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A method for identifying global aerodynamic models from flight data in an efficient 

manner is explained and demonstrated.  A novel experiment design technique was used to 

obtain dynamic flight data over a range of flight conditions with a single flight maneuver.  

Multivariate polynomials and polynomial splines were used with orthogonalization 

techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic 

models directly and completely from flight data alone.  Simulation data and flight data from 

a subscale twin-engine jet transport aircraft were used to demonstrate the techniques.  

Results showed that global multivariate nonlinear aerodynamic dependencies could be 

accurately identified using flight data from a single maneuver.  Flight-derived global 

aerodynamic model structures, model parameter estimates, and associated uncertainties 

were provided for all six nondimensional force and moment coefficients for the test aircraft.  

These models were combined with a propulsion model identified from engine ground test 

data to produce a high-fidelity nonlinear flight simulation very efficiently.  Prediction testing 

using a multi-axis maneuver showed that the identified global model accurately predicted 

aircraft responses.   

Nomenclature 

x y za ,a ,a  = body-axis translational accelerometer measurements, g 

AirSTAR = Airborne Subscale Transport Aircraft Research 

b = wing span, ft 

c  = wing mean aerodynamic chord, ft 

X Y ZC ,C ,C  = body-axis nondimensional aerodynamic force coefficients 

l m nC ,C ,C  = body-axis nondimensional aerodynamic moment coefficients 

GPS = global positioning system 

INS = inertial navigation system 

x y z xzI , I , I , I  = mass moments of inertia, slug-ft
2
 

m = aircraft mass, slug 

TM  = body-axis pitching moment from engine thrust, ft-lbf 

p, q, r  = body-axis roll, pitch, and yaw rates, rad/s or deg/s 

q  = dynamic pressure, lbf/ft
2
 

S = wing reference area, ft
2
 

SIDPAC = System IDentification Programs for AirCraft 

T = maneuver length, sec 

x zT , T  = body-axis engine thrust, lbf 

V = true airspeed, ft/s 

  = angle of attack, rad or deg 

  = sideslip angle, rad or deg 

e a r, ,    = elevator, aileron, and rudder deflections, rad or deg 

, ,    = Euler roll, pitch, and yaw angles, rad or deg 

  = covariance matrix 
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superscripts 

T  = transpose 

 ̂  = estimate 

  = time derivative 

–1 = matrix inverse 

subscripts 

cg = center of gravity 

o = reference value or base term 

 

I. Introduction 

CCURATE flight simulation has many important applications in aircraft dynamics and control, such as pilot 

training, mission rehearsal, dynamic analysis, and control system design1-3.  Typically, flight simulations are 

based on wind tunnel data and/or results from computational methods2-8.  Flight data are often used subsequently to 

modify or augment simulations for improved fidelity to the real flight vehicle9-12.  Furthermore, the Federal Aviation 

Administration (FAA) requires flight data matching criteria to be satisfied as part of the certification process for 

commercial flight training simulators.   

 Resources are always limited, and wind tunnel testing and aerodynamic calculations require time and money.  

Building an aircraft simulation based only on flight data, without wind tunnel testing or aerodynamic calculations, 

could be effective for certain types of rapid, relatively low-budget research and development projects, such as 

subscale flying models and unmanned aerial vehicles (UAV).  In such cases, there is no human life risked aboard the 

aircraft, and typically the aircraft are known to be flyable.  The capability to build a high-fidelity nonlinear 

simulation based on a few test flights would be very beneficial in terms of project cost and schedule.   

 Using flight data to update a simulation database generated from wind tunnel data or aerodynamic calculations is 

often a time-consuming and iterative task done in an ad hoc way, although recent work has focused on automated 

simulation updating methods11,12.  If an accurate global aerodynamic model could be generated from flight data 

alone, the problem of flight-updating a simulation database based on wind tunnel data or aerodynamic calculations 

could be avoided altogether.  Even in cases where a simulation has been generated based on wind tunnel data and 

aerodynamic calculations, a flight-determined global aerodynamic model could be used for simulation validation, 

updating based on flight data, and quantifying the effects of Reynolds number and geometry differences between the 

full-scale flight vehicle and the wind tunnel test article.   

 In this work, a method for identifying a global aerodynamic model efficiently from flight data alone is examined.  

The method includes a novel approach to designing the maneuvers used to collect flight data for modeling purposes, 

and a novel approach to global aerodynamic modeling based on the flight data.  The next section describes the 

maneuver design, which leverages past work on input design for real-time dynamic modeling13-17.  Following this, 

the global aerodynamic modeling approach is described.  The approach combines multivariate polynomials, 

polynomial splines, orthogonal function modeling theory, and statistical modeling metrics to identify global 

aerodynamic models for nondimensional force and moment coefficients.  The novel flight test maneuver design and 

global aerodynamic modeling method are then demonstrated using simulated data and flight data from a subscale 

twin-engine jet transport aircraft.  A flight simulation was created by combining previously developed simulation 

software6,14 written in MATLAB
®
 with the global aerodynamic model identified from flight data and a propulsion 

model identified from ground test data.  A multi-axis doublet sequence maneuver executed at a single flight 

condition (nominal angle of attack) was used for prediction testing to evaluate the fidelity of the global aerodynamic 

models identified from flight data.  Details of the flight test and prediction results are presented in Section VI.   

 The T-2 subscale jet transport aircraft used for this study, described in detail in Section IV, was also tested 

extensively in the wind tunnel
5,8

, although the wind tunnel test article differed in some geometric details from the 

aircraft used for the flight tests.  The wind tunnel data provided an aerodynamic database for the nonlinear 

simulation, which was used to validate the effectiveness of the global aerodynamic modeling procedure using flight 

data.  Comparisons using global aerodynamic models identified from flight data and the wind tunnel aerodynamic 

database are shown in Sections V and VI.   

 All of the experiment design, data analysis, and modeling tasks included in this work were done using system 

identification software written in MATLAB
®
, called System IDentification Programs for AirCraft, or SIDPAC

14
.  

SIDPAC is bundled with Ref. [14], and is therefore publicly available.  The SIDPAC software toolbox was 
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developed at NASA Langley, and is continually expanded and improved.  SIDPAC has been applied successfully to 

a wide variety of flight and wind tunnel experiments at NASA Langley
14

 and elsewhere, and is used at more than 80 

institutions worldwide
18

.   

II. Maneuver Design 

A. Orthogonal Optimized Multi-Sine Input Design 

 This section describes how orthogonal optimized multi-sine inputs are designed and why this particular input 

form is efficient for identifying dynamic models from flight data.  More details on this input design technique and 

flight applications can be found in Refs. [13]-[17].    

 The general idea is to excite the aircraft using perturbation inputs with wideband frequency content over a range 

of frequencies that encompasses the expected modal frequencies for the aircraft dynamic response.  The excitations 

are implemented as perturbations to the control surface deflections by summing designed perturbation inputs with 

the actuator commands from the pilot and feedback control system, just before the actuator limiting on command 

rate and position.   

 Each designed perturbation input is a sum of sinusoids with unique frequencies, optimized phase shifts, and 

specified power distribution.  Component frequencies are selected to cover a frequency band of interest, similar to 

frequency sweeps.  The wide-band frequency content of the inputs is important because there is naturally some 

uncertainty as to what the modal frequencies are for the aircraft in flight.  Wide-band inputs provide robustness to 

this uncertainty.  Phase shifts for the sinusoidal components of each input are optimized to achieve low peak-to-peak 

amplitude and high input energy content for the sum of sinusoids.  Amplitudes of the individual sinusoidal 

components can be chosen to achieve a specific power distribution.   

