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The effects of mesh irregularities on accuracy of unstructured node-centered finite-volume discretizations are
considered. The focus is on an edge-based approach that usesunweighted least-squares gradient reconstruction
with a quadratic fit. For inviscid fluxes, the discretization is nominally third order accurate on general trian-
gular meshes. For viscous fluxes, the scheme is an average-least-squares formulation that is nominally second-
order accurate and contrasted with a common Green-Gauss discretization scheme. Gradient errors, truncation
errors, and discretization errors are separately studied according to a previously introduced comprehensive
methodology. The methodology considers three classes of grids: isotropic grids in a rectangular geometry,
anisotropic grids typical of adapted grids, and anisotropic grids over a curved surface typical of advancing-
layer grids. The meshes within the classes range from regular to extremely irregular including meshes with
random perturbation of nodes. Recommendations are made concerning the discretization schemes that are
expected to be least sensitive to mesh irregularities in applications to turbulent flows in complex geometries.

I. Introduction

Traditional mesh-quality metrics tend to assess meshes without taking into account the type of equations being
solved, solutions, or the desired computational output. The most widely-used mesh quality metrics are geometric
in nature, considering shape, size, angles, aspect ratio, skewness, Jacobian, etc., of the mesh elements. Additional
considerations include variations between mesh elements,such as cell-to-cell and face-to-face ratios, line smoothness,
etc. Some schools of thought argue that an accurate and efficient solution can be obtained only on “pretty” meshes
similar to either structured Cartesian meshes or to meshes composed from identical perfect elements (perfect triangles,
tetrahedrals, etc.) This idea is in direct contradiction with the common Computational Fluid Dynamics (CFD) practice,
in which accurate solutions are computed on practical meshes that would be characterized as unacceptable by most
geometric mesh quality metrics. Moreover, the most powerful state-of-art method for improving solution accuracy,
output-based mesh adaptation,1 tends to produce “ugly” meshes, but provides vast improvements of the accuracy-
per-degree-of-freedom ratio.2 It is widely recognized today that mesh quality indicators should involve sufficient
information about the solution.3–5 In fact, it is envisioned that the connection should go even deeper and involve
modern error-estimation techniques that take into accountthe specifics of the discretization method in use and the
desired computational output.

Historically, mesh quality analyses were first performed for finite-difference and finite-element methods. It is
not straightforward to translate those approaches to finite-volume discretizations (FVD) that represent the state of art
in CFD computations. While there is no doubt that certain mesh characteristics critically affect accuracy of CFD
solutions and gradients, the precise nature of this influence (what affects what) is far from clear.

For finite-difference approaches most of the mesh quality methods try to establish connections between mesh and
truncation error.6, 7 The truncation error analysis is often applied to FVD schemes as well.8 However, it has been long
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known, that truncation errors of FVD schemes on unstructured grids are not reliable estimators of discretization errors.
Thesupra-convergenceof discretization errors observed and studied for at least 50 years indicates that design-order
accurate FVD solutions can be computed on unstructured grids even when truncation errors exhibit a lower-order
convergence or, in some cases, do not converge at all.9–11

The theory and applications of mesh quality assessments arewell developed and widely used within the finite-
element community. While initial groundbreaking work focused on pure geometrical mesh-quality metrics, such
as large angles,12, 13 the later developments take solution into account.14 The standard finite-element estimates use
Sobolev norms that simultaneously estimate errors in the solution and its derivatives. These estimates might be too
conservative because recent finite-volume computations indicate that accurate solutions can be obtained in spite of
formally poor accuracy of gradients.15–17

Previously, the effects of mesh irregularities on accuracyof unstructured finite-volume discretizations were eval-
uated for various common node-centered and cell-centered schemes.15, 16, 18–20 The focus here is on an edge-based
node-centered approach that uses unweighted least-squares gradient reconstruction with a quadratic fit. For inviscid
fluxes, the discretization is nominally third order accurate on general triangular meshes.21, 22 For viscous fluxes, the
scheme is an average-least-squares formulation that is contrasted with a common Green-Gauss discretization scheme.
These schemes can be formulated as edge-based schemes on general simplicial grids.23 The inviscid and averaged-
least-squares viscous discretizations can be formulated as edge-based on arbitrary grids, including grids used in ag-
glomeration multigrid.24, 25

Gradient errors, truncation errors, and discretization errors are separately studied according to a previously intro-
duced comprehensive methodology.15, 16 A linear convection equation,

(a · ∇)U = f, (1)

with a velocity vector,a, serves as a model for inviscid fluxes. Poisson’s equation

∆U = f, (2)

subject to Dirichlet boundary conditions serves as a model for viscous fluxes. The method of manufactured solutions
is used, so the exact solutions and forcing functions,f , are known. Solutions are chosen to be smooth on all grids
considered, i.e., no accuracy degradation occurs because of a lack of solution smoothness.

