Effects of mesh irregulaties on accuracy of finite-volume
discretization schemes

Boris Diskin James L. Thomas

The effects of mesh irregularities on accuracy of unstructted node-centered finite-volume discretizations are
considered. The focus is on an edge-based approach that usesveighted least-squares gradient reconstruction
with a quadratic fit. For inviscid fluxes, the discretization is nominally third order accurate on general trian-
gular meshes. For viscous fluxes, the scheme is an averagasiesquares formulation that is nominally second-
order accurate and contrasted with a common Green-Gauss disetization scheme. Gradient errors, truncation
errors, and discretization errors are separately studied acording to a previously introduced comprehensive
methodology. The methodology considers three classes ofidg: isotropic grids in a rectangular geometry,
anisotropic grids typical of adapted grids, and anisotropt grids over a curved surface typical of advancing-
layer grids. The meshes within the classes range from reguldo extremely irregular including meshes with
random perturbation of nodes. Recommendations are made caerning the discretization schemes that are
expected to be least sensitive to mesh irregularities in afipations to turbulent flows in complex geometries.

[. Introduction

Traditional mesh-quality metrics tend to assess meshédmutitaking into account the type of equations being
solved, solutions, or the desired computational outpute frtost widely-used mesh quality metrics are geometric
in nature, considering shape, size, angles, aspect raBaness, Jacobian, etc., of the mesh elements. Additional
considerations include variations between mesh elem&nth,as cell-to-cell and face-to-face ratios, line smoaskn
etc. Some schools of thought argue that an accurate andeeffeplution can be obtained only on “pretty” meshes
similar to either structured Cartesian meshes or to mesirapased from identical perfect elements (perfect triamigle
tetrahedrals, etc.) Thisidea is in direct contradictiotmtiie common Computational Fluid Dynamics (CFD) practice,
in which accurate solutions are computed on practical neetat would be characterized as unacceptable by most
geometric mesh quality metrics. Moreover, the most powethte-of-art method for improving solution accuracy,
output-based mesh adaptatibrends to produce “ugly” meshes, but provides vast improvemef the accuracy-
per-degree-of-freedom ratfo.lt is widely recognized today that mesh quality indicatdnswdd involve sufficient
information about the solutioft® In fact, it is envisioned that the connection should go eveepér and involve
modern error-estimation techniques that take into accthenspecifics of the discretization method in use and the
desired computational output.

Historically, mesh quality analyses were first performedffoite-difference and finite-element methods. It is
not straightforward to translate those approaches to fimiteme discretizations (FVD) that represent the statetof a
in CFD computations. While there is no doubt that certainhmgigaracteristics critically affect accuracy of CFD
solutions and gradients, the precise nature of this infla¢wbat affects what) is far from clear.

For finite-difference approaches most of the mesh qualityhous try to establish connections between mesh and
truncation errof:” The truncation error analysis is often applied to FVD scheasewelf However, it has been long
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known, that truncation errors of FVD schemes on unstrudtgrigls are not reliable estimators of discretization exror
The supra-convergencef discretization errors observed and studied for at le@stears indicates that design-order
accurate FVD solutions can be computed on unstructured giidn when truncation errors exhibit a lower-order
convergence or, in some cases, do not converge &ttall.

The theory and applications of mesh quality assessmentselt@eveloped and widely used within the finite-
element community. While initial groundbreaking work feed on pure geometrical mesh-quality metrics, such
as large angle¥; '3 the later developments take solution into accddnThe standard finite-element estimates use
Sobolev norms that simultaneously estimate errors in theiso and its derivatives. These estimates might be too
conservative because recent finite-volume computatiatisadte that accurate solutions can be obtained in spite of
formally poor accuracy of gradients:*’

Previously, the effects of mesh irregularities on accuaynstructured finite-volume discretizations were eval-
uated for various common node-centered and cell-centeteehsed> 161820 The focus here is on an edge-based
node-centered approach that uses unweighted least-scgraidient reconstruction with a quadratic fit. For inviscid
fluxes, the discretization is nominally third order accaranh general triangular mesh@s?? For viscous fluxes, the
scheme is an average-least-squares formulation that isasted with a common Green-Gauss discretization scheme.
These schemes can be formulated as edge-based schemesmai giemplicial grids’® The inviscid and averaged-
least-squares viscous discretizations can be formulaedige-based on arbitrary grids, including grids used in ag-
glomeration multigrict4 25

Gradient errors, truncation errors, and discretizatioarsrare separately studied according to a previously-intro
duced comprehensive methodold§y-° A linear convection equation,

(a-V)U =, (1)
with a velocity vectora, serves as a model for inviscid fluxes. Poisson’s equation
AU = f, (2)

subject to Dirichlet boundary conditions serves as a mamtelitcous fluxes. The method of manufactured solutions
is used, so the exact solutions and forcing functighsare known. Solutions are chosen to be smooth on all grids
considered, i.e., no accuracy degradation occurs becéadaak of solution smoothness.

