Sol-Gel Synthesis of La$_{0.6}$Sr$_{0.4}$CoO$_{3-x}$ and Sm$_{0.5}$Sr$_{0.5}$CoO$_{3-x}$ Cathode Nanopowders for Solid Oxide Fuel Cells

Narottam P. Bansal and Brent Wise
Glenn Research Center, Cleveland, Ohio
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSRATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA STI Help Desk at 443–757–5803

- Telephone the NASA STI Help Desk at 443–757–5802

- Write to:
 NASA Center for AeroSpace Information (CASI)
 7115 Standard Drive
 Hanover, MD 21076–1320
Sol-Gel Synthesis of La$_{0.6}$Sr$_{0.4}$CoO$_{3-x}$ and Sm$_{0.5}$Sr$_{0.5}$CoO$_{3-x}$ Cathode Nanopowders for Solid Oxide Fuel Cells

Narottam P. Bansal and Brent Wise
Glenn Research Center, Cleveland, Ohio
Acknowledgments

Thanks are due to John Setlock for DSC-TGA and to Ralph Garlick for x-ray diffraction analysis. This work was supported by NASA's Subsonic Fixed Wing Project of the Fundamental Aeronautics Program. Brent Wise was a co-op student from Case Western Reserve University at NASA Glenn Research Center during the time this work was carried out.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Available electronically at http://www.sti.nasa.gov
Sol-Gel Synthesis of La$_{0.6}$Sr$_{0.4}$CoO$_{3-x}$ and Sm$_{0.5}$Sr$_{0.5}$CoO$_{3-x}$ Cathode Nanopowders for Solid Oxide Fuel Cells

Narottam P. Bansal and Brent Wise
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

Nanopowders of La$_{0.6}$Sr$_{0.4}$CoO$_{3-x}$ (LSC) and Sm$_{0.5}$Sr$_{0.5}$CoO$_{3-x}$ (SSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC) with La(Sr)Ga(Mg)O$_{3-y}$ (LSGM) as the electrolyte, were synthesized by low-temperature sol-gel method using metal nitrates and citric acid. Thermal decomposition of the citrate gels was followed by simultaneous DSC/TGA methods. Development of phases in the gels, on heat treatments at various temperatures, was monitored by x-ray diffraction. Sol-gel powders calcined at 550 to 1000 °C consisted of a number of phases. Single perovskite phase La$_{0.6}$Sr$_{0.4}$CoO$_{3-x}$ or Sm$_{0.5}$Sr$_{0.5}$CoO$_{3-x}$ powders were obtained at 1200 and 1300 °C, respectively. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy. The average particle size of the powders was ~15 nm after 700 °C calcinations and slowly increased to 70 to 100 nm after heat treatments at 1300 to 1400 °C.

Introduction

A fuel cell is an electrochemical device which continuously converts chemical energy of a fuel directly into electrical energy. A fuel cell consists of an electrolyte, an anode and a cathode. Various types of fuel cells are available such as direct methanol fuel cell, alkaline fuel cell, proton exchange membrane fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, and solid oxide fuel cell (SOFC). The salient features of SOFC are all solid construction, high-temperature electrochemical reaction based operation, resulting in clean and efficient power generation from a variety of fuels. Solid oxide fuel cells (Ref. 1) are being developed for a broad range of applications such as in portable electronic devices, automobiles, power generation, auxiliary power units and electric propulsion in aeronautics, etc.

Doped lanthanum cobaltites La$_{1-x}$Sr$_{x}$CoO$_{3-y}$ and samarium cobaltites Sm$_{1-x}$Sr$_{x}$CoO$_{3-y}$ show mixed ionic-electronic conduction and high catalytic reactivities for oxygen reduction. For example, the electronic conductivity of La$_{1-x}$Sr$_{x}$CoO$_{3-y}$ is greater than 1000 S/cm at 800 °C, while the ionic conductivity is between 0.1 and 1 S/cm (Ref. 3). Among others, La$_{0.6}$Sr$_{0.4}$CoO$_{3-x}$ (LSC) and Sm$_{0.5}$Sr$_{0.5}$CoO$_{3-x}$ (SSC) perovskites have attracted attention as cathode materials for intermediate temperature SOFC with La(Sr)Ga(Mg)O$_{3-y}$ (LSGM) electrolyte. LSC is also used in a number of other applications such as gas sensors, oxygen catalyst, and ferroelectric random access memories. High quality Sm$_{1-x}$Sr$_{x}$CoO$_{3-y}$ and La$_{0.6}$Sr$_{0.4}$CoO$_{3-x}$ powders are needed for various applications. A number of chemical approaches such as, solid state calcination, combustion synthesis (Ref. 4), ultrasonic spray pyrolysis (Ref. 5), sol-gel (Ref. 6), freeze drying, co-precipitation, hydrothermal, etc. have been generally utilized for ceramic powder processing. However, the sol-gel method has not been used for synthesis of LSC and SSC powders.

