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When the physics of the flow around an aircraft changes very abruptly either in time or
space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks,
etc), the measurements that are performed in a simulated environment like a wind tunnel
test or a computational simulation will most likely incorrectly predict the exact location of
where (or when) the change in physics happens. There are many reasons for this, includ-
ing the error introduced by simulating a real system at a smaller scale and at non-ideal
conditions, or the error due to turbulence models in a computational simulation. The un-
certainty analysis principles that have been developed and are being implemented today do
not fully account for uncertainty in the knowledge of the location of abrupt physics changes
or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To
address this problem, a new asymmetric aerodynamic uncertainty expression containing
an extra term to account for a phase-uncertainty, the magnitude of which is emphasized
in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based
on previous work, a method for dispersing aerodynamic data within asymmetric uncer-
tainty bounds in a more realistic way has been developed for use within Monte Carlo-type

analyses.
Nomenclature

Symbols
C; = aerodynamic coeflicient
ag,bp,hry = randomly generated coeflicients
€ = randomly generated dispersion factor
f functional
f = dispersed functional
gi = randomly generated dispersion function
Ly = bias limit
M = Mach number
N = order of the partial Fourier series
U = uncertainty magnitude
u” = lower uncertainty bound
ut upper uncertainty bound
Au~ = lower uncertainty increment
Aut = upper uncertainty increment
L/D = lift-to-drag ratio
Q@ = angle of attack
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Introduction

Reducing uncertainty in aerodynamic data goes hand-in-hand with increasing one’s confidence that the
physics of the flow are well understood and realistically captured by a dataset and an uncertainty model.
Deriving an uncertainty model for a vehicle’s aerodynamic environment requires meticulous care to ensure
that it captures all potential sources of error and addresses any ‘lack of knowledge’ type of uncertainty, while
remaining a realistic representation of the aerodynamics of the vehicle. Statistics are traditionally used to
provide the engineer with objective tools that capture the variability of a given measurement, and determine
with a reasonable level of confidence a measurement uncertainty. However this variability is limited to what
can be simulated in a controlled environment like a wind tunnel at scaled sizes. Full scale flight data will,
in many cases, show variations from expected values beyond what has been estimated by measurement
statistics and engineering judgment only, because of potentially misrepresented physics in the predicted
pre-flight aerodynamic model. It is therefore important to understand the limitations of purely statistical
approaches to uncertainty quantification to reduce the risks associated with an unrealistic predictive model.
Moreover, statistics only provide a single-point type uncertainty expression, as opposed to a distributed
expression. A single-point uncertainty in an output variable is expressed as a function of a single value of an
input, whereas a distributed uncertainty in an output variable is expressed as a function of multiple input
values, which allows for spatial or temporal correlation to be maintained in the uncertainty and dispersion
models.

For demonstration purposes, and in an effort to apply it to existing experimental data, the new un-
certainty expression proposed in this paper is applied to Apollo command module wind tunnel data from
Moseley et al.! Many wind tunnels around the country were used to characterize the aerodynamic environ-
ment of the Apollo command module, as explained in the aforementioned report. The particular subset of
data that was extracted for use in this work was acquired at the Ames 2 x 2 foot Transonic Wind Tunnel. As
shown in the present work this data exhibits large gradients due to flow separation and reattachment, as the
command module is pitched from low angles of attack (apex forward) to high angles of attack (heat shield
forward). The relevance of this type of aerodynamic data is very much in line with that of blunt-shaped
vehicles currently being developed at NASA and in the industry, including the Orion Multi-Purpose Crew
Vehicle (MPCV) capsule, and launch abort systems like the Max Launch Abort System (MLAS). Analysis of
MLAS, MPCV, and Apollo aerodynamic data has shown that these vehicles present the same type of general
aerodynamic characteristics with massively separated flow on the heat shield at low angles of attack (0-30?)
and curved surface flow separation on the leeward side of the crew module area along with flow reattachment
on the heat shield at high angles of attack (50-90°). This new type of uncertainty expression will increase
the fidelity of the uncertainty models in high-gradient regions where aerodynamic stability could be an is-
sue. This in turn, could reduce risks linked to misrepresented aerodynamic environments in flight simulations.