The paper is organized as following. First, grids, FVD schemes, and accuracy measures are briefly described.
Then, numerical studies of the FVD accuracy measures are reported for grids of three classes representing isotropic,
adapted, and turbulent-flow grids. Conclusions and recommendations are offered at the end.

II. Grids

Computational studies are conducted on two-dimensional grids ranging from structured (regular) grids to irregular
grids composed of arbitrary mixtures of triangles and quadrilaterals. Highly irregular (bad quality) grids are deliber-
ately constructed through random perturbations of structured grids. Three classes of grids are considered. Class (A)
involves isotropic grids in a rectangular geometry. Class (B) involves highly anisotropic grids, typical of those en-
countered in grid adaptation. Class (C) involves advancing-layer grids varying strongly anisotropically over a curved
body, typical of those encountered in high-Reynolds numberturbulent flow simulations.

Four basic grid types are considered:(I) regular quadrilateral(i.e., mapped Cartesian) grids;(II) regular tri-
angular gridsderived from the regular quadrilateral grids by the same diagonal splitting of each quadrilateral;(III)
random triangular grids, in which regular quadrilaterals are split by randomly chosen diagonals, each diagonal orien-
tation occurring with a probability of half; and(IV ) random mixed-element grids, in which regular quadrilaterals are
randomly split or not split by diagonals; the splitting probability is half; in case of splitting, each diagonal orientation
is chosen with probability of half. Nodes of any basic-type grid can be perturbed from their initial positions by random
shifts, thus leading to four additionalperturbedgrid types which are designated by the subscriptp as(Ip)-(IVp). The
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random node perturbation in each dimension is typically defined as14ρh, whereρ ∈ [−1, 1] is a random number and
h is the local mesh size along the given dimension. The representative grids of Class (A) are shown in Figure 1.

(a) Type(I): regular quadri-
lateral grid.

(b) Type(II): regular trian-
gular grid.

(c) Type(III): random tri-
angular grid.

(d) Type (IV ): random
mixed grid.

(e) Type (Ip): perturbed
quadrilateral grid.

(f) Type (IIp): perturbed
triangular grid.

(g) Type(IIIp): perturbed
random triangular grid.

(h) Type (IVp): perturbed
random mixed grid.

Figure 1. Typical regular and irregular grids.

III. Finite-Volume Discretization Schemes

The FVD schemes are derived from the integral form of a conservation law
∮

∂Ω

(F · n̂) ds =

∫

Ω

fdΩ, (3)

whereΩ is a control volume with boundary∂Ω, n̂ is the outward unit normal vector, andds is the area differential. The
general FVD approach requires partitioning the domain intoa set of non-overlapping control volumes and numerically
implementing equation (3) over each control volume.

Node-centered discretization schemes are considered, in which solutions are defined at the primal mesh nodes.
The control volumes are constructed around the mesh nodes bythe median-dual partition: the centers of primal cells
are connected with the midpoints of the surrounding faces. These non-overlapping control volumes cover the entire
computational domain and compose a mesh that is dual to the primal mesh. The node-centered discretization schemes
employ the same degrees of freedom on grids of all types; thus, accuracy is not influenced by a variation in degrees of
freedom.

For inviscid Eq. 1, the numerical flux,
(

F
h · n̂

)

≡ Uh (a · n̂) , (4)

at a control-volume boundary is computed according to the flux-difference-splitting scheme,26

Uh (a · n̂) =
1

2
(UL + UR) (a · n̂)−

1

2
|(a · n̂)| (UR − UL) , (5)

3 of 18

American Institute of Aeronautics and Astronautics



where first and second terms represent the flux average and thedissipation, respectively;UL andUR are the “left”
and “right” solutions linearly reconstructed at the edge midpoint by using solutions and gradients defined at the
nodes connected by the edge. The edge-based flux integrationscheme approximates the integrated flux through the
two faces linked at the edge midpoint byUh (a · n), wheren is the combined-directed-area vector. The integration
scheme is computationally efficient. For exact fluxes, the integration scheme provides third-order accuracy on regu-
lar simplicial grids of type(II), second-order accuracy on regular quadrilateral and general simplicial grids of types
(I), (III), (IIp), and(IIIp), and first-order accuracy on mixed-element and perturbed quadrilateral grids of types
(IV ), (IVp), and(Ip).18, 19, 27 Second-order unweighted least-squares (ULSQ) gradient reconstruction employing a
quadratic fit is used. It was shown that with such gradients, third order discretization accuracy is achieved on sim-
plicial grids.21, 22 The results in the references were obtained with the weighted least-squares gradients, but the third
order accuracy has been confirmed by the authors of this paperfor ULSQ gradients as well. In (infrequent) cases
when the least-squares stencil of the nearest edge-connected neighbors is not sufficient for a quadratic fit, the stencil
is expanded to include neighbors of neighbors. Note that fiveneighbors are typically sufficient for a quadratic fit. On
triangular grids considered in this study, the average number of edge-connected neighbors is six; and the minimum
number of edge-connected neighbors for an interior node on any grid is four.