The primary objective of this study was the synthesis of Sm$_{1-x}$Sr$_{x}$CoO$_{3-y}$ and La$_{0.6}$Sr$_{0.4}$CoO$_{3-x}$ perovskite nanopowders by the low-temperature citric acid sol-gel approach. Thermal decomposition behavior of the gel was investigated by DSC-TGA method. Development of crystalline phases on heat treatments of the gel at various temperatures was followed by X-ray diffraction. Morphology of the powders was also characterized by scanning electron microscopy (SEM).
Experimental Methods

Powder Synthesis

The starting materials used in the synthesis were reagent grade metal nitrates Sm(NO₃)₃·6H₂O, Sr(NO₃)₂, Co(NO₃)₂·6H₂O, La(NO₃)₃·6H₂O and citric acid C₆H₈O₇·H₂O from Alfa Aesar. A flow chart showing the various steps involved in the synthesis of powders by the sol-gel process is shown in Figure 1. Appropriate quantities of the metal nitrates, to yield 100 g of the final SSC or LSC oxide powder, were dissolved in deionized water. Calculated amount of citric acid, 1.5 moles per mole of metal nitrate, was also dissolved in deionized water. The citric acid solution was slowly added to the metal nitrate aqueous solution under constant stirring. The resulting clear and transparent red colored solution was heated at 80 °C for several hours. The solution became increasingly viscous due to polymerization reaction and slowly changed to resin like consistency. Dark brown nitrous oxide fumes were also formed from the decomposition of nitric acid which was produced by the reaction of metal nitrates with citric acid. The gel was calcined at 300 °C for ~15 hr when it converted into black powder. No change was apparent in the gel after further heat treatment at 550 °C for 20 hr in air. Small portions (~1 g) of this powder were heat treated in air at various temperatures between 700 and 1500 °C for 1 hr to study the development of crystalline phases.

Characterization

Simultaneous differential scanning calorimetry and thermal gravimetric analysis (DSC-TGA) of the gel were carried out using Netzsch STA 409C system which was interfaced with computerized data acquisition and analysis system at a scan rate of 10 °C/min in air. Powder X-ray diffraction (XRD) patterns were recorded at room temperature using a step scan procedure (0.02°/20 step, time per step 0.5 or 1 s) in the 20 range 10 to 70° on a Philips ADP-3600 automated diffractometer equipped with a crystal monochromator employing copper Kα radiation. Microstructural analysis was carried out using a JEOL JSM-840A scanning electron microscope (SEM). Prior to analysis, a thin layer of Pt or carbon was evaporated onto the SEM specimens for electrical conductivity.

Results and Discussion

Thermal Analyses of Gels

Figure 2 shows the DSC/TGA curves recorded at a heating rate of 10 °C/min in air from room temperature to 1200 °C for the pink SSC resin obtained during sol-gel synthesis. Similar results were obtained for the LSC composition and will not be reported here. A small endothermic peak at ~115 °C is present in DTA which is accompanied by a small weight loss of ~2 percent due to the evaporation of residual absorbed and hydrated water. Between 130 to ~375 °C, several strong exothermic peaks are present in the DTA. Each exothermic event is accompanied by weight loss step in the TGA. These exothermic events are probably associated with the combustion and/or oxidative decomposition of the various metal citrate chelates, excess citric acid and other organic residuals. The small exotherm at ~475 °C is probably due to the crystallization of the complex oxide SmCoO₃ through the reaction of samarium and cobalt oxides formed from the decomposition of metal chelates. This is supported by the fact that this exotherm is not accompanied by any weight loss event in the TGA. On heat treatment, strontium citrate chelate is first converted into SrCO₃. Part of this SrCO₃ reacts with samarium and cobalt oxides to form complex metal oxide phases. The unreacted residual SrCO₃ decomposes into SrO at higher temperatures as indicated by a small endothermic peak at ~900 °C in DTA. The total loss of sample weight up to 1200 °C is 73 percent.
Phase Formation and Microstructure Analysis