The paper is organized as following. First, grids, FVD scheprand accuracy measures are briefly described.
Then, numerical studies of the FVD accuracy measures aogtegbfor grids of three classes representing isotropic,
adapted, and turbulent-flow grids. Conclusions and recamdiat®ons are offered at the end.

Il. Grids

Computational studies are conducted on two-dimensiofidd ganging from structured (regular) grids to irregular
grids composed of arbitrary mixtures of triangles and qilagrals. Highly irregular (bad quality) grids are delibe
ately constructed through random perturbations of strectgrids. Three classes of grids are considered. Class (A)
involves isotropic grids in a rectangular geometry. Cldsifvolves highly anisotropic grids, typical of those en-
countered in grid adaptation. Class (C) involves advantangr grids varying strongly anisotropically over a cuive
body, typical of those encountered in high-Reynolds nurimbulent flow simulations.

Four basic grid types are considerdd) regular quadrilateral(i.e., mapped Cartesian) grid&iI) regular tri-
angular gridsderived from the regular quadrilateral grids by the samegatial splitting of each quadrilaterdlf 17)
random triangular gridsin which regular quadrilaterals are split by randomly @odiagonals, each diagonal orien-
tation occurring with a probability of half; and'V') random mixed-element grids which regular quadrilaterals are
randomly split or not split by diagonals; the splitting padiility is half; in case of splitting, each diagonal origida
is chosen with probability of half. Nodes of any basic-type gan be perturbed from their initial positions by random
shifts, thus leading to four additionpérturbedgrid types which are designated by the subsgrigs(Z,)-(IV},). The
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random node perturbation in each dimension is typicallyrm@fias%ph, wherep € [—1, 1] is a random number and
h is the local mesh size along the given dimension. The reptatee grids of Class (A) are shown in Figure 1.

(a) Type(I): regular quadri- (b) Type(II): regular trian- (c) Type(III): random tri- (d) Type (IV): random
lateral grid. gular grid. angular grid. mixed grid.
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(e) Type (Ip): perturbed (f) Type (11p): perturbed (9) Type(I1Ip): perturbed (h) Type (IVjp): perturbed
quadrilateral grid. triangular grid. random triangular grid. random mixed grid.

Figure 1. Typical regular and irregular grids.

lll. Finite-Volume Discretization Schemes

The FVD schemes are derived from the integral form of a coasien law

jé(F-ﬁ) ds:/fdQ, ©)
Q

o0
wheref) is a control volume with boundagf?, ii is the outward unit normal vector, add is the area differential. The
general FVD approach requires partitioning the domainarget of non-overlapping control volumes and numerically
implementing equation (3) over each control volume.

Node-centered discretization schemes are consideredhizhwgolutions are defined at the primal mesh nodes.
The control volumes are constructed around the mesh nodémbygedian-dual partition: the centers of primal cells
are connected with the midpoints of the surrounding facé®s& non-overlapping control volumes cover the entire
computational domain and compose a mesh that is dual to ithh@lpnesh. The node-centered discretization schemes
employ the same degrees of freedom on grids of all types; #ugsiracy is not influenced by a variation in degrees of
freedom.

For inviscid Eqg. 1, the numerical flux,

(F" - 8) =U"(a-0), @)
at a control-volume boundary is computed according to theditference-splitting schem?®,
1 1
Uh(a~ﬁ):§(UL+UR)(a~ﬁ)—§(a-ﬁ)|(UR—UL), (5)
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where first and second terms represent the flux average amtisgipation, respectivelyy;, andUpr are the “left
and “right” solutions linearly reconstructed at the edgelpoint by using solutions and gradients defined at the
nodes connected by the edge. The edge-based flux integsati@me approximates the integrated flux through the
two faces linked at the edge midpoint By (a - n), wheren is the combined-directed-area vector. The integration
scheme is computationally efficient. For exact fluxes, thegration scheme provides third-order accuracy on regu-
lar simplicial grids of typg 1), second-order accuracy on regular quadrilateral and gesienplicial grids of types
(I),(III),(I1,), and(III,), and first-order accuracy on mixed-element and perturbedrijateral grids of types
(IV),(1V,), and(1,).181927 Second-order unweighted least-squares (ULSQ) gradienhstruction employing a
guadratic fit is used. It was shown that with such gradiehisd torder discretization accuracy is achieved on sim-
plicial grids2%22 The results in the references were obtained with the weibletst-squares gradients, but the third
order accuracy has been confirmed by the authors of this gap&i_SQ gradients as well. In (infrequent) cases
when the least-squares stencil of the nearest edge-cauheeighbors is not sufficient for a quadratic fit, the stencil
is expanded to include neighbors of neighbors. Note thati@ghbors are typically sufficient for a quadratic fit. On
triangular grids considered in this study, the average rarrobedge-connected neighbors is six; and the minimum
number of edge-connected neighbors for an interior nodengigad is four.

