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ABSTRACT 

Radiation exposure to astronauts could be a significant obstacle for long duration manned space exploration because 

of current uncertainties regarding the extent of biological effects.  Furthermore, concepts for protective shielding 

also pose a technically challenging issue due to the nature of cosmic radiation and current mass and power 

constraints with modern exploration technology.  The concern regarding exposure to cosmic radiation is the 

biological damage it induces.  As damage is associated with increased oxidative stress, it is important and would be 

enabling to mitigate and/or prevent oxidative stress prior to the development of clinical symptoms and disease.  This 

paper hypothesizes a “systems biology” approach in which a combination of chemical and biological mitigation 

techniques are used conjunctively.  It proposes using new, therapeutic, medical gases as both chemical 

radioprotectors for radical scavenging and biological signaling molecules for management of the body’s response to 

exposure.  From reviewing radiochemistry of water, biological effects of CO, H2, NO, and H2S gas, and mechanisms 

of radiation biology, it is concluded that this approach may have great therapeutic potential for radiation exposure.  

Furthermore, it also appears to have similar potential for curtailing the pathogenesis of other diseases in which 

oxidative stress has been implicated including cardiovascular disease, cancer, chronic inflammatory disease, 

hypertension, ischemia/reperfusion injury, acute respiratory distress syndrome, Parkinson’s and Alzheimer’s 

disease, cataracts, and aging. 
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REVIEW 

The Challenge of Space Radiation 

Galactic Cosmic Rays (GCR), solar energetic particles (SEP), and trapped energetic particles in a planetary 

magnetic field are natural sources of radiation in space.  GCRs consist of highly energetic nuclei, predominately 

protons and He, but also with trace amounts of C, O, Ne, Si, Ca, and Fe ions.  Particle energies can range from 100 

MeV to 10 GeV per nucleon.  Although the high charge and energy (HZE) nuclei are in trace amounts, they are still 

of concern because they can cause more damage than protons since they are more highly ionizing.  As well, even 

though particle fluencies are typically low, they are chronic and can significantly increase with solar events.  

Furthermore, GCRs and SEPs impinging on shielding material, atmosphere, or surface of a planet or satellite can 

produce secondary radiation, including energetic neutrons, from nuclear fragmentation of the primary ion and target 

atoms.  This can introduce an additional component to the radiation field which makes shielding from HZE quite 

challenging and poses one of the principal unknowns in understanding the effects of HZE effects with human tissue 

[1].  Furthermore, while our bodies do possess a natural repair mechanism, radiation with a high linear energy 

transfer (LET) rate, like space radiation, is attributed to be more likely to cause double strand breaks in DNA that 

are relatively more difficult for our natural repair mechanisms to fix correctly [2].  While a week or month of this 

radiation at the dose rates naturally present likely will not have serious consequences, several year durations in space 

could.   

 

The traditional paradigm for radiation protection is to minimize exposure time, maximize distance from radiation 

sources, and use shielding to attenuate and absorb radiation before it can deposit its energy in humans.  In regards to 

minimizing exposure time, new propulsive technologies could reduce trip times but have yet to be developed and 

would not address the ability to remain at a location for long durations.  It is impractical to maximize distance from 

cosmic radiation sources.  In regards to shielding, aspects of attenuation by mass or deflection by magnetic fields or 

charge repulsion have been considered.  Due to the phenomena of secondary radiation, shielding by other matter 

may require a significant amount of mass which could be impractical within current mass constraints in space 

systems.  Due to the high energy of the space radiation, magnetic field and charge strengths required may be 

unreasonable due to current mass and power constraints in space systems along with other system design 



implications.  In short, shielding space radiation is seemingly quite challenging.  However, advances in biochemistry 

may reveal some more tools for radiation protection [1].   

Parallels between Radiation Biology & Chemistry of Water  

Radiolysis is the decomposition of water from exposure to ionizing radiation.  Radiation chemistry of water has 

been well studied since the onset of nuclear power production, as water has been the most often used coolant.  Since 

mammalian cells are composed of about 80% water, it seemed natural that there exist similarities between radiation 

chemistry of water and radiation biology.  It is these similarities from which analogues for radioprotective measures 

were inspired. 