For viscous Eq. 2, the numerical flux is defined as
(

F
h · n̂

)

≡ (∇rU · n̂) , (6)

where∇rU is the gradient reconstructed at the face of the control volume. Two gradient reconstruction schemes
are considered: (1) The Green-Gauss (GG) scheme15, 28 computes gradients at the primal elements and uses them in
face-gradient computations at control-volume boundaries. The GG scheme is widely used in node-centered codes and
equivalent to a Galerkin finite-element (linear-element) discretization for triangular/tetrahedral grids. (2) The averaged
least-squares (Avg-LSQ) scheme averages the ULSQ gradients at the nodes to compute the face gradient.24, 25 Both
schemes use the edge gradient to augment the face gradient and increase theh-ellipticity29 of the diffusion operator15, 23

and, thus, avoid checkerboard instabilities. The gradientaugmentation is introduced in the face-tangent form.25 Note
that when the edge is normal to the face, the edge gradient is the only contributor to the flux. For the GG scheme,
the augmentation does not affect the face gradient within a triangular element. It has been shown18, 19, 24, 25that the
schemes possess second-order accuracy for viscous fluxes ongeneral mixed-element grids.

IV. Accuracy Measures

The accuracy of FVD schemes is analyzed for known exact or manufactured solutions. The forcing function and
boundary values are found by substituting this solution into the governing equations, including boundary conditions.
The discrete forcing function is defined at the nodes. Boundary conditions are over-specified, i.e., discrete solutionsat
boundary control volumes and, possibly, at their neighborsare specified from the manufactured solution.

IV.A. Discretization error

The main accuracy measure is thediscretization error,Ed, which is defined as the difference between the exact discrete
solution,Uh, of the discretized equations (3) and the exact continuous solution,U , to the corresponding differential
equations,

Ed = U − Uh, (7)

whereU is sampled at mesh nodes.

IV.B. Truncation error

Another accuracy measure commonly used in computations istruncation error. Truncation error,Et, characterizes
the accuracy of approximating the differential equation (2). For finite differences, it is defined as the residual obtained
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after substituting the exact solutionU into the discretized differential equations.30 For FVD schemes, the traditional
truncation error is usually defined from the time-dependentstandpoint.31, 32 In the steady-state limit, it is defined (e.g.,
in [33]) as the residual computed after substitutingU into the normalized discrete equations (3),

Et =
1

V



−

∫

Ω

fh dΩ +

∮

∂Ω

(

F
h · n̂

)

ds



 , (8)

whereV is the measure of the control volume,

V =

∫

Ω

dΩ, (9)

fh is an approximation of the forcing functionf onΩ, and the integrals are computed according to some quadrature
formulas. Truncation and discretization errors are related through the error transport equation34

Lh (Ed) = −Et, (10)

whereLh is the linearization of the discrete governing equations.
It has been long known that convergence of truncation errorsseverely degrades on irregular (low-quality) meshes.

Such degradation, however, does not necessarily imply a less than design order convergence of discretization errors.
Plentiful computational evidence and a solid body of theoryconcerning the effect of supra-convergence indicate that,
on irregular grids, the design-order discretization-error convergence can be achieved even when truncation errors
exhibit a lower-order convergence or, in some cases, do not converge at all.9–11

IV.C. Accuracy of gradient reconstruction

The accuracy of the gradient approximation is also important. The accuracy for an ULSQ gradient is evaluated by
comparing the reconstructed gradient,∇rU , with the exact gradient,∇U , computed at the node. The accuracy of a
GG gradient is evaluated at an element. The reconstructed and exact gradients are compared at the element center
computed as the average of the element vertexes. In accuracyevaluation, the gradient reconstruction uses a sampling
of the exact solutionU at the nodes on a given grid. The error in the gradient reconstruction is measured as

Eg = ‖ǫg‖, (11)

where functionǫg is the amplitude of the gradient error evaluated at a node,

ǫg = |∇rU −∇U |, (12)

and‖ · ‖ is a norm of interest.

V. Class A: Isotropic Grids in Rectangular Geometry

V.A. Grid and solution specifications

Sequences of consistently refined19 grids with 52, 92, 172, 332, 652, 1292, and2572 nodes are generated on the unit
square[0, 1]× [0, 1]. Irregularities are introduced at each grid independently, so the grid metrics remain discontinuous
on all irregular grids. With the random perturbation range limited by a quarter of the local mesh size, the angles of
triangular elements can approach180◦ and the ratio of the neighboring cell volumes can be arbitrarily high.