I. High-gradient Aerodynamics and Physical Boundary Uncertainties

This section describes how a vehicle can be subject to a range of flow phenomena and how understanding
and accurately determining the boundaries of each flow domain can be challenging. Quantifying an uncer-
tainty in the domain boundaries and propagating this uncertainty in a model such as the one proposed in this
paper can provide the engineer more confidence that any lack of understanding of the physics be captured
by appropriate uncertainty bounds and a physics-based dispersion method.

A. High-gradient Aerodynamics

In the context of this paper, the term high-gradient aerodynamics is used to describe the abrupt change of
any flow quantity or integrated aerodynamic quantity in time or space. Flow quantities (like pressure, Mach
number, velocity or density) and integrated aerodynamic loads on a vehicle usually exhibit smooth trends
when the vehicle is operating within the boundaries of a physical flow state. As the vehicle changes attitude
with respect to the freestream flow, or if the flow conditions vary, the overall flow around the vehicle could
exhibit drastically different features as it suddenly evolves to a different physical state. The transition to
this different state will manifest itself as a high gradient in data trends. Capturing the location (in time
or space) of this transition in a predictive sense can prove to be crucial for ensuring that the vehicle can
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be controlled at all times in the flight simulations. In wind tunnel environments, or when computing flow
properties with computational fluid dynamics (CFD), it is not guaranteed that the model faithfully repre-
sents what would be seen on the full scale flight vehicle in realistic conditions. The challenge is therefore to
estimate the potential amount of error that could be introduced by the modeling and devise a method to
express an uncertainty not only in magnitude but also in phase. When the gradients in the data are small,
modeling a phase error is not as crucial since a single-point, symmetric type uncertainty model would, in
most cases, be sufficient to allow for a small error in phase in the nominal data. However, in high gradient
areas, traditional symmetric uncertainties fall short of modeling a sufficient phase uncertainty and, in the
limit of an infinite gradient (e.g., a step function), such models imply perfect knowledge of the location of
the step (i.e., the abrupt physical transition location). A model is proposed in the following section to allow
for a phase error due to imprecise knowledge of the physical transition.

There are many instances where sharp gradients can be observed in the aerodynamic characteristics of
atmospheric flight vehicles. Following are examples of physical phenomena that are most commonly at the
origin of such gradients in aerodynamic flows:

e Flow separation and/or reattachment regions are usually very dynamic and unsteady environ-
ments, which poses a great challenge in predicting the exact conditions that trigger flow separation or
reattachment. Small changes in vehicle attitude or flow conditions can have a dramatic effect on the
state of the flow. Curved smooth surfaces in particular will exhibit multiple types of flow separation
depending on the state of the boundary layer (laminar, turbulent) and the type of pressure gradient
it is subject to. Polhamus? and Luckring® have provided insight into understanding how the physics
of flows over wings is greatly sensitive to Reynolds number, Mach number, compressibility, leading
edge radius, wing sweep and slenderness, among other configuration parameters. Different types of
flow separation will trigger different types of wing aerodynamics (e.g. stall, buffet, leading-edge vortex
formation, etc), which splits the parameter space into distinct flow domains exhibiting vastly different
flow physics. Very small changes in flow conditions could therefore induce a transition from one flow
domain to another with large gradients in the aerodynamic loads. Hysteresis loops are also a common
occurrence when flow separation is present, which leads to a solution that is direction dependent and,
when the direction is unknown, an uncertainty in the location of the transition between attached and
separated slow states.