 
Chain of Events Initiated by Chemically Reactive Species 
 
Radiolysis in nuclear systems causes a chain of events that ultimately manifest into systematic problems like 

corrosion and gas generation.  Ionizing radiation creates chemically reactive radicals H3O+, e-, H+, H, and OH by 

ionizing and/or breaking the bonds of water molecules.  These radicals then initiate a chain of chemical reactions 

within the water which can result in the formation of molecular decomposition products such as H2, O2, HO2 and 

H2O2 [3].  These oxidizing species alter the water composition and therefore its electrochemical character which 

facilitates the manifestation of problems like corrosion or gas generation.  As such, the nature in which systematic 

problems develop can be viewed as stemming from a chain of events that are initiated by ionization and propagated 

by a scheme of chemical reactions depending upon the net result of the ensuing chemistry.   

 

This situation is similar in nature to a biological system and the pathogenesis of radiation related ailments.  

Ionization of key biological molecules can lead to chemical reactions which transform these molecules.  This alters 

their biochemical function and can result in changes of cellular properties.  This propagates from tissue to organ to 

system changes that ultimately manifest into clinical symptoms and ailments.  Ionization of the molecules can occur 

both directly by radiation and indirectly by free radicals and reactive oxygen species (ROS) created by radiolysis.  

Free radicals and ROS like O2
-, 1O2, ⋅OH, ⋅OOH, NO⋅ and H2O2 can cause cell injury or death by oxidative stress 

[4,5].  Oxidative stress can result in DNA damage, lipid peroxidation and also lead to a loss of protein after 

reductive remodeling of skeletal muscle due to undernutrition in space [6].  Radiation-induced damage of 

chromosomes in lymphocytes may compromise the immune system’s ability to prevent tumor development [7].  In 



general, the greatest risks from exposure are assumed to be cancer, cataracts, [8] and damage to the central nervous 

system [9].  Interestingly enough, oxidative stress has been implicated to play a role in the development of other 

diseases [10,11] including cardiovascular disease, cancer [12], chronic inflammatory disease [13], hypertension [14], 

ischemia/reperfusion injury [4], acute respiratory distress syndrome (ARDS) [15], neurodegenerative diseases such 

as Parkinson’s disease and Alzheimer’s disease [16,17] and aging [18].  Certain detrimental effects from space 

radiation on the dopaminergic system are similar to functional changes that occur from Parkinson’s disease [9], 

diabetogenic problems associated with increased C-peptide excretion and insulin resistance  [19], as well as 

constipation due to malfunction of intestine.  That is, the normal production and development of these disorders and 

diseases have also been associated with an increase of oxidative stress and inflammation similar to that which would 

likely be caused or increased by exposure to space radiation.  Thus the nature of the problem seems similar to 

nuclear systems in that systematic manifestations result from a chain of events initiated by ionization and 

propagated, in this case, by ensuing chemical reactions and biological responses.   

 

Radical Scavenging & Antioxidants 

The actual chemical reactions that ensue and their by-products depend upon what the radicals come into contact 

with.  For example, in pure water, radical-radical interactions lead to the formation of the decomposition products 

while radical-decomposition product reactions lead to the reformation of water.  In a nuclear system, manifestation 

of system level problems has been curtailed by interfering with the chain of events early on during the chemical 

stages through the use of additives that alter water composition.  Whereas some additives have been found to 

promote and increase water decomposition, others have been found to suppress it [20].  This occurs through 

scavenging in which the additives preferentially react with the radicals.  Scavenging has the effect of removing 

reactive species from the system and thereby reduces their ability to participate in chemical reactions that cause 

decomposition.  While there are various additives that preferentially react with decomposition products, the 

byproducts of the scavenging reaction are a factor as they are part of the composition.  For example, some ionic 

impurities scavenge radicals but do so at the expense of the water reformation process as the consumed radicals are 

no longer available to react with decomposition products in the chemical reactions that lead to water reformation as 

shown in 1-4.   