The exact solutions isU = sin(πx − 2πy), so for the inviscid Eq. 1 witha = (2, 1), the force isf = 0, and
for the viscous Eq. 2,f = −5π2 sin(πx − 2πy). The numerical tests evaluating truncation and discretization errors
are performed with boundary conditions over-specified fromthe manufactured solution for all nodes linked to the
boundary.
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V.B. Gradient reconstruction accuracy

Figure 2 shows the variation of theL1 norm of the gradient error. As expected, the ULSQ gradient reconstruction with
a quadratic fit is second-order accurate on all grids. The GG gradient reconstruction is second order only on perfect
grids of type(I); on all other grids, the GG gradients are first-order accurate. All equivalent-order methods provide
very similar errors. Thus, no mesh quality effects are observed for theL1 norm of the gradient error on isotropic grids.
Although not shown, the observedL∞ norms of the gradient errors converge with the same orders asthe corresponding
L1 norms, but theL∞ norms of GG gradient error on grids of types(IIIp) and (IVp) are an order of magnitude
greater than theL∞ norms of other first-order errors. The latter effect is caused by gradient accuracy deterioration
on triangular elements with obtuse angles approaching180◦. Theoretically, with an infinitesimal probability, the GG
gradient error may become infinitely large at an element witha vanishing volume.
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Figure 2. Accuracy of gradient reconstruction on isotropicgrids. Manufactured solution isU = sin (πx − 2πy).

V.C. Truncation errors

The truncation errors are extremely sensitive to mesh quality. Convergence rates of theL1 norm of truncation errors for
inviscid and viscous fluxes are shown in Figures 3 and 4, respectively. The inviscid errors converge with the third order
only on regular triangular meshes of type(II). On irregular triangular grids of types(III), (IIp), and(IIIp) and on
perfect quadrilateral grid of type(I), the inviscid truncation errors converge with the second order. Irregularities on
grids with quadrilateral elements (types(IV ), (Ip), and(IVp)) lead to the zeroth-order convergence.

Similar sensitivity is observed for the truncation errors of viscous fluxes discretized by the Avg-LSQ scheme with
the second-order accurate ULSQ gradients (Figures 4(a) and4(b)). The second-order convergence is observed only
on perfectly regular grids of types(I) and(II). The convergence deteriorates to the first order on irregular triangular
grids and to the zeroth order on mixed-element and perturbedquadrilateral grids. For the viscous fluxes discretized
with the GG scheme (Figures 4(c) and 4(d)), truncation errors do not converge on any but perfectly regular grids of
types(I) and(II). Note that GG scheme produces identical discretizations ongrids of types(I), (II), and(III).15

Thus, corresponding GG solutions and truncation errors on grids of types(I) and(II) are always identical. Different
results on grids of type(III) are explained by the differences in the dual volumes.
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(b) Mixed and quadrilateral grids

Figure 3. Inviscid truncation errors on isotropic grids. Manufactured solution isU = sin (πx− 2πy).

V.D. Discretization errors

Convergence rates of theL1 norm of discretization errors for inviscid and viscous fluxes are shown in Figures 5 and 6,
respectively. Discretization errors for viscous fluxes show no sensitivity to mesh quality. The errors for both Avg-
LSQ and GG schemes are practically identical to the plottingaccuracy for all grids. The accuracy of inviscid solutions
deteriorates on meshes with quadrilateral elements. This is not a surprise because the inviscid scheme used in this study
is designed to be third order only on simplicial grids.21, 22 The edge-based integration scheme used in this scheme is
known to deteriorate to first order on grids of types(Ip), (IV ), and(IVp).18, 19, 27On triangular grids, the discretization
accuracy of inviscid solutions is not sensitive to mesh quality. If anything, discretization errors are somewhat smaller
on topologically structured grids of types(II) and(IIp).

VI. Class B: Anisotropic Grids in Rectangular Geometry

This section considers FVD schemes on irregular stretched grids generated on rectangular domains. Figure 7
shows an example grid with the maximal aspect ratioA = 1000. A sequence of consistently refined stretched grids is
generated on the rectangle(x, y) ∈ [0, 1]× [0, 0.5] in the following 3 steps.

1. A background regular rectangular grid withN = (Nx + 1)× (Ny + 1) nodes and the horizontal mesh spacing
hx = 1

Nx
is stretched toward the horizontal liney = 0.25. They-coordinates of the horizontal grid lines in the

top half of the domain are defined as

yNy

2
+1

= 0.25; yj = yj−1 + ĥyβ
j−

(

Ny

2
+1

)

, j =
Ny

2
+ 2, . . . , Ny, Ny + 1. (13)

Here ĥy = hx

A
is the minimal mesh spacing between the vertical lines,A = 1000 is a fixed maximal aspect

ratio, andβ is a stretching factor which is found from the conditionyNy+1 = 0.5. The stretching in the bottom
half of the domain is defined analogously.