e Shock wave/boundary layer interactions, at transonic and supersonic conditions, are also very
dynamic in nature and therefore result in an uncertain position and impact of the shock on the vehicle.
Depending on the configuration of the vehicle, the shock wave could be standing in a very unsteady
part of the flow and therefore show dynamic fluctuations in streamwise position. These dynamic
fluctuations should be attempted to be captured to assess a minimum amount of uncertainty of the
physical location of the shock. All flow quantities also exhibit strong discontinuities through a shock
wave which makes their prediction difficult when its position is largely unsteady. Smits & Muck*
found that the interaction between a separating turbulent boundary layer and a shock wave over a 20°
turning angle exhibits such unsteadiness that the structure of the shock and resulting normal stresses
show larger than expected random variations. A traditional uncertainty model in this case would not
necessarily be able to capture such dynamics in the state of the flow.

e Boundary layer transition remains a difficult phenomenon to measure in a wind tunnel environment,
or simulate using CFD. Both methods are complementary ways to predict the characteristics of the
a full-scale vehicle’s flight environment. Experimentally, for some vehicles like traditional transport
configurations, fairly well established techniques have been developed to simulate the boundary layer
transition in a way that is representative of the full scale vehicle.?'® Additionally, in a few cryogenic
facilities, flight Reynolds numbers can be obtained, in which case natural transition should occur in
a very similar way than in full-scale flight. However, for complex geometries, blunt bodies or slender
bodies of revolution that exhibit flow separation, the techniques implemented to trip the boundary
layer are still very much at the research level and in most cases, it is difficult to know whether the
boundary layer is effectively tripped and remains turbulent over the entire scaled vehicle. For launch
vehicles, flight Reynolds numbers can still be several orders of magnitude higher than in the testing
environment, leaving room for Reynolds number scaling error. Additionally, natural transition on a
full scale vehicle will occur at various stations on the vehicle depending on factors such as freestream
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turbulence intensity, gusts, model attitude, kinematic viscosity of ambient air, surface finish roughness,
protuberance flow interactions, etc. Computationally, predicting laminar/turbulent boundary layer
transition is a yet harder task since it requires time dependent simulations that are able to model the
instabilities in the boundary layer that trigger transition. Simulating boundary layer transition in CFD
is the subject of much research. There can therefore be discrepancies in the nature of the boundary
layer between the simulated vehicle and the full-scale vehicle, especially when flow separation is present.

e Bi-modal flow behaviors are a phenomenon that can be observed most commonly at transonic con-
ditions (0.7 < M < 1.3) where, for example, the flow has to turn around a sharp corner and the
interaction between the separating flow and the shock is observed to have two stable states at very
close free stream Mach number conditions. An example of such a behavior has been reported by Piatak
et al.” resulting from rigid buffet wind tunnel testing performed on the Ares I-X flight test vehicle.
Pinier & Niskey® have also reported a bi-modal type phenomenon in the stage separation aerodynamics
of the Ares I-X, where the shear layer in the wake of the upper stage interacts with the bow shock on
the first stage, and results in an abrupt transition from a high drag to a low drag state of the shock
wave. Another example of high gradients due to a bi-modal flow behavior is the abrupt wing stall
issue that occurred on the pre-production F/A-18E.? In this case, unsteady computations performed
by Forsythe & Woodson,'? in agreement with experiments, showed that the shock wave on top of the
wing would dynamically oscillate between two stable positions at steady transonic conditions. This
resulted in abrupt shock-induced flow separation on one side of the aircraft and large rolling moments
that could not be controlled by the automatic flight control system.