 Multiple inputs are designed to be mutually orthogonal in both the time domain and the frequency domain, and 

are optimized for maximum data information content in multiple axes over a short time period, while minimizing 

excursions from the nominal flight condition.  The mutual orthogonality of the inputs allows simultaneous 

application of multiple inputs, which helps to minimize excitation time, but more importantly for this work, provides 

continuous multi-axis excitation as the aircraft flies through time-varying or precarious flight conditions.   

 Each perturbation input ju , which is to be applied to the jth individual control surface, is comprised of a set of 

summed harmonic sinusoids with individual phase shifts k , 
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where M is the total number of available harmonically-related frequencies, T is the time length of the excitation, and 

kA  is the amplitude for the thk  sinusoidal component.  The variable t  represents a vector of N  discrete time 

points,      0 1 1
T

t t t N   t , and ju  represents the vector of corresponding amplitudes for the thj  input, 

     0 1 1
T

j j j ju u u N   u .  Each of the m inputs is comprised of selected components from the pool 

of M  harmonic sinusoids with frequencies 2 1 2k k T , k , , ,M   , where 2M M T   represents the upper 

limit of the frequency band for the excitation.  The interval   1 M,   rad/s specifies the range of frequencies where 

the aircraft dynamics are expected to lie.   

 If the phase angles k  in Eq. (1) were chosen at random on the interval  ,   rad, then in general, the various 

harmonic components would add together at some points to produce an input ju  with relatively large amplitude 

excursions.  This is undesirable, because it can result in the dynamic system being moved too far from the reference 

condition selected for the experiment.  To prevent this, the phase angles k  for the selected harmonic components 

are chosen to minimize relative peak factor RPF 14
, defined by 
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 Relative peak factor is a measure of the efficiency of an input for dynamic modeling purposes, in terms of the 

amplitude range of the input divided by a measure of the input energy.  The relative peak factor is scaled so that any 

individual sinusoidal component (such as any one of the summands in Eq. (1)) has 1RPF  .  Low relative peak 

factors are desirable and efficient for estimating dynamic model parameters, because the objective is to excite the 

dynamic system with good input energy over a variety of frequencies while minimizing the input amplitudes in the 

time domain, to avoid driving the dynamic system too far away from the reference condition.   

 For a composite signal with more than one sinusoidal component, as in Eq. (1), the goal of designing an input 

with minimum RPF is achieved by adjusting the phase parameters k  for the sinusoidal components of the input.  

The resulting optimization problem is non-convex; however, a simplex algorithm14,19 can be applied to find a 

solution.   

 The integers k  specifying the frequencies for the jth input ju  are selected to be unique to that input, but are not 

necessarily consecutive.  A good approach for multiple inputs is to assign integers k  to each input alternately.  This 

is illustrated in Figure 1 for a flight test maneuver design on the T-2 subscale jet transport aircraft described in 

Section IV.  In that case, there were 3 inputs: elevator, rudder, and aileron, and a total of 30 frequencies  30M  .  

The frequencies were interleaved among the three inputs to achieve wide-band frequency content for each input.  

This provided robustness to uncertainty in how each control excites the dynamic modes of the aircraft.  Because 

each input has wide-band frequency content, the same input design can be applied at various flight conditions, which 

simplifies the flight test and reduces flight computer memory requirements.  It is even possible to use the same input 

design for different aircraft, because of the wide-band frequency content of the excitation inputs.   

 To achieve a uniform power distribution, the kA  are selected as 

 k

A
A k

n
   (3) 

where n  is the number of sinusoidal components included in the summation of Eq. (1) for ju , and A  is the 

amplitude of the composite input ju .  Therefore, with uniform power distribution, selection of the kA  reduces to 

selecting a single value for the input amplitude A .  Each 

input ju  can of course have arbitrary amplitude A , 

subject to practical flight testing and modeling 

constraints.   

 It is also possible to modify the power at individual 

frequencies for each input, to focus the excitation on 

frequencies near where the natural frequencies of the 

dynamic modes are believed to be, or to avoid exciting 

structural responses, for example.  For each input, the 

power spectrum can be tailored by selecting the kA  in 

Eq. (1) to distribute power over the spectral components.  

The power spectra shown in Figure 1 are normalized, so 

the effects of individual control surface amplitudes are 

excluded.  This means that for each input, the sum of all 

the spectral line ordinates (sum of the heights of the bars 

for each input) is 1.   

 When the frequency indices k  selected for each 

input ju  in Eq. (1) are distinct from those chosen for the 

other inputs, then the frequency content of each ju  consists of distinct spectral lines in the frequency domain, as can 

be seen in Figure 1.  Therefore, the vectors of Fourier transforms for the inputs as a function of frequency have inner 
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Figure 1.  Multiple orthogonal phase-optimized 

multi-sine input spectra 
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Figure 2.  Multiple orthogonal phase-optimized 

multi-sine excitation inputs 

products equal to zero.  In this sense, the inputs are mutually orthogonal in the frequency domain, because each 

input contains frequencies that are not present in the other inputs.   

 In the time domain, a sum of harmonic sinusoids is orthogonal to any other sum of sinusoids with harmonically-

related frequencies, regardless of the constant phase shift of each sinusoidal component
14,15

.  Consequently, the 

inputs are also mutually orthogonal in the time domain.   

 An objective for the experiment design is to excite the aircraft dynamics in all axes over a short time period by 

moving multiple control surfaces simultaneously.  This is particularly important in situations where the reference 

flight condition is time-varying, or cannot be maintained for very long.   

 Since more than one surface is being moved, it is advantageous for modeling purposes if the ju  applied to the 

control surfaces are mutually orthogonal.  This helps the dynamic modeling by completely de-correlating the inputs, 

which improves the accuracy of control effectiveness 

estimates.  Using the input design method described here, it 

is possible to make all of the ju  mutually orthogonal in 

both the time and frequency domains, while also 

minimizing relative peak factor for each ju , which keeps 

the aircraft from departing significantly from the reference 

flight condition.  This gives the analyst the flexibility to use 

either time-domain or frequency-domain parameter 

estimation methods, while retaining the desirable feature of 

mutually orthogonal inputs.   

 Figure 2 shows the perturbation input time series for a 

maneuver design flown on the T-2 subscale jet transport 

aircraft.  These inputs are mutually orthogonal in both the 

time and frequency domains.  The inputs were computed 

from Eq. (1) and the information in Table 1, where the 

phase angles k  were optimized for minimum relative 

peak factor.  Because of the various frequencies and phase 

angles, and the small amplitudes of the perturbation inputs, 

applying these inputs simultaneously to the aircraft 

produces a dynamic response similar to what might be seen 

in flight through light to moderate turbulence.  The aircraft 

stays near the reference condition, but responds 

dynamically about that condition.  In practice, pilot inputs and feedback control can act to ruin the input 

orthogonality; however, good modeling results require only low correlations, not zero correlations, so that slightly 

imperfect inputs still work quite well.   

B. Maneuver Design for Efficient Global Aerodynamic Modeling 

 In past work13-17, inputs such as those shown in Figure 2 were applied at a selected flight condition.  The pilot 

flew the aircraft to the reference flight condition, then activated an automated excitation system that added inputs 

like those shown in Figure 2 to the trim control deflections coming from the pilot and feedback control system.  This 

produced excellent data for aerodynamic parameter estimation at the selected flight condition.  This approach could 

be called local aerodynamic modeling.   