2. Irregularities are introduced by random shifts of interior nodes in the vertical and horizontal directions. The
vertical shift is defined as∆yj =

3
16ρmin(hj−1

y , hj
y), whereρ is a random number between−1 and1, andhj−1

y

7 of 18

American Institute of Aeronautics and Astronautics



10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

effective meshsize

T
ru

nc
at

io
n 

er
ro

r 
(L

1 −
 n

or
m

)

 

 
(II)
(III)
(II

p
)

(III
p
)

1st ord.

2nd ord.

3rd ord.

(a) Avg-LSQ; triangular grids

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

effective meshsize

T
ru

nc
at

io
n 

er
ro

r 
(L

1 −
 n

or
m

)

 

 
(I)
(IV)
(I

p
)

(IV
p
)

1st ord.

2nd ord.

3rd ord.

(b) Avg-LSQ; mixed and quadrilateral grids
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(c) GG; triangular grids
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(d) GG; mixed and quadrilateral grids

Figure 4. Viscous truncation errors on isotropic grids. Manufactured solution isU = sin (πx− 2πy).

andhj
y are vertical mesh spacings on the background stretched mesharound the grid node. The horizontal shift

is introduced analogously,∆xi = 3
16ρhx. With these random node perturbations, all perturbed quadrilateral

cells are convex.

3. Each perturbed quadrilateral is randomly triangulated with one of the two diagonal choices; each choice occurs
with a probability of one half.

Sequences of consistently refined stretched grids with maximum aspect ratioA = 1000 including 9 × 65, 17 ×
129, 33 × 257, 65 × 513, and129 × 1025 nodes have been considered. The corresponding stretching ratios are
β ≈ 1.207, 1.098, 1.048, 1.025, and1.012. The aspect ratio near the external horizontal boundaries is about2.7.
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Figure 5. Inviscid discretization errors on isotropic grids. Manufactured solution isU = sin (πx − 2πy).
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(b) GG

Figure 6. Viscous discretization errors on isotropic grids. Manufactured solution isU = sin (πx − 2πy).

In the tests on grids of Class (B) performed with either the manufactured solutionsin (πx− 2πy) or extended over-
specification used in tests on grid of Class (A), the asymptotic behavior of the discretizations errors for viscous fluxes
was not observed on coarse grids. The exhibited discretization errors were uncharacteristically low on coarse grids,
but did not converge with the asymptotic order. The manufactured solution has been changed toU = cos (πx− 2πy).
Also only solutions at boundary nodes are over-specified. With these changes, the asymptotic behavior of the dis-
cretizations errors for the GG viscous fluxes is establishedon relatively coarse grids. Note that the force term for
inviscid equations is stillf = 0 for a = (2, 1).
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Figure 7. Stretched grid of type(IIIp) with 9 × 65 nodes.

The convergence plots of truncation errors are not shown fortests of Class (B). The qualitative behavior (orders
of convergence) of truncation errors is the same as on isotropic grids, shown in Figures 3 and 4 The magnitude of the
errors is increased by three orders of magnitude, proportional to the aspect ratioA = 1000.

VI.A. Gradient reconstruction accuracy
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Figure 8. Accuracy of gradient reconstruction on stretchedgrids with maximum aspect ratio A = 1000. Manufactured solution isU = cos (πx − 2πy).

A recent study20 assessed the accuracy of gradient approximations on various irregular grids with high aspect
ratio A = hx

hy
≫ 1. The study indicates that for rectangular geometries and functions predominantly varying in
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the direction of small mesh spacing (y-direction here), gradient reconstruction is accurate, providing small relative
error converging with at least first order in consistent refinement on grids of all types. For manufactured solutions
significantly varying in the direction of larger mesh spacing (x-direction), the gradient reconstruction may produce
extremely largeO(Ahp

x) relative errors affecting the accuracy of they-directional gradient component. Here,p is the
formal gradient reconstruction order;p = 1 for the GG scheme andp = 2 for the ULSQ scheme with a quadratic fit.

A summary of the results concerned with gradient accuracy onanisotropic grids is presented in Table 1. For
reference, the data concerning the ULSQ method with a linearfit are also shown. The gradient is accurately recon-
structed on all unperturbed grids by the the GG scheme at element. All considered gradient reconstruction methods
may generate large relative errors on perturbed grids of types(Ip)− (IVp).

Table 1. Relative error of gradient reconstruction on anisotropic grids for solutions with significant variation in the x-direction of larger mesh spacing.