The above phenomena can be present to varying degrees in all vehicle classes (commercial and military
transport, rotorcraft, UAV, launch vehicles, capsules, etc), and throughout the speed regime. The tech-
niques presented in this paper apply to all vehicle types that are subject to high gradient aerodynamics.
The present work was developed in the context of launch abort system aerodynamics, therefore the examples
used below pertain to blunt body type aerodynamics. Blunt bodies often present geometrical features that
almost ensure high-gradient aerodynamic characteristics since they usually experience high angles of attack
due to reorientation phases of flight, low dynamic and static stability margins, flight under drogue chutes and
large parachutes, etc. As an example, the aerodynamic characteristics of a capsule, as it is pitched from low
angles of attack (nose forward) to high angles of attack (heat shield forward) experiences a transition from
fully attached flow on the windward walls of the capsule and massively separated flow on the leeward heat
shield to a separating flow on the walls and reattachment of the flow on the heat shield. Roshko'! showed
how sensitive bluff body aerodynamics are, in particular base suction and drag, to parameters like Reynolds
number and the state of separation of the shear layer. This highly dynamic combination of aerodynamic
phenomena results in very large gradients in the integrated forces and moments. Capturing this gradient
with an appropriate uncertainty model is key.

B. Physical Boundary Uncertainties

The aerodynamic environment of a vehicle can be interpreted as a ‘map’ among physics-based inference
spaces. From this perspective, there are two main challenges to be addressed: 1) Identifying the domain
boundaries and the uncertainty in their characterization, and 2) Determining the aerodynamics of the vehicle
and it’s associated uncertainty within each domain. Wind tunnel measurements and computational simu-
lations will provide an estimate of the boundaries of the physical domains and insight into the mechanisms
that trigger the transition from one domain to another. It is however difficult to understand how well this
boundary is determined due to the assumptions that were made when making the measurements at smaller
scales, or the consequences of using a particular CFD model. Different turbulence models have strengths
and weaknesses in predicting various types of flows, and phenomena like flow separation and boundary
layer transition are always very challenging. Luckring et al.!? discuss how determining the boundaries of a
physics-based inference space can allow for a validation of the computational code within a whole domain
rather than at discrete locations, thereby providing the user an increased confidence in the simulations.
The work by Polhamus? is an excellent example of how physical boundaries can be determined. Figure 1
is adapted from his work and shows the boundaries of different types of stall an airfoil would be subject to
when varying Reynolds number and leading-edge radius. The boundaries of these physics-based inference
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Figure 1. Stall domains for NACA 6-series symmetrical airfoils as a function of Reynolds number based on
chord, Rc, and leading edge radius. Adapted from Polhamus.?

spaces having been determined, one of the challenges lies in quantifying the uncertainty in the location of
these boundaries.

As described in the previous section, most forms of high-gradient phenomena are usually accompanied by
strong unsteadiness. Capturing the magnitude of the unsteadiness and performing detailed measurements
or computations in the vicinity of the transition between domains could provide useful information for quan-
tifying how well the transition location is known. As an example, the dynamics of a shock wave interacting
with a boundary layer at transonic conditions could result in the static location of a shock on an airfoil
to become dynamic and the surface pressure distribution to exhibit a large discontinuity that travels with
the shock. Performing unsteady pressure measurements with a dense row of sensors around the predicted
shock location would provide for a more accurate measure of how the shock wave travels within a range of
locations. This range could be used to determine uncertainty bounds for the location of the discontinuity
in the pressure trace. It is shown in the next section how such a quantity can be used to model a phase
uncertainty in a signal that exhibits a large gradient.

II. An Asymmetric Uncertainty Expression for High-gradient Aerodynamics

Uncertainty expressions are traditionally calculated from a dataset using a mix of engineering and statis-
tical methods, which results in bounds that quantify the potential error in the output for a given input, i.e.,
a magnitude error or ‘vertical’ uncertainty. The article by Hemsch et al.'® describes in detail the process
involved in the estimation of aerodynamic uncertainties for the Ares I launch vehicle during the ascent phase
of flight. In most instances, when the data trends only exhibit small gradients, a pure magnitude uncertainty
is largely sufficient to cover for potential phase errors, even though unaccounted for in the analysis. When
gradients become large, magnitude-error uncertainties are no longer sufficient and a model that explicitly
accounts for phase-error is needed. In the current paper, the uncertainty in the knowledge of the location
of the abrupt physics changes will be referred to as a phase uncertainty since it is, in fact, an error in the
output that is due to a lack of knowledge in the input, which can also be viewed as a ‘horizontal’ uncertainty.
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A. Traditional Pure-magnitude Symmetric Uncertainty Expression