 For global aerodynamic modeling, one conventional approach is to combine local aerodynamic modeling results 

obtained from local perturbation maneuvers.  This requires numerous and accurate acquisitions of particular flight 

conditions, followed by the application of perturbation excitations at each condition, and combining the local results 

to produce a global model.   

 More efficient global aerodynamic modeling can be achieved by continuously applying multi-axis perturbation 

inputs while the aircraft flight condition is varied slowly.  This approach is practical because the orthogonal 

optimized multi-axis perturbations excite the aircraft dynamics in a very time-efficient manner with high data 

information content, so that the aircraft dynamics can be sufficiently excited even when the flight condition is 

changing.   

 To implement an efficient global aerodynamic modeling maneuver, the pilot began with a steady wings-level 

trim condition at low angle of attack, then initiated automated multi-axis excitation inputs like those shown in 
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Figure 3. T-2 flight data for a global aerodynamic modeling maneuver 
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Figure 4.  T-2 flight data cross plots for a global aerodynamic modeling maneuver 

Figure 2.  While the excitation inputs were being applied, the pilot pulled back slowly on the stick to induce a slow 

increase in the nominal angle of attack.  The multi-axis excitation inputs were continuously applied additively to the 

control surface deflections commanded by the pilot and control system.  Pilot inputs on lateral stick and rudder pedal 

were essentially zero, but the elevator deflection commanded by the pilot changed slowly to implement the slow 

increase in nominal angle of attack.  An example of the resulting flight data is shown in Figure 3.  This maneuver 

produces very informative data over a wide range of nominal angle of attack.  Only subsonic aerodynamics at 

relatively low altitude were being studied, so the effects of changing airspeed were adequately modeled by 

conventional nondimensionalization using dynamic pressure.  Since the nominal angle of attack changed slowly, this 

maneuver can be considered a combination of informative multi-axis excitation data for many different nominal 

angles of attack, executed in a single, efficient, combined maneuver.   

 Figure 4 shows cross-plots of aircraft states and controls using data from the maneuver shown in Figure 3.  

These plots demonstrate that a wide range of the explanatory variables generally used for aerodynamic modeling 

was swept through during this single maneuver.  Note also that the cross-plots generally do not show diagonal lines 

or ellipses, which means that the explanatory variable data from this maneuver had very low pair-wise correlations.  

Low pair-wise correlations mean that the aerodynamic dependencies on the explanatory variables can be identified 

accurately and without ambiguity.  Cross-plots for other aircraft states and controls were similar in that the plots 

indicated low pair-wise correlations for the explanatory variables.   

 This novel maneuver exhibits a combination of low pair-wise correlations, multi-axis excitation, and slowly-

varying flight conditions that cover a large portion of the explanatory variable subspace for aerodynamic modeling.  

These characteristics make the maneuver very effective and efficient for global aerodynamic modeling.   
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 A series of these maneuvers were flown on the T-2 subscale jet transport aircraft.  Each maneuver had a constant 

power setting and aircraft configuration, and all used multi-axis perturbation time series, similar to what is shown in 

Figure 2.  The wide-band frequency content of the excitation inputs made them effective for a wide variety of flight 

conditions, power settings, and aircraft configurations.  Over several flight test deployments, some variations in the 

frequency content, time length, and amplitudes of the excitation inputs were implemented, in order to study the 

effects of these variations from an experiment design standpoint.  Table 2 lists the power setting and aircraft 

configuration for each maneuver in the series flown on the T-2 aircraft.   

III. Global Aerodynamic Modeling 

 The objective of global aerodynamic modeling is to identify a model for each nondimensional aerodynamic force 

and moment coefficient as a function of explanatory variables that can be measured, such as angle of attack, pitch 

rate, and control surface deflections, over a large range of the explanatory variables.  There are two main difficulties 

in doing this: 1) experiment design to collect dynamic data over a large range of the explanatory variables, which 

was addressed in Section II, and 2) identifying an accurate global model, which is the subject of this section.   

 In the typical approach to global aerodynamic modeling, a series of linear or simplified local models, which are 

valid for relatively small ranges of the explanatory variables, are joined together in some way to implement a global 

aerodynamic model.  In another approach, a multivariate orthogonal function modeling technique was developed to 

identify global models, which were generally nonlinear and valid over relatively large ranges of the explanatory 

variables
20

.  However, for very large ranges of the explanatory variables, or severe local nonlinearities, this approach 

in some cases compromises local model fit in order to achieve a better global model fit.  This is the result of using 

global orthogonal polynomial functions for the modeling, which do not have the ability to change locally without 

modifying the entire model.  Other approaches have used data partitioning with simplified local model structures
21

 

and localized modeling functions
22

 to address this problem, and also to make local model updates easier.  However, 

these approaches require a procedure or analyst judgment for: 1) partitioning the explanatory variable space; 

2) selecting the location of the local modeling functions in the explanatory variable space; and/or 3) selecting the 

mathematical structure of the local models.   

 In this work, the multivariate orthogonal function modeling first described in Ref. [20] was applied using both 

the explanatory variables and spline functions of the explanatory variables.  This approach provides the required 

local nonlinear modeling capability, while retaining easy physical interpretation of the model, and automating the 

selection of optimal modeling complexity necessary to accurately characterize the functional dependencies.   

 The next sections describe the approach to global aerodynamic modeling using multivariate orthogonal functions 

derived from multivariate polynomials and spline functions of the measured explanatory variable data.   

A. Aircraft Aerodynamic Modeling 

 For global aerodynamic modeling from flight data, nondimensional aerodynamic force and moment coefficients 

are used as the response variable (also called the dependent variable) in the modeling problem.  A separate modeling 

problem is solved for each force or moment coefficient, corresponding to minimizing the equation error in each 

individual equation of motion for the six rigid-body degrees of freedom of the aircraft.  Values for the 

nondimensional aerodynamic force and moment coefficients cannot be measured directly in flight, but instead must 

be computed from measured and known quantities using the following equations14 

 
 x x

X A

ma T
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
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q S


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 
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 
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 (8) 

These expressions retain the full nonlinear dynamics in the aircraft equations of motion.   

 The result is N values of the nondimensional force and moment coefficients, where N is the number of data 

points.  These values are often called measured force and moment coefficients, even though they not measured 

directly, but rather computed from other measurements and known quantities.  Explanatory variables such as angle 

of attack, Mach number, pitch rate, and control surface deflections, are measured directly.   

 The desired form of the global aerodynamic model is a mathematical model structure with estimated model 

parameter values and associated uncertainties, relating the nondimensional aerodynamic force and moment 

coefficients to aircraft states and controls that can be measured.   

B. Multivariate Orthogonal Function Modeling 

 The form of a multivariate orthogonal function model is 

 1 1 2 2 n na a ... a    z p p p   (9) 

where z  is an N-dimensional vector of the response variable (e.g., nondimensional force or moment coefficient), 

 1 2
T

Nz ,z ,...,zz , modeled in terms of a linear combination of n mutually orthogonal modeling functions 

1 2j , j , ,...,np .  Each jp  is an N-dimensional vector which in general depends on the explanatory variables.  The 

1 2ja , j , ,...,n  are constant model parameters to be determined, and  denotes the modeling error vector.   

 Equation (9) represents a mathematical model used to represent functional dependencies in the measured data.  

The important questions of determining how the modeling functions jp  are computed from the explanatory 

variables, as well as which modeling functions should be included in Eq. (9), which implicitly determines n , will be 

addressed later.  At this point, the properties of a multivariate orthogonal function model are examined.   