Grid Types (I) (II) (III) (IV ) (Ip)− (IVp)

ULSQ-linear fit at node O(h2
x) O(h2

x) O(Ahx) O(Ahx) O(Ahx)

ULSQ-quadratic fit at node O(h2
x) O(h2

x) O(Ah2
x) O(Ah2

x) O(Ah2
x)

GG at element O(h2
x) O(hx) O(hx) O(hx) O(Ahx)

The convergence ofL∞ norm of gradient errors is shown in Figure 8. TheL∞ norm is used to highlight the
worst gradients observed in high-aspect ratio regions of the stretched grids of Class (B). All ULSQ gradients converge
with second order, but the magnitude of the gradient errors is sensitive to grid quality. As shown in Table 1, with any
deviation from the regularity of grids of types(I) and(II), the ULSQ gradient error becomes proportional to aspect
ratio. The GG gradients converge with the first order on all grids beside the grids of type(I), where the second-order
convergence is observed. In spite of the lower order convergence, the GG gradients show a clear advantage over the
ULSQ gradients on coarse unperturbed grids of types(I) − (IV ). The GG scheme on such grids provides gradient
accuracy independent of aspect ratio. On perturbed grids oftypes(Ip)− (IVp), the GG errors are also proportional to
the aspect ratio, and ULSQ gradients are preferable.

VI.B. Discretization errors

The convergence of theL1 norm of discretizations errors for inviscid fluxes is shown in Figure 9. The convergence
characteristics are similar to those exhibited on isotropic grids of Class (A). Third-order convergence insensitive to
grid irregularities is observed on all triangular grids of types(II), (III), (IIp), and(IIp). Convergence on grids of
type(I) is second order, but any irregularity on mixed and quadrilateral meshes degrades the convergence to the first
order.

The convergence of theL1 norm of discretization errors for viscous fluxes is shown in Figure 10. All discretization
errors converge with the second order. While second-order convergence of the Avg-LSQ scheme is not apparent in
Figure 10(a) on triangular and mixed-element grids, the second-order slope has been attained on finer grids. For
reference, convergence of the errors obtained with a linearfit on grids of type(II) is also shown. The Avg-LSQ errors
are relatively small only on pure quadrilateral grids of types(I) and(Ip). The magnitude of errors obtained with a
quadratic fit is much smaller than the magnitude of errors obtained with a linear fit. However, discretization errors
of the GG scheme are significantly better than any the Avg-LSQerrors. The GG errors are clearly divided into two
groups. The errors on unperturbed grids of types(I) − (IV ) are small on all grids; the errors on perturbed grids are
roughly two orders of magnitude higher for any given number of degrees of freedom. The ratio is about the same as
the ratio between gradient errors shown in Figure 8(b).

11 of 18

American Institute of Aeronautics and Astronautics



10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

effective meshsize

D
is

cr
et

iz
at

io
n 

er
ro

r 
(L

1 −
 n

or
m

)

 

 
(II)
(III)
(II

p
)

(III
p
)

1st ord.

2nd ord.

3rd ord.

(a) Triangular meshes

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

effective meshsize

D
is

cr
et

iz
at

io
n 

er
ro

r 
(L

1 −
 n

or
m

)

 

 
(I)
(IV)
(I

p
)

(IV
p
)

1st ord.

2nd ord.

3rd ord.

(b) Mixed and quadrilateral meshes

Figure 9. Inviscid discretization errors on anisotropic stretched grids with maximum aspect ratioA = 1000. Manufactured solution isU = cos (πx − 2πy).
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Figure 10. Viscous discretization errors on anisotropic stretched grids with maximum aspect ratio A = 1000. Manufactured solution is U =
cos (πx − 2πy).

VII. Class C: Grids with Curvature and High Aspect Ratio

VII.A. Grid and solution specification

In this section, we discuss FVD schemes on grids with curvature and high aspect ratio. The grid nodes are generated
from a cylindrical mapping, where(r, θ) denote polar coordinates with spacings ofhr andhθ, respectively. The grid
aspect ratio is defined as the ratio of mesh sizes in the circumferential and the radial directions,A = Rhθ/hr, where
R is the radius of curvature.
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A measure of the curvature-induced mesh deformation isΓ defined as:

Γ =
R (1− cos(hθ))

hr

≈
Rh2

θ

2hr

= A
hθ

2
. (14)

The following assumptions are made about the range of parameters:R ≈ 1, A ≫ 1, andΓhr ≪ 1, which implies that
bothhr andhθ are small. For a given value ofA, the parameterΓ may vary:Γ ≪ 1 indicates meshes that are locally
(almost) non-deformed. As a practical matter, grids withΓ < 0.2 can be considered as nominally non-curved. In a
mesh refinement that keepsA fixed,Γ = O(Ahθ) asymptotes to zero. This property implies that on fine enoughgrids
with fixed curvature and aspect ratio, the error convergenceis expected to be the same as on similar grids generated
on rectangular domains with no curvature.

Four basic types of 2-D grids are studied in the cylindrical geometry. Unlike the computational grids used in the
rectangular geometry, random node perturbation is not applied to high-Γ grids because even small perturbations in the
circumferential direction may lead to non-physical control volumes.