For viscous Eq. 2, the numerical flux is defined as

(F® - 4) = (V'U - a), (6)

whereV*U is the gradient reconstructed at the face of the controlnaelu Two gradient reconstruction schemes
are considered: (1) The Green-Gauss (GG) schefieomputes gradients at the primal elements and uses them in
face-gradient computations at control-volume boundaifiee GG scheme is widely used in node-centered codes and
equivalentto a Galerkin finite-element (linear-elemeidgkbtization for triangular/tetrahedral grids. (2) Themaged
least-squares (Avg-LSQ) scheme averages the ULSQ gradietite nodes to compute the face gradtémb. Both
schemes use the edge gradient to augment the face gradiéntegase thé-ellipticity?® of the diffusion operatdp: 23

and, thus, avoid checkerboard instabilities. The gradiegmentation is introduced in the face-tangent féPrilote

that when the edge is normal to the face, the edge gradieheisrily contributor to the flux. For the GG scheme,
the augmentation does not affect the face gradient withimaagular element. It has been shd#h® 24 ?5that the
schemes possess second-order accuracy for viscous flugemeral mixed-element grids.

IV. Accuracy Measures

The accuracy of FVD schemes is analyzed for known exact oufaatured solutions. The forcing function and
boundary values are found by substituting this solutioa the governing equations, including boundary conditions.
The discrete forcing function is defined at the nodes. Bogncanditions are over-specified, i.e., discrete solutamns
boundary control volumes and, possibly, at their neighbogsspecified from the manufactured solution.

IV.A. Discretization error

The main accuracy measure is thiscretization erroy F;, which is defined as the difference between the exact descret
solution,U", of the discretized equations (3) and the exact continuolugisn, U, to the corresponding differential
equations,

E;,=U-U", 7

whereU is sampled at mesh nodes.

IV.B. Truncation error

Another accuracy measure commonly used in computatiomgrisation error Truncation errorE;, characterizes
the accuracy of approximating the differential equation Ebr finite differences, it is defined as the residual oledin
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after substituting the exact solutiéhinto the discretized differential equatioffsFor FVD schemes, the traditional
truncation error is usually defined from the time-dependtntdpoinf!: 32 In the steady-state limit, it is defined (e.g.,
in [33]) as the residual computed after substitutingnto the normalized discrete equations (3),

1
E =+ —/fthJr?{(Fh-ﬁ)ds , (8)
Q o0
whereV is the measure of the control volume,

V= Q/cm, 9)

f is an approximation of the forcing functighon €2, and the integrals are computed according to some quadratur
formulas. Truncation and discretization errors are rel#teough the error transport equatién

Ly (Ey) = —FE4, (10)

wherelL, is the linearization of the discrete governing equations.

It has been long known that convergence of truncation es@rsrely degrades on irregular (low-quality) meshes.
Such degradation, however, does not necessarily implysates design order convergence of discretization errors.
Plentiful computational evidence and a solid body of thezmycerning the effect of supra-convergence indicate that,
on irregular grids, the design-order discretization-emonvergence can be achieved even when truncation errors
exhibit a lower-order convergence or, in some cases, doamerge at alf !

IV.C. Accuracy of gradient reconstruction

The accuracy of the gradient approximation is also impartahe accuracy for an ULSQ gradient is evaluated by
comparing the reconstructed gradievit,U, with the exact gradienly U, computed at the node. The accuracy of a
GG gradient is evaluated at an element. The reconstructt@xact gradients are compared at the element center
computed as the average of the element vertexes. In acoevalnation, the gradient reconstruction uses a sampling
of the exact solutiof/ at the nodes on a given grid. The error in the gradient reooctsin is measured as

Eg = llegll; (11)
where functior, is the amplitude of the gradient error evaluated at a node,
€, = VU - VU], (12)

and|| - || is a norm of interest.