X-ray diffraction patterns of LSC and SSC gels after thermal treatments at various temperatures from 550 to 1400 °C are shown in Figures 3 and 4, respectively. The results for the development of crystalline phases as a function of heat treatments are summarized in Table I. After calcination at 550 °C, the pink LSC resin decomposed into La_{0.6}Sr_{0.4}CoO_{3-x}, Co_3O_4, SrCO_3 whereas Co_3O_4, SmCoO_3, and SrCO_3 were formed in the SSC system. Small unknown peaks were also present in both systems. After heating at 700 °C, no additional phase was observed in the LSC system, whereas Sm_{0.5}Sr_{0.5}CoO_{3-x}, SrCO_3, and Co_3O_4 phases were detected in the SSC system. On heat treatment at 900 °C, SrCO_3 which was formed at lower temperatures, decomposed to SrO and reacted with other oxides to form SrLaCoO_4 or Sr_2Co_2O_6. The phases present after 1000 °C treatment were La_{0.6}Sr_{0.4}CoO_{3-x} and SrLaCoO_4 in LSC system and Sm_{0.5}Sr_{0.5}CoO_{3-x}, Sr_2CoO_6, Co_3O_4 in the SSC system. On heat treatment at 1200 °C, only Perovskite phase-pure La_{0.6}Sr_{0.4}CoO_{3-x} was detected in the LSC system whereas the SSC system still consisted of Sm_{0.5}Sr_{0.5}CoO_{3-x} and Sr_2Co_2O_6. The SSC powder converted to Perovskite phase-pure Sm_{0.5}Sr_{0.5}CoO_{3-x} only after heat treatment at 1300 °C.

After each thermal treatment, the average particle size was evaluated from X-ray line broadening using the Scherrer formula (Ref. 7):

\[t = \frac{0.9 \lambda}{B \cos \theta_B} \]

(1)

where \(t \) is the average particle size, \(\lambda \) the wave length of copper K\(_{\alpha}\) radiation, \(B \) is the width (in radian) of the XRD diffraction peak at half its maximum intensity, and \(\theta_B \) the Bragg diffraction angle of the line. Correction for the line broadening by the instrument was applied utilizing a large particle size silicon standard and the equation:

\[B^2 = B_M^2 - B_S^2 \]

(2)

where \(B_M \) and \(B_S \) are the measured widths, at half maximum intensity, of the lines from the sample and the standard, respectively. Values of average grain sizes of the as synthesized SSC and LSC powders and of those after heat treatments at various temperatures are summarized Table I. The average particle size of the powders was ~15 nm after 700 °C calcinations and slowly increased to 70 to 100 nm after heat treatments at 1300 to 1400 °C. The X-ray line broadening method can be used only for the size determination of small crystallites (~100 nm). Besides, the values obtained are not the real particle size, but the average size of coherently diffracting domains; the latter being usually much smaller than the actual size of the particles. The size of both SSC and LSC powders obtained in the present study was similar to those processed earlier by the solution combustion synthesis method (Ref. 4).