 OH + Br-  Br + OH- (1) 



 H + Br  Br - + H+ (2) 

 H + Cu++  Br - + H+ (3) 

 OH + Cu+  Cu++ + OH- (4) 

However, the use of hydrogen as a scavenger produces byproducts that promote the water reformation process while 

neutralizing radicals.   

 H2 + OH  H2O + H (5) 

 H + H2O2  H2O + OH (6) 

The ability of H2 to suppress total oxidant concentrations in a water system exposed to radiation has long been 

recognized by the boiling water reactor (BWR) community and is referred to as hydrogen water chemistry (HWC).  

The addition of H2 to water has the effect of suppressing the Open Circuit Potential (OCP) of the water (Figure 1) 

thereby electrochemically reducing the driving potential for corrosion.   

 

FIGURE 1.  The Effect on OCP of the Solution From H2 Gas Bubbled Into it and the Addition of 0.1 M H2O2 as Measured by 

Tungsten/Tungsten-Oxide (ref. electrode) and Platinum Electrodes (vs. Saturated Calomel Electrode SCE) [21]. 

 

In a biological system, antioxidants have been seen to protect against oxidative stress and prevent the pathological 

process of a wide range of disease [22].  The effect of antioxidants in reducing oxidative stress can be attributed to 

their ability to protect tissues from free radicals [5] hinting towards a scavenging mechanism.  Turner [23] indicates, 

“A number of radiosensitizing chemicals and drugs are known.  Some sensitize hypoxic cells, but have little or no 

effect on normally aerated cells.  Other agents act as radioprotectors reducing biological effectiveness...which 

scavenge free radicals.  Still other chemicals modifiers have little effect on cell killing but substantially enhance 

some multistep processes, such as oncogenic cell transformation.”  Thus it appears that radical scavengers or 

antioxidants act as radioprotectors that chemically protect against indirect ionization by preferentially reacting with 

the reactive species thus reducing their ability to cause oxidative stress.   

 

This dependency of outcome on scavenger type is similar to nuclear systems where the effect of the additive can 

either be to promote water decomposition or water reformation.  One such example is the effect of oxygen.  There 

appear to be parallels in the effect of oxygen to promote water decomposition in a nuclear system and increased 

radiosensitivity of cells in the presence of oxygen as shown in Figure 2C.  Figure 2D also includes the effect of 



hydrogen and shows that when in excess of ROS like O2 and H2O2, the water reformation process dominates as ROS 

are quickly scavenged.  This begs the question of what the effect of H2 would be on radiosensitivity.  Also 

noteworthy in figure 2 is the occurrence of an equilibrium where the amount of molecular decomposition byproducts 

from radiolysis remains constant.  This reflects a balance between water decomposition and reformation process and 

hints at the ability for radical scavengers to affect which process dominates.  Biological parallels and implications of 

this are discussed next. 

 

FIGURE 2.  (A)-(D) [24] Reflect Water Decomposition by the Concentration of Radiolysis byproducts.  (B) is an Extension of 

(A) and is Air Free Pure Water.  Decomposition Ensues until H2 in Excess of ROS.  (C) is Effect of Dissolved O2 in Excess of H2 

to Promote Decomposition.  (D) is Effect of Dissolved Hydrogen in Excess of O2 to Scavenge.  (E) [23] Shows Effect of O2 as a 

Biological Radiosensitizer.  N2 is Also Shown Which Begs the Question of the Effect of H2. 

 
 

The Net Effect of Competing Processes & Natural Repair Mechanisms 

Radiolysis of water results in chemical reactions that are part of two competing processes:  decomposition and 

reformation.  Decomposition will still occur even in the presence of additives but they serve to alter the net effect by 

affecting the chemical reactions such that one process becomes more dominate.  This was seen somewhat in figure 2 

and is shown more explicitly in figure 3 which shows that the threshold for which negative effects can manifest can 

be increased through bolstering the scavenging capacity and altering the balance so that the favorable processes are 

dominant.  