V. Class A: Isotropic Grids in Rectangular Geometry

V.A. Grid and solution specifications

Sequences of consistently refifggrids with 52,92, 172,332, 652, 1292, and2572 nodes are generated on the unit
squard0, 1] x [0, 1]. Irregularities are introduced at each grid independesdiyhe grid metrics remain discontinuous
on all irregular grids. With the random perturbation ranigéted by a quarter of the local mesh size, the angles of
triangular elements can approakdt° and the ratio of the neighboring cell volumes can be arlilgraigh.

The exact solutions I8 = sin(rz — 27y), so for the inviscid Eq. 1 witta = (2, 1), the force isf = 0, and
for the viscous Eq. 2f = —57?sin(rz — 2my). The numerical tests evaluating truncation and discrétizarrors
are performed with boundary conditions over-specified ftbm manufactured solution for all nodes linked to the
boundary.
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V.B. Gradient reconstruction accuracy

Figure 2 shows the variation of tHa norm of the gradient error. As expected, the ULSQ gradiesamstruction with

a quadratic fit is second-order accurate on all grids. The @@ignt reconstruction is second order only on perfect
grids of type(I); on all other grids, the GG gradients are first-order aceuratl equivalent-order methods provide
very similar errors. Thus, no mesh quality effects are olesibfor theL; norm of the gradient error on isotropic grids.
Although not shown, the observéd, norms of the gradient errors converge with the same ordenearresponding
L, norms, but theL, norms of GG gradient error on grids of type&lI,,) and (IV,) are an order of magnitude
greater than thé.., norms of other first-order errors. The latter effect is cdusg gradient accuracy deterioration
on triangular elements with obtuse angles approach#d§. Theoretically, with an infinitesimal probability, the GG
gradient error may become infinitely large at an element wianishing volume.

-0

(n

" (@)
:§: o | ol
—A-() 0
a)

Gradient error (L1 - norm)
Gradient error (L1 - norm)

. . .
10" 10™ 10° 10° 10" 10°
effective meshsize effective meshsize

(a) ULSQ-quadratic fit at node (b) GG at element

Figure 2. Accuracy of gradient reconstruction on isotropicgrids. Manufactured solution isU = sin (rz — 27y).

V.C. Truncation errors

The truncation errors are extremely sensitive to meshiyu&@lonvergence rates of tg norm of truncation errors for
inviscid and viscous fluxes are shown in Figures 3 and 4, otispdy. The inviscid errors converge with the third order
only on regular triangular meshes of ty@d). On irregular triangular grids of typé$II), (I1,), and(I11,) and on
perfect quadrilateral grid of typ@), the inviscid truncation errors converge with the secorttborlrregularities on
grids with quadrilateral elements (types/), (I,), and(IV},)) lead to the zeroth-order convergence.

Similar sensitivity is observed for the truncation errofgiscous fluxes discretized by the Avg-LSQ scheme with
the second-order accurate ULSQ gradients (Figures 4(af@d)il The second-order convergence is observed only
on perfectly regular grids of typ€g) and(17). The convergence deteriorates to the first order on irregugagular
grids and to the zeroth order on mixed-element and pertugbedrilateral grids. For the viscous fluxes discretized
with the GG scheme (Figures 4(c) and 4(d)), truncation srdar not converge on any but perfectly regular grids of
types(I) and(II). Note that GG scheme produces identical discretizatiorgridis of types(1), (I1), and(I11).%®
Thus, corresponding GG solutions and truncation errorgiols of types(/) and(/I) are always identical. Different
results on grids of typ€/I7) are explained by the differences in the dual volumes.
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Figure 3. Inviscid truncation errors on isotropic grids. Manufactured solution isU = sin (1 — 27y).

V.D. Discretization errors

Convergence rates of tg norm of discretization errors for inviscid and viscous flsieee shown in Figures 5 and 6,
respectively. Discretization errors for viscous fluxesveimo sensitivity to mesh quality. The errors for both Avg-
LSQ and GG schemes are practically identical to the plotizguracy for all grids. The accuracy of inviscid solutions
deteriorates on meshes with quadrilateral elements. $higtia surprise because the inviscid scheme used in this stud
is designed to be third order only on simplicial grids’?> The edge-based integration scheme used in this scheme is
known to deteriorate to first order on grids of tygés), (IV'), and(1V},).18:19270On triangular grids, the discretization
accuracy of inviscid solutions is not sensitive to mesh idf anything, discretization errors are somewhat sevall

on topologically structured grids of typés!) and(I1,).

VI. Class B: Anisotropic Grids in Rectangular Geometry

This section considers FVD schemes on irregular stretchield generated on rectangular domains. Figure 7
shows an example grid with the maximal aspect ratie- 1000. A sequence of consistently refined stretched grids is
generated on the rectandle y) € [0, 1] x [0, 0.5] in the following 3 steps.

