceilometer, and a profiling multi-channel microwave radiometer for the diagnosis of terminal area in-flight icing hazards with high spatial and temporal resolution. NCAR's Current Icing Product (CIP) combines several meteorological inputs to produce a gridded, three-dimensional depiction of icing severity on an hourly basis. Pilot reports are the best and only source of information on in-situ icing conditions encountered by an aircraft. The goal of this analysis was to ascertain how the testbed NIRSS icing severity product and the operational CIP severity product compare to pilot reports of icing severity, and how NIRSS and CIP compare to each other. This study revealed that the icing severity product from the ground-based NASA testbed system compared very favorably with the operational model-based product and pilot reported in-situ icing.

15. SUBJECT TERMS
Flight safety; Aircraft icing; Remote sensing; Numerical weather forecasting

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
12

19a. NAME OF RESPONSIBLE PERSON
STI Help Desk (email:help@sti.nasa.gov)

19b. TELEPHONE NUMBER (include area code)
443-757-5802