 Define an N n  matrix P , 

  1 2 n, , ...,P p p p  (10) 

and let  1 2
T

na ,a ,...,aa .  Equation (9) can then be written as a standard least squares regression problem, 

  z Pa   (11) 

The error vector  is to be minimized in a least squares sense.  The goal is to determine a that minimizes the least 

squares cost function 

    
1 1

2 2

T TJ   z Pa z Pa    (12) 

The parameter vector estimate â  that minimizes this cost function is computed as14 

 
1

T Tˆ


 
 

a P P P z  (13) 

The estimated parameter covariance matrix is14 

     2 1T T
ˆ ˆ ˆE      

 aΣ a a a a P P  (14) 
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where E is the expectation operator, and the fit error variance    can be estimated from the residuals 

 ˆ v z Pa  (15) 

using 

 
 

   
 

1 T
T

ˆ ˆˆ
N n N n

    
   

v v
z Pa z Pa

   (16) 

Parameter standard errors are computed as the square root of the diagonal elements of the âΣ  matrix from Eq. (14), 

using ̂   from Eq. (16).  The identified model output y  is computed as 

 ˆy Pa  (17) 

 In conventional least squares modeling, the modeling functions (columns of P) are often polynomials in the 

explanatory variables.  This approach corresponds to using the terms of a multivariate Taylor series expansion to 

approximate the functional dependence of the response variable on the explanatory variables.  If the modeling 

functions are instead multivariate orthogonal functions generated from the explanatory variable data, it is easier to 

determine an appropriate model structure, because the explanatory capability of each modeling function is 

completely distinct from all the others.  This decouples the least squares modeling problem, as will be shown now.   

 For mutually orthogonal modeling functions, 

 0 1 2T
i j , i j , i, j , , ..., n  p p  (18) 

and T
P P  is a diagonal matrix with the inner product of the orthogonal functions on the main diagonal.  Using 

Eqs. (10) and (18) in Eq. (13), the jth element of the estimated parameter vector â  is given by 

    T T
j j j jâ  p z p p  (19) 

Using Eqs. (10), (18), and (19) in Eq. (12), 

    
2

1

1

2

n
T T T

j j j

j

Ĵ



 
  
  

z z p z p p  (20) 

 Equation (20) shows that when the modeling functions are orthogonal, the reduction in the least square cost 

function resulting from including the term j ja p  in the model depends only on the response variable data z and the 

added orthogonal modeling function jp .  The least squares modeling problem is therefore decoupled, which means 

each orthogonal modeling function can be evaluated independently in terms of its ability to reduce the least squares 

model fit to the data, regardless of which other orthogonal modeling functions are already selected for the model.  

When the modeling functions jp  are instead polynomials in the explanatory variables (or any other non-orthogonal 

function set), the least squares problem is coupled, and iterative analysis is required to find the subset of modeling 

functions for an adequate model structure.   

 The orthogonal modeling functions to be included in the model are chosen to minimize predicted squared error, 

PSE, defined by23 

 
    2

T

max

ˆ ˆ n
PSE

N N


 
 

z Pa z Pa
 (21) 
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or 

 22
max

Ĵ n
PSE

N N
   (22) 

 The constant 2
max  is the upper-bound estimate of the squared error between future data and the model, i.e., the 

upper-bound mean squared error for prediction cases.  The upper bound is used in the model over-fit penalty term to 

account for the fact that PSE is calculated when the model structure is not correct, i.e., during the model structure 

determination stage.  Using the upper bound is conservative in the sense that model complexity will be minimized as 

a result of using an upper bound for this constant in the penalty term.  Because of this, the value of PSE computed 

from Eq. (22) for a particular model structure tends to overestimate actual prediction errors on new data.  Therefore, 

the PSE metric conservatively estimates the squared error for prediction cases.   

 A simple estimate of 2
max  that is independent of the model structure can be obtained by considering 2

max  to be 

the residual variance estimate for a constant model equal to the mean of the measured response values, 

  
22

1

1

1

N

max i

i

z z
N




 

  (23) 

where 

 

1

1
N

i

i

z z
N



   (24) 

 The PSE in Eq. (22) depends on the mean squared fit error, 2Ĵ N , and a term proportional to the number of 

terms in the model, n .  The latter term prevents over-fitting the data with too many model terms, which is 

detrimental to model prediction accuracy4,14,23.  While the mean squared fit error 2Ĵ N  must decrease with the 

addition of each orthogonal modeling function to the model (by Eq. (20)), the over-fit penalty term 2
max n N  must 

increase with each added model term (n increases).  Introducing the orthogonal modeling functions into the model in 

order of most effective to least effective in reducing the mean squared fit error (quantified by    
2

T T
j j jp z p p  for 

the jth orthogonal modeling function) means that the PSE metric will always have a single global minimum.   

 Figure 5 depicts this graphically, using actual modeling results from Ref. [4].  The figure shows that after the 

first 6 modeling functions, the added model complexity 

associated with an additional orthogonal modeling 

function is not justified by the associated reduction in 

mean squared fit error.  This point is marked by a 

minimum PSE, which defines an adequate model 

structure with good predictive capability.  Ref. [23] 

contains further statistical arguments and analysis for 

the form of PSE given in Eq. (22), including 

justification for its use in modeling problems.   

 Using orthogonal functions to model the response 

variable makes it possible to evaluate the merit of 

including each modeling function individually, using 

the predicted squared error PSE.  The goal is to select a 

model structure with minimum PSE, and the PSE 

always has a single global minimum for orthogonal 

modeling functions.  This makes the model structure 

determination a well-defined and straightforward 

process that can be (and was) automated.   

 

Figure 5.  Model structure determination using 

orthogonal functions and PSE 
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C. Generating Orthogonal Modeling Functions 

 Multivariate orthogonal functions can be generated from ordinary multivariate functions in the explanatory 

variables using a Gram-Schmidt orthogonalization procedure.  This approach is described in Refs. [4] and [14], 

which are the basis for the material presented here.   

 The process begins by choosing one of the ordinary multivariate functions as the first orthogonal function.  

Typically, a vector of ones (associated with the bias term in the model) is chosen as the first orthogonal function, 

 1 p 1  (25) 

In general, any function of the explanatory variables can be chosen as the first orthogonal function, without any 

change in the procedure.  To generate the next orthogonal function, an ordinary multivariate polynomial function is 

made orthogonal to the preceding orthogonal function(s).  Define the jth orthogonal function jp  as 

 

1

1

2 3

j

j j k j k t

k

j , ,..., n




  p ξ p  (26) 

where jξ  is the jth ordinary multivariate function vector.  For example, each jξ  could be some ordinary polynomial 

function of the explanatory variables or a spline function of the explanatory variables.  The k j  for 1 2 1k , , ..., j   

are scalars determined by multiplying both sides of Eq. (26) by T
kp , then invoking the mutual orthogonality of the 

1 2k , k , , ..., jp , and solving for k j  

 1 2 1

T
k j

k j T
k k

k , ,..., j   
p ξ

p p
 (27) 

 The same process can be implemented in sequence for each ordinary multivariate function 2 3j t, j , , , nξ .  

The total number of ordinary multivariate functions used as raw material for generating the multivariate orthogonal 

functions, including the bias term, is tn .  It can be seen from Eqs. (25)-(27) that each orthogonal function can be 

expressed exactly in terms of a linear expansion of the original multivariate functions.  The orthogonal functions are 

generated sequentially by orthogonalizing the original multivariate functions with respect to the orthogonal 

functions already computed, so that each orthogonal function can be considered an orthogonalized version of an 

original multivariate function.   