1. A background regular rectangular grid with= (N, + 1) x (N, + 1) nodes and the horizontal mesh spacing
he = N% is stretched toward the horizontal lige= 0.25. They-coordinates of the horizontal grid lines in the
top half of the domain are defined as

~ (N N,
Yy, =025 yj:yj,1+hyﬂ-7(2“), j:7y+2,...,Ny,Ny+1. (13)

Heref{y = %z is the minimal mesh spacing between the vertical linds= 1000 is a fixed maximal aspect
ratio, and3 is a stretching factor which is found from the conditig®i, 1 = 0.5. The stretching in the bottom
half of the domain is defined analogously.

2. Irregularities are introduced by random shifts of irdemodes in the vertical and horizontal directions. The
vertical shift is defined ady; = % pmin(h~!, hi), wherep is a random number between and1, andh/
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Figure 4. Viscous truncation errors on isotropic grids. Marufactured solution isU = sin (rz — 27y).

andhg are vertical mesh spacings on the background stretched aneshd the grid node. The horizontal shift
is introduced analogousiy\z; = %phz. With these random node perturbations, all perturbed diasehal

cells are convex.

3. Each perturbed quadrilateral is randomly triangulatél ane of the two diagonal choices; each choice occurs

with a probability of one half.

Sequences of consistently refined stretched grids with mmaxi aspect ratiod = 1000 including9 x 65,17 x
129,33 x 257, 65 x 513, and 129 x 1025 nodes have been considered. The corresponding stretcitiog are
8=~ 1.207,1.098,1.048,1.025, and1.012. The aspect ratio near the external horizontal boundaziasou®.7.
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Figure 5. Inviscid discretization errors on isotropic grids. Manufactured solution isU = sin (rz — 27y).
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Figure 6. Viscous discretization errors on isotropic grids Manufactured solution isU = sin (7rz — 27y).

In the tests on grids of Class (B) performed with either thaeunfiactured solutiosin (7x — 27y) or extended over-
specification used in tests on grid of Class (A), the asynipb&havior of the discretizations errors for viscous fluxes
was not observed on coarse grids. The exhibited discrietizatrors were uncharacteristically low on coarse grids,
but did not converge with the asymptotic order. The manufact solution has been changedie= cos (rx — 27y).
Also only solutions at boundary nodes are over-specifiedth Wiese changes, the asymptotic behavior of the dis-
cretizations errors for the GG viscous fluxes is establistredelatively coarse grids. Note that the force term for
inviscid equations is stilf = 0 fora = (2,1).

90f 18

American Institute of Aeronautics and Astronautics



Figure 7. Stretched grid of type (111,) with 9 x 65 nodes.

The convergence plots of truncation errors are not showtegis of Class (B). The qualitative behavior (orders
of convergence) of truncation errors is the same as on giotgyids, shown in Figures 3 and 4 The magnitude of the
errors is increased by three orders of magnitude, prop@tio the aspect ratid = 1000.

VI.A. Gradient reconstruction accuracy
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Figure 8. Accuracy of gradient reconstruction on stretchedgrids with maximum aspect ratio A = 1000. Manufactured solution isU = cos (rz — 27y).

A recent stud§® assessed the accuracy of gradient approximations on eairi@gular grids with high aspect
ratio A = % > 1. The study indicates that for rectangular geometries andtions predominantly varying in
Y
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the direction of small mesh spacing-direction here), gradient reconstruction is accurateyiging small relative
error converging with at least first order in consistent esfient on grids of all types. For manufactured solutions
significantly varying in the direction of larger mesh spac{m-direction), the gradient reconstruction may produce
extremely largeD (ARP) relative errors affecting the accuracy of thelirectional gradient component. Hegeis the
formal gradient reconstruction order= 1 for the GG scheme and= 2 for the ULSQ scheme with a quadratic fit.

A summary of the results concerned with gradient accuracgrisotropic grids is presented in Table 1. For
reference, the data concerning the ULSQ method with a lifieare also shown. The gradient is accurately recon-
structed on all unperturbed grids by the the GG scheme ateglemill considered gradient reconstruction methods
may generate large relative errors on perturbed grids @Syl ) — (1V,).

Table 1. Relative error of gradient reconstruction on anisaropic grids for solutions with significant variation in the z-direction of larger mesh spacing.