Given an aerodynamic coefficient C;(X), the upper uncertainty bound u*(z), and the lower uncertainty
bound u~ (x) are defined as:

ut(z) = Ci(x) + Aut
u” (z) = Ci(z) — Au~ (1)

Then, the traditional model for a constant symmetric uncertainty of magnitude U is as follows:

Au™(z)=U (2)

Figure 2 shows a lift-to-drag ratio polar for the Apollo command module as it is pitched from 0 to 90°
angle of attack, 0° being apex pointed forward and 180° being heat shield pointed forward. A strong gradi-
ent is seen in this data starting at approximately 65° angle of attack, where the vehicle suddenly loses lift,
indicating flow separation on the leeward curved walls of the command module and reattachment on the heat
shield. A constant and symmetric uncertainty has been applied to the data, following established practices.
In this case the magnitude of the uncertainty is arbitrary for the purpose of the demonstration. In regions
where the data does not exhibit high gradients, the uncertainty model looks reasonable and would allow for
errors in phase. However, when the gradients become very large, as in the region between 60 and 70° angle
of attack, this type of model unfortunately allows for only a very small range of phase error. In addition,
this happens at a very critical condition during the flight, when the capsule reorients itself to present its heat
shield forward for reentry and aerodynamic stability of the vehicle is key. Locally increasing the uncertainty
magnitude (even grossly) would not accomplish the objective of allowing for phase error. Indeed, in the
extreme case of a step function or an infinite local slope, even an infinitely large single-point uncertainty
would not be satisfactory. Figure 3 shows a theoretical example of a step function (infinite gradient) with
an arbitrary traditional constant symmetric uncertainty. It is clear that no phase-error is allowed with such
a model in the high gradient area around X = 0.5.

Such models imply perfect knowledge of the location of the high gradient or abrupt physical transition.
What is needed is an uncertainty model for the condition of the abrupt transition from one domain to an-
other. The following section describes a proposed model to fill this void.

B. New Phase and Magnitude Asymmetric Uncertainty Expression

The proposed expression for an asymmetric uncertainty that accounts for phase errors, given an estimated
uncertainty in the knowledge of the location of the abrupt physics change, Az, is as follows:

Aut(z) = U + ‘Ci(:z:) ~ Ci(w + Az sgn <‘gi))‘

Au(x):U—l—’Ci(x)—Ci(:v—A:v sqn (‘g))’ 3)

where Au™ is the positive uncertainty, Au~ is the negative uncertainty, U is the previously calculated single-
point estimate of aerodynamic measurement uncertainty, and C;(z) is the aerodynamic coefficient at location
2. This model simply allows for a phase-uncertainty in the input, Az, to be propagated through the nominal
data and provide an additional asymmetric uncertainty that is proportional to the gradient of the nominal
function, and a function of the estimated input phase-uncertainty, Az. If the gradient is positive, the upper
uncertainty increment, Au™(x), will spike slightly preceding the large gradient, and the lower uncertainty
increment, Au~ (), will spike slightly following the large gradient, increasing the ‘width’ of the uncertainty
band, and effectively adding a phase-uncertainty at the location of the large gradient. The following example
illustrates this feature.
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Figure 2. (top) Apollo command module lift-to-drag ratio at M=0.7, with traditional symmetric uncertainty
bounds of arbitrary magnitude and (bottom) uncertainty bounds only. Lift-to-drag ratio data from Moseley
et al.®
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Figure 3. (top) Traditional uncertainty bound applied to a step function with arbitrary symmetric uncertainty,
and (bottom) uncertainty bounds only.
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Using the Apollo command module example, the uncertainty model for lift-to-drag ratio as a function of
angle of attack, «, is as follows:

Aut(0) = U + ](L/Dxa) ~(L/D)(a+ Aa sgn (%))]
Au (@) = U + [(1/D)(a) = (1/ D)o ~ Ao sgn (FELE)) @)

Figure 4 shows the new uncertainty model applied to the Apollo command module lift-to-drag ratio. For
the purpose of demonstrating the technique, a phase-uncertainty of Aa = 1.5° was arbitrarily chosen. The
uncertainty band now allows for phase or ‘horizontal’ error in the high-gradient regions of the aerodynamics
of the vehicle, without dramatically increasing the uncertainty magnitudes in the low-gradient regions. In
areas of zero gradient, the added term vanishes leaving only the traditional single-point uncertainty estimate.
Figure 5 shows both uncertainties together to illustrate this feature.

As applied to the theoretical step function, with an arbitrary uncertainty in the knowledge of the physical
change of AX = 0.025, the new uncertainty model is shown in Fig. 6. When compared to Fig. 3, the addition
of a phase-error now allows for modeling a variation in the flight simulations.

The phase-uncertainty, Az, in the proposed model described by Eq. 3 has to be estimated using available
aerodynamic data, as well as engineering judgment. Insight can be gained from testing the assumptions made
when designing the experiment or the computational problem. For example, when testing a bluff body in a
wind tunnel, Reynolds number could be a factor that greatly affects the nature of the flow separation, and
in turn base pressure and longitudinal forces and moments. If the wind tunnel has the capability of varying
Reynolds number at a fixed Mach number, and if time permits, one could perform such an investigation over
a range of Reynolds numbers to get a sense of the sensitivity of the aerodynamic environment to Reynolds
number. Testing at different scales and if possible in different tunnels can also provide valuable information
in determining more accurately an uncertainty in the boundaries of the flow domains. Computationally,
analyzing solutions from several turbulence models, grid characteristics, etc could result in variability in the
predicted domain boundary and provide valuable information for an estimate of the phase-uncertainty.

As shown above, this new uncertainty model provides an effective mathematical way of propagating a
phase-uncertainty through the aerodynamic data and results in uncertainty bounds that include both mag-
nitude and phase uncertainty in the highest-gradient areas, where pure-magnitude uncertainty models do
not. However this is not enough to ensure that, in a Monte-Carlo type dispersion analysis (as performed by
Guidance, Navigation and Controls), every dispersion within the new uncertainty bounds will be realistic.
A physics-based dispersion model, as presented in the following section, is recommended to introduce con-
strained and realistic randomness in the dispersed data.

III. A Physical Dispersion Model for Asymmetric Uncertainty Expressions

Traditionally, aerodynamic databases consist of: 1) a set of nominal coefficients that are a function of
a number of independent variables, and 2) an uncertainty model that is usually a function of a subset of
these variables. It was shown by Pinier'® that a physically meaningful dispersion model is highly beneficial
to enable realistic modeling of the aerodynamic data within the flight simulations. The negative effects
of an inappropriate dispersion model can have much more of an impact on vehicle performance than the
actual uncertainty magnitudes. In cases where uncertainties about the nominal values are large, the absence
of a physics-based dispersion model could lead to non-realistically dispersed data and artificially distorted
simulation results that will not accurately represent the launch vehicle’s behavior in flight. The Fourier
series-based dispersion model introduced by Pinier'* and now implemented within NASA projects to more
realistically represent random variations in flight simulations was developed for traditional symmetric single-
point uncertainty bounds. However this approach can be generalized to asymmetric uncertainty expressions
that account for lack-of-knowledge type phase-errors, as described in the previous sections.
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Figure 4. (top) Apollo command module lift-to-drag ratio at M=0.7, with new asymmetric uncertainty bounds
and (bottom) uncertainty bounds only. Lift-to-drag ratio data from Moseley et al.l
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Figure 5. Apollo command module lift-to-drag ratio at M=0.7, with traditional symmetric uncertainty bounds
(in gray) and new asymmetric uncertainty bounds (in blue). Lift-to-drag ratio data from Moseley et al.!
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A. Fourier Series based Dispersion Method as Applied to Symmetric Uncertainties