 The multivariate orthogonal function generation method described here normally starts by generating all possible 

ordinary multivariate polynomials in the explanatory variables, up to a selected maximum order.  For example, when 

modeling the nondimensional vertical force coefficient ZC , the explanatory variables might be angle of attack  , 

nondimensional pitch rate 2q̂ qc V , and elevator deflection e .  If the selected maximum order is 3, then the 

ordinary multivariate polynomial modeling functions used as the raw material for the orthogonalization process 

would include terms like 2 3 2
e e eˆ ˆ ˆ,q, , , , q ,aq ,       etc.  Note that considering any other candidate explanatory 

variables, such as sideslip angle  , can be done by simply including the sideslip angle among the group of 

explanatory variables.  If it turns out that the sideslip angle is not needed to model ZC , the model structure 

determination using orthogonal modeling functions will not select any orthogonal functions associated with sideslip 

angle.  This occurs naturally and automatically in the course of the model structure determination process described 

earlier.  Therefore, there is no harm in including explanatory variables that might not be important, except that 

additional computation time will be required to identify the model structure, because additional multivariate 

orthogonal functions will be generated and sorted.  Similarly, if the maximum order is chosen higher than necessary, 

the only penalty would be the increased computation time necessary for generating and sorting the additional 

orthogonal functions.  The final identified model would be the same.  Consequently, the choices that the analyst 

needs to make are very easy and not critical to the quality of the final results.   
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 If the jp  vectors and the jξ  vectors are arranged as columns of matrices P and X , respectively, and the k j  

are elements in the thk  row and thj  column of an upper triangular matrix G with ones on the diagonal, 

 

12 13 1

23 2

3

1

0 1

0 0 1

0 0 0 1

t

t

t

n

n

n

  

 



 
 
 
 
 
 
 
  

G  (28) 

Then 

 X PG  (29) 

which leads to 

 1P X G  (30) 

The columns of 1
G  contain the coefficients for expansion of each column of P (i.e., each multivariate orthogonal 

function) in terms of an exact linear expansion in the original multivariate functions in the columns of X .  

Equation (30) can be used to express each multivariate orthogonal function in terms of the original multivariate 

functions. The manner in which the orthogonal functions are generated allows them to be decomposed without 

ambiguity into an expansion of the original multivariate functions, which have physical meaning.   

D. Conversion to Physically-Meaningful Multivariate Function Models 

 After the model structure is determined using multivariate orthogonal modeling functions for minimum PSE, the 

identified model output is 

 ˆy Pa  (31) 

where the P  matrix now includes only the n  orthogonal functions selected in the model structure determination, 

tn n .  Each retained orthogonal modeling function can be decomposed without error into an expansion of the 

original multivariate functions in the explanatory variables, using the columns of 1
G  in Eq. (28) corresponding to 

the retained orthogonal functions.  Common terms are combined using double precision arithmetic to arrive finally 

at a model using only original multivariate functions in the explanatory variables.  Terms that contribute less than 

0.1 percent of the final model root-mean-square magnitude are dropped.   

 The final form of the model is a sum of ordinary multivariate functions in the explanatory variables, with 

associated model parameter estimates.  Examples of the final model forms obtained are given later in the Results 

sections.   

E. Including Spline Functions in the Orthogonalization 

 For global aerodynamic modeling, functional dependencies of the aerodynamic coefficients on the explanatory 

variables can exhibit significant localized variation.  In these cases, a global polynomial model can be inadequate for 

capturing those local variations.  To solve this problem, spline functions in the explanatory variables can be 

introduced as additional pseudo-explanatory variables.  Splines have local modeling capability that global 

polynomial modeling functions do not have, because splines are polynomials defined only on selected intervals.  

Low-order polynomial terms defined on limited intervals can approximate nonlinearities quite well.  Using 

polynomial splines also retains clear physical interpretation in the final model.   

 Spline functions are defined as piecewise polynomials functions of degree m  in one or more explanatory 

variables.  The term “piecewise” means that the polynomial is different for specific ranges of the explanatory 

variables.  Spline function values and derivatives agree at the points where the piecewise polynomials join.  These 
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points are called knots, and are defined as specific values of each explanatory variable.  A polynomial spline  mS x  

of degree m  with continuous derivatives up to degree 1m , for a single explanatory variable  0 maxx x ,x , can be 

expressed as 

    
1 1

m k
mr

m r i i

r i

S x C x D x x


 

     (32) 

where 

    
0

m
m ii

i
i

x xx x
x x

x x

  
  



 (33) 

and the rC  and iD  are constants and  
m

ix x


  are the piecewise parts of the spline function.  The values 

1 2 kx , x , , x  are knots which satisfy the condition 

 0 1 2 k maxx x x x x      (34) 

Three piecewise spline types are sketched in Figure 6 for the same selected knots in angle of attack.   

 Note that when the spline knots are the same, a higher-order piecewise spline in a single explanatory variable can 

be computed as a multiplication of lower-order piecewise splines in the same explanatory variable, 

      
1 1

1
m m

i i ix x x x x x m


  
      (35) 

 This fact can be used advantageously in generating multivariate orthogonal modeling functions with excellent 

local modeling capability.  This is best demonstrated with a simple example.   

 Suppose that the nondimensional vertical aerodynamic force coefficient ZC  is being modeled with explanatory 

variables angle of attack   and elevator control deflection e .  For a maximum selected model order 2, the ordinary 

polynomial modeling functions that will serve as raw material for the orthogonalization process are: 

 2 21 e e e, , , , ,      (36) 

which would lead to a final multivariate polynomial model of the form 

 
2 2

2 2

o e e e
Z Z Z Z Z e Z e Z eC C C C C C C

   
           (37) 

where the values of the model parameters such as 
oZC  and 

e
ZC


 would be estimated from the data using the 

orthogonal function modeling and subsequent decomposition procedures described earlier, and some of the terms 

might not be present, depending on the results of the model structure determination using orthogonal functions.  This 

represents a global polynomial model.   

 Now introduce a first-order spline term in angle of attack with a single knot located at 10 deg.  Using the same 

maximum model order 2, the set of ordinary polynomial modeling functions expands to 

        
1 1 1 22 21 10 10 10 10e e e e, , , , , , , , ,          
   

     (38) 

which would lead to a final multivariate polynomial model of the form 

 
       

2 2

1 1 1 2
10 10 10 10

2 2

1 1 1 2
10 10 10 10

o e e e

e

Z Z Z Z Z e Z e Z e

Z Z Z e Z

C C C C C C C

C C C C

   

    

    

     
   

     

       
 (39) 
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Figure 7.  T-2 subscale jet transport aircraft 
Credit: NASA Langley Research Center 

As before, some of the terms in Eq. (39) might be not be present, depending on the results of the model structure 

determination using orthogonal functions.   

 With this expanded set of ordinary polynomial 

modeling functions, more orthogonal functions will be 

generated, and there is now capability to accommodate 

changes in the linear dependence of ZC  on   for 

10 deg  , as well as additional 2  and e  

nonlinearities that only take effect when 10 deg  .  

Note also that  
1

10 


  and  
2

10


 , for example, 

are in general not the same function.  Because higher-

order splines are created automatically by the 

multiplication of first-order splines (cf. Eq. (35)), only 

first-order splines in the explanatory variables need to 

be included as pseudo-explanatory variables.   