The SEM micrographs of La_{0.6}Sr_{0.4}CoO_{3-x} and Sm_{0.5}Sr_{0.5}CoO_{3-x} powders prepared by sol-gel synthesis after thermal treatments at 550 °C for 20 hr, 1000 °C for 1 hr, and 1200 °C for 1h in air are shown in Figures 5 and 6, respectively. The as-synthesized powders as well as those after heat treatment at 550 °C were highly porous and quite small in size. The particle size increased with increase in heat treatment temperature. Heat treatment at 1200 °C resulted in large grain growth and densification of both the powders.
Summary and Conclusions

Nano-powders of $\text{La}_{0.6}\text{Sr}_{0.4}\text{CoO}_{3-x}$ and $\text{Sm}_{0.5}\text{Sr}_{0.5}\text{CoO}_{3-x}$ compositions have been synthesized by low-temperature sol-gel process. Thermal decomposition of the gels was followed by simultaneous DSC/TGA methods. X-ray diffraction was used to follow the development of crystalline phases on heat treatments of the gel powders at various temperatures. Powders calcined at 550 to 1000 °C consisted of a number of phases. Powders containing single perovskite phase $\text{La}_{0.6}\text{Sr}_{0.4}\text{CoO}_{3-x}$ or $\text{Sm}_{0.5}\text{Sr}_{0.5}\text{CoO}_{3-x}$ were obtained at 1200 and 1300 °C, respectively. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy. The average particle size of the 700 °C calcined powders was ~15 nm which slowly increased to 70 to 100 nm after heat treatments at 1300 to 1400 °C.

References

2. F. Licci, G. Turilli, P. Ferro, and A. Ciccarone, Low-Temperature Synthesis and Properties of $\text{LaMnO}_{3\pm d}$ and $\text{La}_{0.67}\text{R}_{0.33}\text{MnO}_{3\pm d}$ (R = Ca, Sr, Ba) from Citrate Precursors, *J. Am. Ceram. Soc.*, 86[3] 413-419 (2003).
4. N.P. Bansal and Z. Zhong, Combustion Synthesis of $\text{Sm}_{0.5}\text{Sr}_{0.5}\text{CoO}_{3-x}$ and $\text{La}_{0.6}\text{Sr}_{0.4}\text{CoO}_{3-x}$ Nanopowders for Solid Oxide Fuel Cell Cathodes, *J. Power Sources*, 158[1], 148-153 (2006).
<table>
<thead>
<tr>
<th>System</th>
<th>Heat treatment</th>
<th>Crystalline phasesa</th>
<th>Average particle size (nm)b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temp. (°C)</td>
<td>Time (h)</td>
<td></td>
</tr>
<tr>
<td>La${0.6}$Sr${0.4}$CoO$_{3-x}$</td>
<td>550</td>
<td>20</td>
<td>La${0.6}$Sr${0.4}$CoO$_{3-x}$, Co$_3$O$_4$, SrCO$_3$, unknown peak at d = 0.318 nm and few other small peaks</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>1</td>
<td>La${0.6}$Sr${0.4}$CoO$_{3-x}$, Co$_3$O$_4$, SrCO$_3$, unknown peaks at d = 0.318, 0.326 nm</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>1</td>
<td>La${0.6}$Sr${0.4}$CoO$_{3-x}$, SrLaCoO$_4$, Co$_3$O$_4$, unknown low intensity peaks at d = 0.181, 0.351 nm</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1</td>
<td>La${0.6}$Sr${0.4}$CoO$_{3-x}$, SrLaCoO$_4$, unknown very low intensity peaks at d = 0.247, 0.354 nm</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1</td>
<td>La${0.6}$Sr${0.4}$CoO$_{3-x}$</td>
</tr>
<tr>
<td></td>
<td>1300</td>
<td>1</td>
<td>La${0.6}$Sr${0.4}$CoO$_{3-x}$</td>
</tr>
<tr>
<td></td>
<td>1400</td>
<td>1</td>
<td>La${0.6}$Sr${0.4}$CoO$_{3-x}$</td>
</tr>
<tr>
<td>Sm${0.5}$Sr${0.5}$CoO$_{3-x}$</td>
<td>550</td>
<td>20</td>
<td>Sm${0.5}$Sr${0.5}$CoO$_{3-x}$, SrCO$_3$, unknown peak</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>1</td>
<td>Sm${0.5}$Sr${0.5}$CoO$_{3-x}$, SrCO$_3$, Co$_3$O$_4$, unknown peaks at d = 0.317, 0.337 nm</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>1</td>
<td>Sm${0.5}$Sr${0.5}$CoO$_{3-x}$, Sr$_3$Co$_2$O$_6$, Co$_3$O$_4$, unknown peaks at d = 0.138, 0.183, 0.305, 0.357 nm</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1</td>
<td>Sm${0.5}$Sr${0.5}$CoO$_{3-x}$, Sr$_3$Co$_2$O$_6$, Co$_3$O$_4$, same unknown peaks as at 900 °C</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1</td>
<td>Sm${0.5}$Sr${0.5}$CoO$_{3-x}$, Sr$_3$Co$_2$O$_6$, unknown peak at d = 0.158 nm</td>
</tr>
<tr>
<td></td>
<td>1300</td>
<td>1</td>
<td>Sm${0.5}$Sr${0.5}$CoO$_{3-x}$</td>
</tr>
</tbody>
</table>