 

FIGURE 3.  Relative Contribution of the Water Decomposition Process is Associated with Boric Acid Concentration Measured 

in Milli-molar on the Abscissa.  System Scavenging Capacity or Relative Contribution of the Water Reformation Process is 

Associated with the Initial Amount of Dissolved H2 Measured in Micro-molar Concentrations (each curve).  Manifestation of 

Negative Systematic Effects is Reflected by the Amount of Water Decomposition from Radiolysis as Reflected by H2 Gas 

Generation Rates Measured in Micro-molar Concentrations per Minute on the Ordinate.  Figure Illustrates That the Addition of 

dissolved H2 Increases the Scavenging Capacity of the Water Therefore Increasing the Threshold and Delaying the Onset of 

when Decomposition Becomes the Dominant Process [27]. 

 



As mentioned earlier, free radicals and ROS were identified as the root cause of oxidative stress in a biological 

system.  While free radicals and ROS are created from exposure to external sources like X-rays, ozone, cigarette 

smoke, air pollutants and industrial chemicals [25], they also are naturally generated during a variety of energy-

generating biochemical reactions and cellular functions [4].  Furthermore, the ROS actually serve a necessary 

function as signaling molecules that critically modulate the activation of the immune system and thus participate in 

antibacterial defense [26].  Oxidative stress occurs when there is an imbalance between antioxidants and ROS and 

free radicals [28] such as when radiation exposure increases the amount of free radicals and ROS through production 

by ionization.  Thus, in the biological system, it similarly appears to be a situation of competing processes between 

biochemical damage and repair processes.  Chopping observes, “The cell is protected by different DNA repair 

mechanisms which try to restore the damage.   We don’t know the details, except when the repair goes wrong (e.g. a 

replacement of a lost nucleotide by a ‘wrong” base pair, etc.)… The cell contains natural radical scavengers.  As 

long as they are in excess of the radiolysis products, the DNA may be protected.  When the products exceed the 

amount of scavengers, radiation damage and cancer induction may occur.  In principle, there could thus be a 

threshold dose for radiation damage, at which the free radicals formed exceed the capacity of scavenging.  The 

scavenging capacity may differ from individual to individual depending on his/her physical condition” [2].  

Experimental investigations regarding long-duration space flights in particular clearly showed increased oxidative 

stress markers and a reduction in antioxidants after these flights [29, 6].  Kennedy et al. demonstarted that exposure 

to space radiation may compromise the capacity of the host antioxidant defense system and that this adverse 

biological effect can be prevented, at least partially, by dietary supplementation with agents expected to have effects 

on antioxidant activities [30].  Interestingly and similarly so, the radiation resistance of the bacteria Deinococcus 

radiodurans that can grow under chronic γ radiation (50 Gy/hr) or recover from acute doses greater than 10 kGy has 

been attributed to the role of antioxidants in mitigating the extent of oxidative damage [31-33].  Thus there appear to 

be similarities between the nuclear and biological systems in how use of scavengers can enhance and bolster the 

favorable process thereby increasing the natural radiation resistance of the system.  Thus, we hypothesize a strategy 

that (1) interrupts the chain of events leading to biological disease and (2) bolsters natural repair processes and 

reduces damage processes could have a great effect on increasing the threshold after which radiation damage 

propagates to the systematic symptoms.   



 

Radiation protection by a biochemical conjunctive approach 

Over the course of the last century, a wealth of knowledge has been accumulated on the effect of radiation on 

biological systems.  Areas spanning in scope from DNA damage up to changes in physiology have received 

extensive study. To date, biology studies of radiation damage have largely focused on components of DNA repair 

systems such ataxia telangiectasia mutated gene (ATM).  More recently, however, it has been found that 

modification of key molecular targets can protect tissue from radiation induced fibrosis in mice exposed to doses up 

to 25Gy [34,35].   It has also been found that changes in APOE (Apolipoprotein E) genotype dramatically influences 

survival following Total Body Irradiation (TBI) in murine models. These results imply that modification of key 

molecular targets to induce biological changes in the host can protect tissue from radiation damage.  We suggest the 

use of new therapeutic medical gases to administer radioprotectors and biological signaling molecules to work 

conjunctively in preventing, protecting, and repairing radiation damage.  Turner notes that, “for carcinogensis or 

transformation, for example, such biological promoters (radioprotectors) can dwarf the effects of physical factors, 

such as LET and dose rate, on dose-response relationships” [23].   