 Extrapolating from this simple example, it is clear 

that multiple knots in the explanatory variables would 

provide a very effective nonlinear modeling capability 

in multiple dimensions with local nonlinear modeling 

capability, while retaining physical insight into the 

functional dependencies.  The automated 

orthogonalization and sorting process described earlier 

identifies which nonlinear terms are necessary to 

characterize the functional dependencies and estimates 

the associated model parameters.  Inputs required from 

the analyst relate only to the limits of what should be 

considered, such as which explanatory variables to consider, maximum model order to consider, and knot locations 

to consider.  However, these can be specified very generously, because the orthogonal function modeling algorithm 

automatically sorts out which of the terms are important, based on the data, and discards the rest.  The result is a 

global parsimonious model with excellent local nonlinear modeling capability and easy physical interpretation.   

IV. Test Aircraft and Flight Data 

A. T-2 Subscale Jet Transport Aircraft Description 

 The T-2 aircraft is a 5.5 percent dynamically-scaled model 

of a generic commercial twin-engine jet transport aircraft.  

Figure 7 shows a photograph of the aircraft in flight.  The 

aircraft has twin jet engines mounted under the wings and 

retractable tricycle landing gear.  Aircraft geometry and 

nominal mass properties are given in Table 3.  Further 

information on the T-2 subscale jet transport aircraft and 

associated flight test operations can be found in Refs. [24]-[26].  

A similar airframe was tested extensively in the wind tunnel
8
, 

although the wind tunnel test article differed in some geometric 

details from the aircraft used for the flight tests.  The wind 

tunnel data provided a reference for comparison with the 

aerodynamic models identified directly from flight data.   

1. Control Surfaces 

 Control surfaces on the T-2 aircraft are left and right ailerons, left and right inboard and outboard elevators, 

upper and lower rudders, left and right inboard and outboard trailing-edge flaps, and left and right inboard and 

outboard spoilers, for a total of 16 independent control surfaces.  For the flight data analyzed in this work, only the 

elevators, ailerons, and rudders were deflected.  The individual elevator surfaces were moved together as a single 

elevator surface, and similarly for the rudders.  Left and right ailerons were deflected asymmetrically, in the 

0 5 10 15 20 25 30 35 40
 (deg)

(a)

0 5 10 15 20 25 30 35 40

 (deg)

(b)

0 5 10 15 20 25 30 35 40

 (deg)

(c)

 

Figure 6.  Polynomial splines in angle of attack: 

(a) zero-degree, (b) first-degree, (c) second-degree 
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conventional way.  Definitions of control surface deflections are given below.  Trailing edge down is positive 

deflection for wing and elevator surfaces, and trailing edge left is positive for rudder surfaces.   

  1

4 lo li ri roe e e e e         (40) 

  
1

2 r la a a      1

2 u lr r r     (41) 

 The aircraft can be flown by a safety pilot using direct visual contact and conventional radio control.  A research 

pilot executed the flight test maneuvers from inside a mobile control room, using a synthetic vision display drawn 

from telemetry data and a local terrain database, along with video from a camera in the nose of the aircraft.  Inputs 

from the research pilot and a ground-based flight control system were used to generate control surface commands 

which were transmitted by telemetry to the aircraft.   

 The flight control system has the capability to inject automated control surface perturbations to excite the aircraft 

dynamic response for modeling purposes.  These control surface perturbations can have arbitrary waveforms, and 

can be applied to multiple control surfaces individually or simultaneously.  The perturbations are summed with pilot 

and feedback control commands in the flight control system, just before the actuator command rate and position 

limiting.  Typically, the research pilot flies the aircraft to the desired flight condition(s), then initiates the automated 

control surface perturbations with a trigger switch on the control stick.   

2. Instrumentation and Data Acquisition 

 The T-2 aircraft was equipped with a micro-INS, which provided 3-axis translational accelerometer 

measurements, angular rate measurements, estimated attitude angles, and GPS velocity and position.  Air data 

probes attached to booms mounted on each wingtip (visible in Figure 7) measured angle of attack, sideslip angle, 

static pressure, and dynamic pressure.  Measurements from static pressure sensors and ambient temperature sensors 

were used to compute air density and altitude.  Engine speeds in rpm were measured and used as inputs to an engine 

model to compute thrust.  The engine model was identified from ground test data, with adjustments for ram drag 

identified from flight data.  Potentiometers on the rotation axes of the control surfaces measured control surface 

deflections.  Mass properties were computed based on measured fuel flow, pre-flight weight and balance, and inertia 

measurements done on the ground for the aircraft without fuel.  The pilot stick and rudder pedal commands and 

throttle position were also measured and recorded.  Data from onboard sensors were telemetered to the ground in 

real time.  Sampling rate for the flight data was 200 Hz, decimated to 50 Hz for data analysis and modeling.   

V. Simulation Results 

 The techniques for flight test maneuver design and global aerodynamic modeling were applied to a nonlinear 

aircraft simulation of the T-2 subscale jet transport aircraft.  The simulation was based on wind tunnel data
8
 

collected using a wind tunnel model with geometry similar to the T-2 aircraft.  Full nonlinear equations of motion 

were implemented and solved in MATLAB
®
 using aircraft simulation software included in SIDPAC

14
, adapted for 

the T-2 aircraft.  Documentation for the nonlinear aircraft simulation software can be found in Appendix D of 

Ref. [14].  The engine model was identified from ground test data, with ram drag corrections identified from T-2 

flight data.  Simulated aircraft responses were corrupted with white Gaussian noise using root-mean-square 

amplitudes similar to what was observed in the T-2 flight data.   

 Figure 8 shows control surface deflections and aircraft responses for a maneuver with orthogonal optimized 

multi-sine perturbation inputs applied to the elevator, aileron, and rudder control surfaces simultaneously, while the 

pilot implemented a slow increase in angle of attack by gradually pulling aft on the longitudinal stick with constant 

power setting.  This is the flight test maneuver described in Section II for collecting data for global aerodynamic 

modeling.  Figure 9 shows a cross-plot of angle of attack and sideslip angle, demonstrating how the angle of attack 

and sideslip angle are excited in an uncorrelated fashion, similar to Figure 4.  Analogous cross-plots could be made 

for the other aircraft responses and control surface deflections.   
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Figure 8. Simulated flight data for a global aerodynamic modeling maneuver 
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Figure 9.  Simulated flight data cross plot for a 

global aerodynamic modeling maneuver 

 Applying the global modeling techniques in simulation allows comparison of the global aerodynamic model 

identified from the simulated data with the known underlying aerodynamic database for the simulation.  The 

aerodynamic database in the simulation was implemented in tabular form using wind tunnel data.   

 For the global aerodynamic modeling, initial modeling was done using coarse spacing of the knot locations in 

each explanatory variable to identify which explanatory variables required the increased local nonlinear modeling 

capability provided by spline terms.  This analysis showed that the global modeling problem for the T-2 simulation 

data shown in Figure 8 required spline terms only for angle of attack.  First-order splines in angle of attack with 

knots finely spaced at 6, 8, 10, 12, and 14 deg were 

added as pseudo-explanatory variables for the global 

aerodynamic modeling.  The spline knot spacing 

could be made finer, with no penalty other than 

increased computation time to identify the model 

structure, as discussed earlier.  For each 

nondimensional force and moment coefficient model, 

model terms with up to third-order complexity were 

orthogonalized and sorted to identify an adequate 

model structure and estimate the associated model 

parameters values and uncertainties.  The third-order 

complexity applied to the conventional explanatory 

variables (such as angle of attack, nondimensional 

pitch rate, and elevator control deflection), and also to 

the first-order splines in angle of attack, which were 

included as pseudo-explanatory variables.  

Consequently, the first-order spline terms were also 

multiplied by themselves and each other, up to third 

order, so that this approach really allowed for up to 

third-order spline terms in the modeling.   