Prediction data can differ from the truth in two ways: (1) bias error and (2) random error. It can also be
a combination of the two. The model proposed by Pinier'# allows for both bias and random errors to be
modeled at the same time in the dispersed data, while remaining constrained by the provided uncertainty
bounds. The dispersion model consists of a traditional bias uncertainty term and an additional uncertainty
term with a functional dispersion factor g;(x), as follows:

f(@) = f@) + e Ly U) + (1= |e L)) gilw) Ulx) ()

where f(z) is the dispersed function. U(z) is the uncertainty magnitude, €; is a randomly sampled uncertainty
factor with —1 < ¢; < 1. L; is the bias limit, with —1 < L, < 1 and the dispersion function g¢;(z) is a
randomly generated dispersion function that satisfies —1 < g¢;(x) < 1. This dispersion model allows for
the presence of a bias uncertainty limited to a magnitude of L, U(z), with the remaining uncertainty band
allowed to be modeled as a pseudo-random function of x. The following partial sum of Fourier series is the
proposed general model for the dispersion function g;(z):

N
gi(z) = Z (ag sin (27 (k Z+ hy)) + by cos (27 (k &+ hy))) (6)
k=1
where ay, by and hy are randomly generated real numbers uniformly distributed between -1 and 1, and
T varies on a normalized scale from 0 to 1. N is the order of the partial Fourier series. The aj and by
coefficients are the random magnitudes of the sines and cosines respectively and the hj coefficients are
the random phases. The random phase enables the uncertainty band to be fully covered by the dispersed
functions. Two parameters need to be chosen a priori to implement this model: the order of the Fourier
series, N, and the bias limit, L,. These parameters are determined using the following combination of
physical reasoning and empirical data analysis:

1. The order of the partial Fourier series, N: It is argued that any randomly dispersed function
should exhibit a frequency content of the same order than that of the nominal function itself. Therefore
the order of the series should not be higher than half the number of local extrema in the nominal
function. As an example, the nominal function in Fig. 2 contains 2 local extrema and therefore the
model should be of order N = 1.

2. The bias limit, L,: In most cases, it is unrealistic to assume that 100% of the uncertainty could be
due to systematic error and therefore be modeled by a simple bias. In some cases, a strong physical
argument can be made to justify setting the bias limit to zero (as is the case in the Ares I rolling
moment example provided in Pinier'*). However, most of the time, a portion of the uncertainty can
be attributed to systematic errors and the remaining portion attributed to randomized error sources.
An empirical study of the available data (from flight tests, wind tunnel tests, and computational fluid
dynamics) and an engineering argumentation to determine the potential sources of systematic and
randomized errors are required to determine the magnitude of the bias limit L.

In addition, the dispersion function is constrained by: |g;(z)|] < 1, so that every dispersed function
remains within the pre-defined uncertainty bounds. As shown in Eq. 6, this model does not satisfy this
constraint. There are two ways to force all dispersed functions g;(z) to be smaller than 1 in absolute value.
The reader is referred to the paper by Pinier!* for a detailed description of the method.