Grid Types (I (IT) (I11) (Iv) (Ip) — (IVp)
ULSQ-linearfitatnode O(h2) O(h2) O(Ahy) O(Ahy) O(Ahy)
ULSQ-quadratic fit at node O(h2) O(h2) O(Ah2) O(AR2) O(AhR2)
GG at element O(h2) O(hy) O(hy)  O(hy) O(Ahy)

The convergence of ., norm of gradient errors is shown in Figure 8. Thg, norm is used to highlight the
worst gradients observed in high-aspect ratio regionse$ttetched grids of Class (B). All ULSQ gradients converge
with second order, but the magnitude of the gradient ersosemsitive to grid quality. As shown in Table 1, with any
deviation from the regularity of grids of typé$) and (1), the ULSQ gradient error becomes proportional to aspect
ratio. The GG gradients converge with the first order on aflgbeside the grids of typd), where the second-order
convergence is observed. In spite of the lower order comverg, the GG gradients show a clear advantage over the
ULSQ gradients on coarse unperturbed grids of ty@dgs- (/V). The GG scheme on such grids provides gradient
accuracy independent of aspect ratio. On perturbed grityges(I,) — (IV,), the GG errors are also proportional to
the aspect ratio, and ULSQ gradients are preferable.

VI.B. Discretization errors

The convergence of the; norm of discretizations errors for inviscid fluxes is showrFigure 9. The convergence
characteristics are similar to those exhibited on isotrgpids of Class (A). Third-order convergence insensitive t
grid irregularities is observed on all triangular gridswbeés(I1), (I11),(I1,), and(II,). Convergence on grids of
type (1) is second order, but any irregularity on mixed and quadnidtmeshes degrades the convergence to the first
order.

The convergence of the, norm of discretization errors for viscous fluxes is showniguFe 10. All discretization
errors converge with the second order. While second-omi@rergence of the Avg-LSQ scheme is not apparent in
Figure 10(a) on triangular and mixed-element grids, theséorder slope has been attained on finer grids. For
reference, convergence of the errors obtained with a lifitgam grids of type(11) is also shown. The Avg-LSQ errors
are relatively small only on pure quadrilateral grids ofegp!) and(1,). The magnitude of errors obtained with a
guadratic fit is much smaller than the magnitude of errorsiabt with a linear fit. However, discretization errors
of the GG scheme are significantly better than any the Avg-e8Qrs. The GG errors are clearly divided into two
groups. The errors on unperturbed grids of typBs— (I'V') are small on all grids; the errors on perturbed grids are
roughly two orders of magnitude higher for any given numietegrees of freedom. The ratio is about the same as
the ratio between gradient errors shown in Figure 8(b).
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Figure 9. Inviscid discretization errors on anisotropic stetched grids with maximum aspectratio.4 = 1000. Manufactured solutionisU = cos (rz — 27y).

10° 10°
-0
:§:(ll)
@y
107 (v g 107 4
= A () _
€ €
5 —- ) 5
i (i) :
4107k (AR 4107 4
s —%— (Il)-linear 5
g 1:‘dord. g
'§ 107 - - *Z’d ord. || '.E 107}
'@ — =3 ord. '@
2 2
[a] o
107 E 107 E
10° 107 10" 107 107 10"
effective meshsize effective meshsize
(a) Avg-LSQ (b) GG
Figure 10. Viscous discretization errors on anisotropic setched grids with maximum aspect ratio A = 1000. Manufactured solution is U =

cos (mz — 27y).

VII. Class C: Grids with Curvature and High Aspect Ratio

VIILA. Grid and solution specification

In this section, we discuss FVD schemes on grids with cureadnd high aspect ratio. The grid nodes are generated
from a cylindrical mapping, wherg, #) denote polar coordinates with spacingspfandhg, respectively. The grid
aspect ratio is defined as the ratio of mesh sizes in the cfiememtial and the radial directiong, = Rhy/h,., where

R is the radius of curvature.
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A measure of the curvature-induced mesh deformati@ndsfined as:

R(1—cos(hg)) _ Rhy Ahg
h, T 2n, T2
The following assumptions are made about the range of pdeasi®& ~ 1, A > 1, andl'h, < 1, which implies that
bothh, andhy are small. For a given value of, the parameter may vary:I" < 1 indicates meshes that are locally
(almost) non-deformed. As a practical matter, grids Witk: 0.2 can be considered as nominally non-curved. In a
mesh refinement that keegisfixed, I" = O(.Ahy) asymptotes to zero. This property implies that on fine enauigls
with fixed curvature and aspect ratio, the error convergénegpected to be the same as on similar grids generated
on rectangular domains with no curvature.

Four basic types of 2-D grids are studied in the cylindriedmetry. Unlike the computational grids used in the
rectangular geometry, random node perturbation is nofeghtd high{" grids because even small perturbations in the
circumferential direction may lead to non-physical cohtumes.