 Figure 10 shows three-dimensional plots comparing the simulated flight data (x markers) with a mesh surface 

drawn by interrogating the aerodynamic database in the simulation and a smooth surface drawn using the global 

aerodynamic model identified from simulated flight data alone.  The ranges of the explanatory variables used to 

generate the mesh surface and the smooth surface were chosen to include all values from the simulated flight data.  

The results in Figure 10 show that for all force and moment coefficients, the smooth surface and mesh surface are 

very similar, indicating that the global aerodynamic modeling approach captured the underlying functional 
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Figure 10.  Global aerodynamic models identified from simulated flight data 

dependencies accurately and efficiently, using data from a single flight test maneuver.  This is true even in cases 

with complex local nonlinearity, as in the case of axial force coefficient XC  and rolling moment coefficient 1C .   

 Close inspection shows only small mismatches between the smooth surface and mesh surface at locations 

relatively far from the simulated flight data, which would be areas of extrapolation for the identified global model.  

Flying another maneuver through that part of the explanatory variable subspace would provide the data necessary to 

correct those small mismatches.  The three-dimensional plots shown in Figure 10 must necessarily omit some of the 

explanatory variables (because there are more than two explanatory variables, and the third dimension is used for the 

response variable), so the mismatch between simulated flight data and the smooth and mesh surfaces is mostly a 

dependence on an explanatory variable that cannot be shown in the three-dimensional plot.  The results in Figure 10 

show that a few well-flown maneuvers of the type described here could very effectively cover a large portion of the 
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Figure 11.  Prediction using global aerodynamic models identified from T-2 flight data 

explanatory variable subspace and therefore could be used in place of wind tunnel testing that requires extensive 

grids of test points to generate the aerodynamic database.  The approach described here could be extended to more 

than the three control surfaces used in this demonstration
16

, further increasing the productivity and efficiency of the 

flight test maneuver and the global aerodynamic modeling process.   

 As an example of the final global modeling results, the global model identified for nondimensional aerodynamic 

vertical force coefficient ZC  from simulated flight data was 

    
1 1
10 12

1 1
10 12

2o q e
Z Z Z Z Z e Z Z

qc
C C C C C C C

V   
   

 
         (42) 

where model parameter estimates and uncertainties are given in Table 4.   

VI. Flight Test Results 

 Flight test maneuvers similar to the one used for the simulation demonstration were flown on the T-2 subscale jet 

transport aircraft to collect data for global aerodynamic modeling.  Figure 3 shows measured control surface 

deflections and aircraft responses for one of these maneuvers, with orthogonal optimized multi-sine perturbation 

inputs applied to the elevator, aileron, and rudder control surfaces simultaneously, while the pilot implemented a 

slow increase in angle of attack by gradually pulling aft on the longitudinal stick at constant idle power setting.  The 

pilot also applied relatively large longitudinal and lateral stick inputs at roughly 20 sec, to recover the aircraft from a 

roll-off departure that occurred near 14 deg angle of attack.  Automated perturbation inputs continued throughout the 

departure and recovery.   

 Detailed specifications of global aerodynamic models identified from flight data alone for all six nondimensional 

aerodynamic force and moment coefficients are given in Tables 5 and 6.  These models were identified using the 

global aerodynamic modeling procedure applied to flight data from only the single maneuver shown in Figure 3.  

The identified global aerodynamic models were then installed in the nonlinear aircraft simulation for prediction 

testing.   

 Figure 11 shows a prediction test using flight data from a piloted doublet sequence on longitudinal stick, rudder 

pedal, and lateral stick.  The flight data used for this prediction test was of course not used in identifying the global 
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Figure 12.  Prediction using T-2 wind tunnel database 

aerodynamic models.  The solid lines show flight data and the dashed lines were computed by applying measured 

control surface deflections from the flight data to the nonlinear aircraft simulation, using the global aerodynamic 

models from Tables 5 and 6 for the aerodynamics.  The results show reasonable accuracy in predicting the aircraft 

response for this maneuver, which would be classified as a local maneuver.  This maneuver was chosen because it 

involved localized multi-axis aircraft response to elevator, rudder, and aileron deflections dissimilar from the inputs 

used to identify the global aerodynamic model.  The predictions show that the global aerodynamic modeling 

approach applied to flight data from only a single flight test maneuver produced a reasonable prediction of the flight 

responses, indicating that the functional dependencies of the nondimensional force and moment coefficients on the 

explanatory variables were captured by the global aerodynamic modeling procedure.  Presumably, using flight data 

from multiple runs of global aerodynamic modeling maneuvers similar to the one shown in Figure 3 would produce 

even better global aerodynamic modeling results.  This is currently being investigated.  In addition, it should be 

possible to identify thrust effects using global aerodynamic modeling maneuvers at different power settings, such as 

those listed in Table 2.   

 Figure 12 shows prediction results for the same piloted doublet sequence maneuver, but instead using the wind 

tunnel database
8
 for the aerodynamics in the nonlinear aircraft simulation.  Figures 11 and 12 show similar 

prediction accuracy, suggesting that the global aerodynamic modeling procedure applied to data from a single flight 

test maneuver can produce simulation results with accuracy comparable to what can be obtained using aerodynamic 

data from an extensive wind tunnel test.  In fact, the root-mean-square of the differences between the flight data and 

the predictions using the identified global model, shown in Figure 11, was 20 percent lower than for the predictions 

using the wind tunnel database, shown in Figure 12.  Finally, the compact analytical form of the global aerodynamic 

model provides significant insight into the functional dependencies and is compact enough to be shown in Tables 5 

and 6.   
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VII. Concluding Remarks 

 Simulation and flight test data for a subscale jet transport aircraft were used to demonstrate a novel technique for 

efficiently and effectively identifying global aerodynamic models from a single flight test maneuver.  Novel flight 

test maneuver design, an orthogonal function modeling technique using splines, and an automated modeling process 

were combined to create an approach that very efficiently produced accurate global aerodynamic models with easy 

physical interpretation, based on flight data alone.  The resulting global aerodynamic models were incorporated into 

a nonlinear simulation that exhibited reasonable prediction capability for data from flight maneuvers that were not 

used in the modeling process.   

 The global modeling flight test maneuver was used to collect data over relatively large ranges of the explanatory 

variables for all six rigid-body degrees of freedom of the aircraft simultaneously.  This resulted in highly efficient 

collection of flight data with de-correlated explanatory variables, for good model identifiability and modeling 

accuracy.  The global aerodynamic modeling method incorporated spline functions in an automated orthogonal 

function modeling scheme, to allow accurate modeling of local complicated functional dependencies without 

adverse effects on other parts of the global model.   