 

Radioprotectors have been implicated to work by the following chemical and biological mechanisms: 

1. radical scavenging of toxic decomposition products of free radicals and ROS 

2. repair of biological molecules by donation of H atoms since hydrogen bonds are among the weakest in 

biological molecules and such are the first to be broken [36] 

3. interaction with cellular components (binding, altering metabolic pathway, etc.)  

Interaction with cellular components can have biological effects that lend to radioprotection like hypoxia, alteration 

of metabolic state, and anti-apoptotic properties.  Tissue hypoxia decreases the radiosensitivity of cells by 

minimizing the O2 effect and can be produced chemically by impairing oxygen transport (binding up hemogloblin 

with another molecule) or biologically by restricting blood flow (vasoconstrictor drug) or lowering blood pressure 

(vasodilator drug).  Inducing a hypometabolic state which resembles hibernation, may contribute to tolerance 

against oxidative stress.  Metabolic rates in hibernating marmots and ground squirrels help delay the onset of 

obvious damage.  Also, survival times for guinea pigs that have received massive doses of radiation (>6000 rads) 

have been extended from several hours to about 4 days through the use of central nervous system depressants 



(pentobarbital) where it has been attributed to partial protection from central nervous system syndrome [36].  

Furthermore, a hypometabolic status may also prove to be an ideal therapy for various shock or trauma states in 

which dramatic reduction in metabolic demands may be highly protective [37].  Anti-apoptotic properties can 

mitigate organ damage such as in IR injury by reducing the amount of cellular self destruction.   Interference with 

mitosis and DNA synthesis can slow cells in their radio-resistant phase of cell division and afford more time for 

natural repair of the cell prior to replication of the damage.  NO, CO, H2S and H2 are gaseous signaling molecules 

in humans.  These molecules act as transmitters of information between cells by chemically interacting with cell 

receptors to trigger a response within the cell.  These comprise some of the medical gases of interest and many of 

them act both on the chemical level in the form of antioxidant radical scavenging and on the biological level in the 

form anti-inflammatory, anti-apoptotic, and other biological effects.  Extensive and more detailed information about 

these gases in a therapeutic role can be found in [22] which provides a detailed description of medical gases of 

interest and their properties and [38] provides detailed information pertaining in particular to H2.   

 

Hydrogen 

Hydrogen has only recently been considered for therapeutic applications for radiation exposure [39, 40] and recent 

results have demonstrated its radioprotective effects in cultured cells and mice [41].  Hydrogen properties as a 

medical gas are summarized in Table 1.  Hydrogen may have potential as a safe and potent therapeutic medical gas, 

as well as several potential advantages over current pharmacological therapies for the following reasons:  

• It is highly diffusible and as such could potentially reach subcellular compartments, such as mitochondria 

and nuclei, which are the primary site of ROS generation and DNA damage [42] and are also notoriously 

difficult to target pharmacologically.   

• Its hyporeactivity with other gases at therapeutic concentrations may allow hydrogen to be administered 

with other therapeutic gases, including inhaled anaesthesia agents [43]. 

• H2 may spare the innate immune system while still allowing phagocytosis of infecting organisms.  When 

tested in vitro, it did not eliminate O2
- or H2O2 which have important functions in neutrophils and 

macrophages as they must generate ROS in order to kill some types of bacteria engulfed by phagocytosis 

[42].  It is not clear whether a similar reaction preferentially occurs under complex biological conditions.  



Experimental studies have demonstrated that hydrogen has potent therapeutic efficacies on both parasite 

infection [44] and polymicrobial sepsis [45]. 