The manufactured solution considered in this sectidif is sin(57r). The convection direction is changed to a
variable tangential directiom = (%, —% ), so the inviscid force term remains zero. Solutions at bamndodes are
over-specified.

I' =

(14)

VII.B. Gradient reconstruction accuracy

Table 2. Relative errors of gradient reconstruction for marufactured solutions varying only in the radial direction on grids corresponding tol < I" < 50.

Grid Types (I (I (11 (Iv)
ULSQ:-linear fit o(1) o) o0@1) 0@
ULSQ-quadratic fit O(hg) O(hg) O(hg) O(hy)

GG O(h3) O(hg) O(hg) Olhg)

Our main interest is solutions varying predominantly in thdial direction on grids with" > 1 corresponding
to meshes with large curvature-induced deformation. Cdatjmns and analysis reported earffet® 2 concluded
that the ULSQ gradient approximation with a linear fit is zBrorder accurate for such solutions. The use of the
ULSQ method with a quadratic fit dramatically improves geadiaccuracy on high-grids leading to a first-order
convergence of gradient errors on grids witk< I < 50. The errors of gradient reconstruction for a radial sohutio
are summarized in Table 2. The ULSQ gradient errors do nat sinder properties on high-grids. This is in contrast
to the convergence on lol-grids shown in Table 1. The magnitudes of the relative efimrthe GG scheme and for
the ULSQ scheme with a quadratic fit are much smaller than ggnitude for the ULSQ scheme with a linear fit.

The computational tests are performed with the methodotdgiownscaling:>2° on a sequence of narrow arc-
shaped domains with the angular extendf radians and the radial extent bf< r < 1 + gLA—l. The scalel
changesas = 27",n =0,...,8. On each domain, & x 17 grid is generated with nodes uniform spaced in the
polar coordinates. Figure 11 shows convergence ofthenorms of gradient errors computed for the manufactured
solutionU = sin(57r) on grids with aspect ratiad = 100 and.4 = 1000. The errors are shown versus the grid
deformation parametel;, defined in Eqg. 14. Figures 11(a) and 11(b) show convergehtd 8Q gradient errors
computed with quadratic and linear fits on grids of types— (V). Figures 11(c) and 11(d) show convergence of
GG gradient errors. As known from previous studigs/ 3> 3%the errors of GG gradients are small and show the
order property on all grids. The ULSQ gradients computeti wilinear fit lose accuracy on highgrids. The ULSQ
gradients computed with a quadratic fit do not recover themppdoperty on high- grids, but show the smallest
error magnitudes on grids of typésI), (I1I), and(IV). The GG gradients show the smallest errors on regular
quadrilateral grids of typérl).
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Figure 11. Accuracy of gradient reconstruction on highI” grids. Manufactured solution is U = sin (57r).

VII.C. Discretization Errors

Computational grids used in the grid-refinement study afréigzation errors are radially stretched grids with aaadi
extent ofl < r < 1.2 and an angular extent @)°. Fixed maximal aspect ratios are used. The maximal aspect
ratio is A ~ 1000 for viscous computations. The grids have four times morks ¢elthe radial direction than in the
circumferential direction. The maximum valuelo€hanges approximately &is~ 22,11,5.5,. ... The corresponding
grid stretching ratios change ds= 1.25,1.11,1.06, .... Representative grids of typé&I 1) and(IV') are shown in
Figure 12.

The third-order inviscid scheme produces highly accuraiigi®ns, so local errors become very small on relatively
coarse highly stretched grids and convergence is obscynedibd-off errors interfering with the solutions. A reddce
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(a) Grid of type (ll1). (b) Grid of type (IV).

Figure 12. Representatived x 33 irregular stretched high-T" grids.

maximal aspect ratio ofl ~ 100 has been chosen for inviscid computations.

Convergence of thé; norm of discretization errors is shown in Figures 13 and *4nfdscid and viscous fluxes,
respectively. Excellent second-order convergence isrebddor both viscous schemes on all grids. The inviscid
errors converge with (almost) fourth order on grids of type with third order on grids of type§/ 1) and(I11), and
with first order on grids of typ€/V'). The unusually high order of convergence on grids of typeis explained by
the fact that, for a manufactured solution varying in theéabdirection only, the inviscid scheme on grids of ty{je
turns into a fourth-order pure one-dimensional scheme. gahytion variation in the circumferential direction brig
the expected second-order convergence on grids of(fj)péote that, because of asymmetric gradient-reconstructio
stencil, the scheme does not become one-dimensional eqafrtgipes(I7) and(II1), and, thus, its (third) order of
convergence on these grids is independent of solutionti@ria