 Accurate global models identified from flight data alone can be used in rapid and relatively low-budget 

unmanned aircraft programs to save development time and money by making it possible to generate an accurate 

nonlinear aircraft simulation from a single flight, without the need for extensive wind tunnel testing or aerodynamic 

calculations.  The capability also has important implications for aircraft safety, because the technique could be used 

to generate an onboard model of the global aerodynamics for an aircraft.  The approach could be used to account for 

the particular geometry or flight environment of an individual aircraft, as well as provide a capability to monitor and 

account for changes in the aircraft due to failures, damage, and airframe icing, for example.  A global aerodynamic 

model identified from flight data alone could also be compared to a simulation database generated from wind tunnel 

data and aerodynamic calculations for the purpose of improving the fidelity of these ground-based aerodynamic 

prediction methods.  This could be done through identifying where there are significant differences between the 

database generated using ground-based methods and the global model identified from flight data alone, as well as 

where the models agreed well.  Such comparisons could also be used to estimate full-scale Reynolds number effects, 

or artifacts of wind tunnel testing, such as sting interference and wall effects.   
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Table 1  Multiple input design for the T-2 subscale jet transport aircraft, 

level flight, 80 ktsoV  , 5 dego  , 20 secT   

Input A  (deg) kA  (deg) k  k  (rad) RPF  

e  

0.3162  2.2926 

0.3162  0.6842 

0.3162  0.3288 

0.3162  2.1677 

0.3162  2.8795 

0.3162  0.0447 

0.3162  2.8485 

0.3162  2.8634 

0.3162  3.0356 

0.3162  2.7574 

r  

0.6325  0.9222 

0.6325  0.7188 

0.6325  2.8103 

0.6325  0.9035 

0.6325  0.1563 

0.6325  1.8697 

0.6325  0.8279 

0.6325  2.0493 

0.6325  1.1970 

0.6325  0.5219 

a  

0.3162  1.8549 

0.3162  2.6561 

0.3162  2.8832 

0.3162  0.1226 

0.3162  2.5070 

0.3162  2.6150 

0.3162  0.6119 

0.3162  1.9709 

0.3162  1.3854 

0.3162  3.0152 

 

 



 

American Institute of Aeronautics and Astronautics 

 

23 

Table 2.  T-2 maneuvers applying multi-axis excitation for slow approach to stall and recovery 

Configuration Power Level Flight Card 

Cruise IDLE 5 10 

Cruise 40 percent 6 11 

Cruise 50 percent 6 12 

Cruise 60 percent 6 13 

Takeoff IDLE 6 15 

Cruise IDLE 9 10 

Powered Approach IDLE 9 17 

Powered Approach IDLE 11 17 

Cruise IDLE 34 17 

Cruise IDLE 34 17 

Cruise IDLE 36 17 

Cruise IDLE 36 17 

Cruise IDLE 37 17 

Cruise IDLE 37 17 

Cruise IDLE 38 17 

Cruise IDLE 38 17 

Cruise IDLE 38 17 

Cruise IDLE 42 17 

Cruise IDLE 42 17 

Cruise IDLE 42 17 

 

 

Table 3.  T-2 aircraft geometry and nominal mass properties 

c , ft 0.915 

b , ft 6.849 

S , ft
2
 5.902 

ox , in 57.30 

oy , in 0.000 

oz , in 11.28 

cgx , in 56.63 

cgy , in 0.000 

cgz , in 11.43 

m , slugs 1.585 

xI , slugs-ft
2
 1.179 

yI , slugs-ft
2
 4.520 

zI , slugs-ft
2
 5.527 

xzI , slugs-ft
2
 0.211 
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Table 4.  Parameter estimates and uncertainties for ZC  global model identified from simulated flight data 

ZC  Model 

Parameter 

Estimate 

± Std. Error 

oZC  −0.0738 

±0.0005 

ZC


 −4.4809 

±0.0047 

qZC  −47.241 

±0.2017 

e
ZC


 0.4500 

±0.0062 

1
10

ZC


 2.1745 

±0.0124 

1
12

ZC


 0.8776 

±0.0167 

 

 



 

American Institute of Aeronautics and Astronautics 

 

25 

Table 5.  Parameter estimates and uncertainties for longitudinal global model identified from T-2 flight data 

XC  Model 

Parameter 

Estimate 

± Std. Error 
ZC  Model 

Parameter 

Estimate 

± Std. Error 
mC  Model 

Parameter 

Estimate 

± Std. Error 

oXC  −0.1017 

±0.0039 
oZC  −0.1353 

±0.0037 
e

mC


 −0.8377 

±0.0822 

XC


 1.6921 

±0.0754 
ZC


 −4.0013 

±0.0409 
2mC



 6.5387 

±0.6531 

2XC


 −4.4473 

±0.3301 
1
6

ZC


 1.0897 

±0.0488 
1
8

mC


 −1.7790 

±0.6789 

q e
XC


 −306.56 

±15.289 
1
12

q
ZC


 2.0933e+03 

±134.16 
qmC  −36.3742 

±4.9737 

1
10

q
XC


 −806.31 

±53.991 
q e

ZC


 214.2068 

±15.328 
omC  0.1592 

±0.0059 

e
XC


 0.3982 

±0.0469 

  mC


 −2.6947 

±0.1243 

e
XC


 −1.7624 

±0.2961 

  
q e

mC


 388.9319 

±34.404 

1
10

XC


 2.2999 

±0.1708 

  
1
12

q
mC


 1.4879e+03 

±175.32 

1
6

XC


 −7.9305 

±0.6953 

  
qmC


 237.4375 

±50.250 

    
1
12e

mC
 

 2.7147 

±0.6377 

    
1
8

q
mC


 −198.14 

±73.932 

    
e

mC


 −4.3485 

±0.7122 

    
1
8e

mC
 

 5.5804 

±1.1554 
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Table 6.  Parameter estimates and uncertainties for lateral global model identified from T-2 flight data 

YC  Model 

Parameter 

Estimate 

± Std. Error 
lC  Model 

Parameter 

Estimate 

± Std. Error 
nC  Model 

Parameter 

Estimate 

± Std. Error 

YC


 −0.5483 

±0.0422 
a

lC


 −0.0351 

±0.0009 
nC


 0.1673 

±0.0104 

YC


 0.0890 

±0.0051 
r a

lC


 −0.6816 

±0.0690 
onC  −0.0017 

±0.0002 

r
YC


 0.5875 

±0.1537 
prlC  −2.3733 

±0.5028 
r

nC


 −0.1705 

±0.0020 

r a
YC


 −3.7945 

±0.5046 
rl

C  0.2851 

±0.0282 
r a

nC
 

 5.6599 

±1.0124 

rYC  2.4864 

±0.0528 
1
10

lC


 1.6212 

±0.0717 
rnC  −0.8890 

±0.0466 

prYC  6.3526 

±3.0915 
lC


 −0.1301 

±0.0046 
p a

nC
 

 −1.3790 

±0.3426 

p a
YC


 1.2747 

±0.1657 
lC


 5.6202e−03 

±0.0007 
nC


 −0.0170 

±0.0013 

pYC


 −10.1120 

±0.5171 
plC  −0.3172 

±0.0059 
pnC


 2.8815 

±0.1457 

a
YC


 −2.3867 

±0.0928 
r

lC


 0.0392 

±0.0011 
a

nC


 0.3648 

±0.0221 

YC


 −4.0360 

±0.2620 
1
10

lC


 −0.3198 

±0.0164 
pnC  −0.4471 

±0.0275 

r
YC


 0.2479 

±0.0256 
1
10

r
lC


 3.2163 

±0.5092 
a

nC


 −0.0485 

±0.0031 

a
YC


 2.2167 

±0.1807 
lC


 −0.2710 

±0.0293 
nC


 0.3415 

±0.0665 

a
YC


 0.2640 

±0.0145 
1
10

p
lC


 2.0470 

±0.1348 
a

nC


 −3.1717 

±0.4148 

pYC  1.2558 

±0.1045 
1
14

p
lC


 −8.4945 

±0.7066 
rnC


 1.9498 

±0.3031 

oYC  5.3615e−03 

±0.0007 
p a

lC


 0.1441 

±0.0176 
p r

nC


 1.0237 

±0.1960 

p r
YC


 −4.1527 

±0.7488 
ol

C  8.7560e−04 

±0.0001 

  

  
rlC


 1.0919 

±0.2052 

  

  
r r

lC


 1.3430 

±0.2878 
  

 

 