B. Generalization of the Fourier Series based Dispersion Method to Asymmetric Uncertainty
Expressions

Section IT showed how a rather simple model can result in more realistic uncertainty bounds for aerodynamic
data that contains large gradients. These new uncertainty bounds allow for a phase-error in the data that
is directly correlated to the amount of uncertainty in the knowledge of the location in time or space of the
large gradient. The resulting uncertainty bounds, as shown in Fig. 6 are now largely asymmetric, i.e. the
upper uncertainty increment Au™ is not equal to the lower uncertainty increment Au~.
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Before the Fourier series based method was introduced by Pinier,'* the dispersion model that has been
traditionally used applies a bias-only increment to the nominal data within the uncertainty bounds. The
following equation describes a bias-only dispersed function for asymmetric uncertainty bounds:

o) = s+ (R A0 (A A0

(7)

Figure 7 shows an example for this type of bias-only dispersion method, as applied to the Apollo com-
mand module lift-to-drag ratio data and an asymmetric uncertainty band. It is clear that significant biases
are introduced in every dispersed function and that more randomness would be expected to occur in a typical
flight, given this data and its uncertainty band.

To disperse the nominal data within the asymmetric uncertainty bounds using the Fourier series based
dispersion method, and to ensure that the entire uncertainty space can be covered, the data can be dispersed
about the function that is equal to the average of the upper and lower uncertainty bounds: w.
The following equation describes how the bias-only dispersion model from Eq. 7 is generalized to an asym-

metric uncertainty model, as that proposed in this paper:

ﬂm—ﬂm+(“ﬁng“@>

AuT(z) + Au~(z) ) (8)

) (6 Lot (= s ol i) (22
In the particular case where the uncertainty is symmetric, Aut(z) = Au~(2) = U(z), and this equation is
equivalent to the traditional model from Eq. 5.

Figure 8 shows an example for this Fourier series based dispersion method, as applied to the Apollo
command module lift-to-drag ratio data and an asymmetric uncertainty band. The bias limit L; in this case
is equal to zero for a clearer representation of the added randomness from the Fourier series based method.
The resulting dispersed functions exhibit more random magnitude, slope and phase variations, which allows
for the flight simulation to be stressed in more ways than a pure bias type dispersion method.

IV. Conclusion

In aerodynamic uncertainty quantification high-gradient areas are traditionally treated in the same man-
ner as low-gradient areas, with mostly statistically-derived symmetric bounds about a nominal function.
The inherent limitation of such techniques is that the phase or ‘horizontal” uncertainty in the high-gradient
areas becomes unrealistically small. The present work has introduced a general mathematical model that
results in an asymmetric uncertainty, the magnitude of which is proportional to the gradient in the nominal
data. This allows for phase-error in high-gradient aerodynamic regions, where traditional pure-magnitude
symmetric uncertainty models do not. Within a physical domain, where gradients are generally low, the size
of the additional term becomes insignificant. Additionally, a generalization of the randomized Fourier-series
based dispersion model extends the author’s previous work to allow for more realistic Monte-Carlo type
dispersions to be combined with the proposed asymmetric uncertainty bounds, and results in the inclusion
of a phase dispersion in the predictive data around physical domain transitions.

The combination of a high gradient uncertainty model, and a more randomized physics-based dispersion
method, as proposed in this paper, provides for more realistic estimates of uncertainty in applications where
phenomena such as flow separation/reattachment, shockwave/boundary layer interactions, laminar-turbulent
transition, or bi-modal dynamics play a key role in the aerodynamic characteristics of the vehicle. It is ar-
gued that aerodynamic uncertainty expressions that contain physics-based models are more representative
of the full scale flight vehicle in the flight simulations, which results in a more robust evaluation of the flight
risks and, in turn, an increased probability of success.
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Figure 7. (top) Apollo command module lift-to-drag ratio at M=0.7, with new asymmetric uncertainty bounds
and 20 bias-only dispersions, and (bottom) asymmetric uncertainty bounds and bias-only dispersion functions.
Lift-to-drag ratio data from Moseley et al.l
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Figure 8. (top) Apollo command module lift-to-drag ratio at M=0.7, with new asymmetric uncertainty bounds
and 20 Fourier series based dispersions, and (bottom) asymmetric uncertainty bounds and Fourier series based
dispersion functions. Lift-to-drag ratio data from Moseley et al.®
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