The manufactured solution considered in this section isU = sin(5πr). The convection direction is changed to a
variable tangential directiona = ( y

r2
,− x

r2
), so the inviscid force term remains zero. Solutions at boundary nodes are

over-specified.

VII.B. Gradient reconstruction accuracy

Table 2. Relative errors of gradient reconstruction for manufactured solutions varying only in the radial direction on grids corresponding to1 ≤ Γ ≤ 50.

Grid Types (I) (II) (III) (IV )

ULSQ-linear fit O(1) O(1) O(1) O(1)

ULSQ-quadratic fit O(hθ) O(hθ) O(hθ) O(hθ)

GG O(h2
θ) O(hθ) O(hθ) O(hθ)

Our main interest is solutions varying predominantly in theradial direction on grids withΓ ≫ 1 corresponding
to meshes with large curvature-induced deformation. Computations and analysis reported earlier17, 35, 36concluded
that the ULSQ gradient approximation with a linear fit is zeroth-order accurate for such solutions. The use of the
ULSQ method with a quadratic fit dramatically improves gradient accuracy on high-Γ grids leading to a first-order
convergence of gradient errors on grids with1 ≤ Γ ≤ 50. The errors of gradient reconstruction for a radial solution
are summarized in Table 2. The ULSQ gradient errors do not show order properties on high-Γ grids. This is in contrast
to the convergence on low-Γ grids shown in Table 1. The magnitudes of the relative errorsfor the GG scheme and for
the ULSQ scheme with a quadratic fit are much smaller than the magnitude for the ULSQ scheme with a linear fit.

The computational tests are performed with the methodologyof downscaling.19, 20 on a sequence of narrow arc-
shaped domains with the angular extent ofπ

9L radians and the radial extent of1 ≤ r ≤ 1 + π
9LA

−1. The scaleL
changes asL = 2−n, n = 0, . . . , 8. On each domain, a17 × 17 grid is generated with nodes uniform spaced in the
polar coordinates. Figure 11 shows convergence of theL∞ norms of gradient errors computed for the manufactured
solutionU = sin(5πr) on grids with aspect ratiosA = 100 andA = 1000. The errors are shown versus the grid
deformation parameter,Γ, defined in Eq. 14. Figures 11(a) and 11(b) show convergence of ULSQ gradient errors
computed with quadratic and linear fits on grids of types(I) − (IV ). Figures 11(c) and 11(d) show convergence of
GG gradient errors. As known from previous studies,15–17, 35, 36the errors of GG gradients are small and show the
order property on all grids. The ULSQ gradients computed with a linear fit lose accuracy on high-Γ grids. The ULSQ
gradients computed with a quadratic fit do not recover the order property on high-Γ grids, but show the smallest
error magnitudes on grids of types(II), (III), and(IV ). The GG gradients show the smallest errors on regular
quadrilateral grids of type(I).
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Figure 11. Accuracy of gradient reconstruction on high-Γ grids. Manufactured solution isU = sin (5πr).

VII.C. Discretization Errors

Computational grids used in the grid-refinement study of discretization errors are radially stretched grids with a radial
extent of1 ≤ r ≤ 1.2 and an angular extent of20◦. Fixed maximal aspect ratios are used. The maximal aspect
ratio isA ≈ 1000 for viscous computations. The grids have four times more cells in the radial direction than in the
circumferential direction. The maximum value ofΓ changes approximately asΓ ≈ 22, 11, 5.5, . . . . The corresponding
grid stretching ratios change asβ = 1.25, 1.11, 1.06, . . . . Representative grids of types(III) and(IV ) are shown in
Figure 12.

The third-order inviscid scheme produces highly accurate solutions, so local errors become very small on relatively
coarse highly stretched grids and convergence is obscured by round-off errors interfering with the solutions. A reduced
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Figure 12. Representative9 × 33 irregular stretched high-Γ grids.

maximal aspect ratio ofA ≈ 100 has been chosen for inviscid computations.
Convergence of theL1 norm of discretization errors is shown in Figures 13 and 14 for inviscid and viscous fluxes,

respectively. Excellent second-order convergence is observed for both viscous schemes on all grids. The inviscid
errors converge with (almost) fourth order on grids of type(I), with third order on grids of types(II) and(III), and
with first order on grids of type(IV ). The unusually high order of convergence on grids of type(I) is explained by
the fact that, for a manufactured solution varying in the radial direction only, the inviscid scheme on grids of type(I)
turns into a fourth-order pure one-dimensional scheme. Anysolution variation in the circumferential direction brings
the expected second-order convergence on grids of type(I). Note that, because of asymmetric gradient-reconstruction
stencil, the scheme does not become one-dimensional on grids of types(II) and(III), and, thus, its (third) order of
convergence on these grids is independent of solution variation.