aPhases in decreasing order of peak intensity

bCalculated from Scherrer formula using FWHM of XRD peak in 47 to 48° 2θ range.
Nitrates of La, Sm, Sr, Co + Water

Mix metal nitrates and citric acid solutions under stirring

Clear red solution; heat at ~80 °C

Pink resin; calcine at 300 °C, 15 h and 550 °C, 20 h

Black powder; heat treat 700 - 1400 °C, 1 h each

XRD, SEM

Figure 1.—Flow chart for sol-gel synthesis of Sm$_{0.5}$Sr$_{0.5}$CoO$_{3-x}$ and La$_{0.6}$Sr$_{0.4}$CoO$_{3-x}$ nanopowders.

Figure 2.—(a) DSC and (b) TGA curves of Sm$_{0.5}$Sr$_{0.5}$CoO$_{3-x}$ gel recorded at the heating rate of 10 °C/min in air.
Figure 3.—X-ray diffraction patterns of La$_{0.6}$Sr$_{0.4}$CoO$_{3-x}$ sol-gel nanopowders calcined at various temperatures.
Figure 4.—X-ray diffraction patterns of Sm$_{0.5}$Sr$_{0.5}$CoO$_{3-x}$ sol-gel nanopowders calcined at various temperatures.
Figure 5.—SEM micrographs of La$_{0.6}$Sr$_{0.4}$CoO$_{3-x}$ sol-gel nanopowders calcined at various temperatures. (a, b) 550 °C, 20 h. (c, d) 1000 °C, 1 h. (e, f) 1200 °C, 1 h.
Figure 6.—SEM micrographs of $\text{Sm}_{0.5}\text{Sr}_{0.5}\text{CoO}_{3-x}$ sol-gel nanopowders calcined at various temperatures. (a, b) 550 °C, 20 h. (c, d) 1000 °C, 1 h. (e, f) 1200 °C, 1 h.
Sol-Gel Synthesis of La$_{0.6}$Sr$_{0.4}$CoO$_{3-x}$ and Sm$_{0.5}$Sr$_{0.5}$CoO$_{3-x}$ Cathode Nanopowders for Solid Oxide Fuel Cells

Bansal, Narottam, P.; Wise, Brent

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135-3191

Unclassified-Unlimited

Available electronically at http://www.sti.nasa.gov
This publication is available from the NASA Center for AeroSpace Information, 443-757-5802

Nanopowders of La$_{0.6}$Sr$_{0.4}$CoO$_{3-x}$ (LSC) and Sm$_{0.5}$Sr$_{0.5}$CoO$_{3-x}$ (SSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC) with La(Sr)Ga(Mg)O$_{3-x}$ (LSGM) as the electrolyte, were synthesized by low-temperature sol-gel method using metal nitrates and citric acid. Thermal decomposition of the citrate gels was followed by simultaneous DSC/TGA methods. Development of phases in the gels, on heat treatments at various temperatures, was monitored by x-ray diffraction. Sol-gel powders calcined at 550 to 1000 °C consisted of a number of phases. Single perovskite phase La$_{0.6}$Sr$_{0.4}$CoO$_{3-x}$ or Sm$_{0.5}$Sr$_{0.5}$CoO$_{3-x}$ powders were obtained at 1200 and 1300 °C, respectively. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy. The average particle size of the powders was ~15 nm after 700 °C calcinations and slowly increased to 70 to 100 nm after heat treatments at 1300 to 1400 °C.

Solix oxide fuel cells; Cathodes; Powder processing; Nanomaterials; Electronic ceramics