VIIl. Conclusions

The effects of mesh irregularities on accuracy of unstmectinode-centered finite-volume discretizations have
been considered for edge-based schemes that use unweigdgsedquares gradient reconstruction with a quadratic
fit. The inviscid scheme is nominally third-order accurategeneral triangular mesh&s?? The viscous scheme is a
nominally second-order accurate discretization that arewerage-least-squares method with a face-tangent asgme
tatior?* 25for viscous fluxes. The results have been contrasted witlmaran Green-Gauss discretization scheme and
previous studies for the unweighted least-squares graidieanstruction with a linear fit. Gradient errors, trummat
errors, and discretization errors have been separataliestaccording to a previously introduced methodolblf

The methodology considers three classes of grids: Classn@)des isotropic grids in a rectangular geome-
try. Class (B) includes anisotropic grids representativadaptive-grid simulations. Class (C) includes anisatrop
advancing-layer grids representative of high-Reynoldalmer turbulent flow simulations over a curved body. Regu-
lar and irregular grids have been considered, includingenviglement grids and grids with random perturbations of
nodes. Grid perturbations and stretching have been intextlindependently of solution variation to bring out the
worst possible behavior.

Gradient errors are largely insensitive to mesh irregtiésron isotropic grids of Class (A). The gradient accuracy
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Figure 14. Viscous discretization errors on highF" stretched grids with maximum aspect ratio.4 = 1000. Manufactured solution is U = sin (57r).

deteriorates with high aspect ratio in combination with eperturbation. On grids of class (B), the gradient errors

converge with at least first order for the Green-Gauss antets-squares scheme with a linear fit and with second

order for the least-squares scheme with a quadratic fit. @a&tdsquares gradient errors become proportional to the
aspect ratio on all irregular grids. On grids with node pdxdtion, all gradient errors are proportional to the aspect

ratio. On class (C) grids characterized by a high deformat&rameter’, the Green-Gauss gradient errors converge

with at least first order and are small on all grids. The |sastares gradient errors for radial solutions show no order
properties; the magnitude of the errors with a quadratisfihversely proportional to the square of the aspect ratio,

which is superior to thé&(1) magnitude observed with a linear fit. Although not considdrere, the approximate-
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mapping approach to gradient reconstructfoif can recover the second-order convergence of gradientseoror
high-I" grids of Class (C).

As observed previousty'! °and confirmed here, lack of mesh regularity strongly affectscation errors, which
converge with lower-than-design order on all irregular hesss Viscous truncation errors do not converge at all on
perturbed grids.

Inviscid discretization errors are practically insenstio mesh irregularity on triangular grids, demonstratirey
third-order convergence and small variation of the errogmitades. Discretization accuracy is more sensitive toomes
irregularity on grids with quadrilateral elements. On thagsids, the results observed with the least-squares method
with a quadratic fit show no advantage over previous resuitained with a linear fit®1° both showing first-order
convergence on mixed and perturbed quadrilateral grids.

In all cases, the viscous discretization errors asym@lyiconverge with second order. Similar to the gradient
accuracy, the magnitude of discretization errors of viscsoiutions is insensitive to grid irregularities on grids o
class (A), but may be sensitive on grids of classes (B) and@@)such grids, the Green-Gauss method is the most
accurate, although, the errors on the grids with node gaation are still significantly larger than errors on gridshwi
unperturbed nodes. Asymptotically, the difference is prtpnal to the aspect ratio. Accuracy of the average-east
squares methods deteriorates on irregular high-aspteigrads, although the deterioration is less with a quadfit
than with a linear fit.

The following recommendations are offered: (1) The unwibEgHeast-squares method with a quadratic fit is
highly recommended as a robust way to compute accurateegtadin all grids. (2) The edge-based scheme based
on the unweighted least-squares method with a quadraticriiicommended for inviscid fluxes. It produces accurate
solutions and is insensitive to deterioration of mesh dqualh triangular grids. (3) The Green-Gauss scheme is
recommended for viscous fluxes. On isotropic and advareygel-grids of classes (A) and (C), both Green-Gauss and
averaged-least-squares methods produce uniformly semwigd solutions and are insensitive to mesh irregulatitie
On grids of class (B), there is a sensitivity to grid irregitlas; the Green-Gauss solutions are less sensitive than
averaged-least-squares solutions.

The overall conclusion is that relations between mesh ciertiatics and solution accuracy are complicated. The
mesh irregularities affect gradient, truncation, andmieation errors in dramatically different ways. The fesion
is expected in the form of adjoint-based grid adaptatiohdiractly and rigorously connects the local mesh propertie
with the desired solution outcome.
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