VIII. Conclusions

The effects of mesh irregularities on accuracy of unstructured node-centered finite-volume discretizations have
been considered for edge-based schemes that use unweightedleast-squares gradient reconstruction with a quadratic
fit. The inviscid scheme is nominally third-order accurate on general triangular meshes.21, 22 The viscous scheme is a
nominally second-order accurate discretization that usesan average-least-squares method with a face-tangent augmen-
tation24, 25for viscous fluxes. The results have been contrasted with a common Green-Gauss discretization scheme and
previous studies for the unweighted least-squares gradient reconstruction with a linear fit. Gradient errors, truncation
errors, and discretization errors have been separately studied according to a previously introduced methodology.15, 16

The methodology considers three classes of grids: Class (A)includes isotropic grids in a rectangular geome-
try. Class (B) includes anisotropic grids representative of adaptive-grid simulations. Class (C) includes anisotropic
advancing-layer grids representative of high-Reynolds number turbulent flow simulations over a curved body. Regu-
lar and irregular grids have been considered, including mixed-element grids and grids with random perturbations of
nodes. Grid perturbations and stretching have been introduced independently of solution variation to bring out the
worst possible behavior.

Gradient errors are largely insensitive to mesh irregularities on isotropic grids of Class (A). The gradient accuracy
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Figure 13. Inviscid discretization errors on high-Γ stretched grids with maximum aspect ratioA = 100. Manufactured solution isU = sin (5πr).
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Figure 14. Viscous discretization errors on high-Γ stretched grids with maximum aspect ratioA = 1000. Manufactured solution isU = sin (5πr).

deteriorates with high aspect ratio in combination with node perturbation. On grids of class (B), the gradient errors
converge with at least first order for the Green-Gauss and theleast-squares scheme with a linear fit and with second
order for the least-squares scheme with a quadratic fit. The least-squares gradient errors become proportional to the
aspect ratio on all irregular grids. On grids with node perturbation, all gradient errors are proportional to the aspect
ratio. On class (C) grids characterized by a high deformation parameterΓ, the Green-Gauss gradient errors converge
with at least first order and are small on all grids. The least-squares gradient errors for radial solutions show no order
properties; the magnitude of the errors with a quadratic fit is inversely proportional to the square of the aspect ratio,
which is superior to theO(1) magnitude observed with a linear fit. Although not considered here, the approximate-
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mapping approach to gradient reconstruction15, 16 can recover the second-order convergence of gradient errors on
high-Γ grids of Class (C).

As observed previously8–11, 19and confirmed here, lack of mesh regularity strongly affectstruncation errors, which
converge with lower-than-design order on all irregular meshes. Viscous truncation errors do not converge at all on
perturbed grids.

Inviscid discretization errors are practically insensitive to mesh irregularity on triangular grids, demonstratingthe
third-order convergence and small variation of the error magnitudes. Discretization accuracy is more sensitive to mesh
irregularity on grids with quadrilateral elements. On those grids, the results observed with the least-squares method
with a quadratic fit show no advantage over previous results obtained with a linear fit,16, 19 both showing first-order
convergence on mixed and perturbed quadrilateral grids.

In all cases, the viscous discretization errors asymptotically converge with second order. Similar to the gradient
accuracy, the magnitude of discretization errors of viscous solutions is insensitive to grid irregularities on grids of
class (A), but may be sensitive on grids of classes (B) and (C). On such grids, the Green-Gauss method is the most
accurate, although, the errors on the grids with node perturbation are still significantly larger than errors on grids with
unperturbed nodes. Asymptotically, the difference is proportional to the aspect ratio. Accuracy of the average-least-
squares methods deteriorates on irregular high-aspect-ratio grids, although the deterioration is less with a quadratic fit
than with a linear fit.

The following recommendations are offered: (1) The unweighted least-squares method with a quadratic fit is
highly recommended as a robust way to compute accurate gradients on all grids. (2) The edge-based scheme based
on the unweighted least-squares method with a quadratic fit is recommended for inviscid fluxes. It produces accurate
solutions and is insensitive to deterioration of mesh quality on triangular grids. (3) The Green-Gauss scheme is
recommended for viscous fluxes. On isotropic and advanced-layer grids of classes (A) and (C), both Green-Gauss and
averaged-least-squares methods produce uniformly second-order solutions and are insensitive to mesh irregularities.
On grids of class (B), there is a sensitivity to grid irregularities; the Green-Gauss solutions are less sensitive than
averaged-least-squares solutions.

The overall conclusion is that relations between mesh characteristics and solution accuracy are complicated. The
mesh irregularities affect gradient, truncation, and discretization errors in dramatically different ways. The resolution
is expected in the form of adjoint-based grid adaptation that directly and rigorously connects the local mesh properties
with the desired solution outcome.
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