• No adverse effects have been found in humans drinking hydrogen water in a study that examined the 

effects of drinking hydrogen-rich water (HW) for radiation-induced late adverse effects [46, 47].  Studies 

showed that the consumption of HW for 6 months resulted in significant decrease of serum levels of 

derivatives of Reactive Oxidative Metabolites (dROMs) and an increase of biological antioxidant power 

determined by Free Radical Analytical System (FRAS). No severe adverse effects were seen during follow 

up period.  These results suggest that drinking HW improved Quality of Life (QOL), associated with 

decrease of oxidative injury markers, in patients with radiotherapy. 

 

Nitric Oxide   

Medical properties for NO are summarized in Table 2 and effects are shown in Figure 4.  NO regulates platelet 

activity, preservation of the normal structure of the vessel wall and causes blood vessel dilation which may increase 

tissue blood supply [22].  This could abate inflammatory response and thus protect tissue from oxidative injury.  It 

also may enhance the natural repair as mechanism as it is believed to be more effective in a living organism, where 

the cells are in continuous exchange with the surrounding cells and body fluids, than in the tissue samples often 

studied in the laboratory [2].  Results from NO studies that have examined the ability of patients to inhale NO to 

improve outcome of acute respiratory distress syndrome (ARDS) have had discrepant results from positive, negative 

or neutral outcomes.  Thus NO may be linked with both protective and toxic effects depending upon concentrations, 

source, timing of administration and the environment suggesting a narrow window for administration in the 

treatment of oxidative injuries [48].  Reduction of excessive and deleterious NO effects appear to be controlled by 

blocking NO/cGMP signaling through thrombospondin-1 signaling via its receptor CD47.  This has shown to both 

maintain the viability of normal tissues against radiation induced fibrosis in murine models following total body 

irradiation (25 Gy) and increase the radiosensitivity of tumors [34, 49, 35].  

  

 FIGURE 4.  Images Compare Treated and Untreated Hind Limbs 8 Weeks After An Exposure of 25 Gy Showing That 

Signs of Fibrotic Contractures Occurred Only in the Untreated Limb [49]. 



 

Carbon Monoxide  

Table 3 summarizes medical properties of CO gas.  While the adverse effects of inhaled CO are a major concern for 

clinical use, experimental models have demonstrated that potent therapeutic efficacies exist at low concentrations 

[22, 50].  Soluble forms of CO, such as CO-releasing molecules, may overcome the problem of tissue hypoxia and 

allow clinical application [51, 52].  Recent animal studies have shown discrepant results between exhibiting and not 

exhibiting anti-inflammatory effects [22].  These discrepancies may be attributed to species specific differences in 

the affinity of CO for hemoglobin, or physiological differences such as respiratory rate and sensitivity to 

lipopolysaccharides (endotoxins) [53, 54].  Figure 5 shows that administration of H2/CO mixtures has been shown to 

reduce structural damage to hearts in Lewis rats undergoing heart transplantation (HTx) in which oxidative stress 

injury is caused by ischemia/reperfusion [22] rather than radiation exposure. 

 

FIGURE 5.  Extent of Gross Structural Damage to Heart Graft Was Evaluated by TTC staining 3 h After Reperfusion.  H2 and 

CO Inhalation Reduced Ischemic Area Following Heart Grafts but with Only Slight Significance.  Significant Reduction is Seen 

by Dual Treatment [22].  

 

Hydrogen Sulfide 

H2S is produced enzymatically at micromolar levels in mammals and is believed to help regulate body temperature 

and metabolic activity at physiological concentrations [55, 56].  It has been implicated as the mechanism by which 

consumption of garlic attenuated cardiovascular disease where production of the gas has been demonstrated to occur 

by bioconversion of garlic-derived polysulfides by red blood cells [56].  According to Lefer [37], it appears that H2S 

possesses all of the positive effects of NO without the capacity to form the toxic metabolite such as ONOO-.   The 

medical properties of H2S are summarized in Table 4.   

 

Possible administration methods 

Hydrogen or combinations of other medical gases could be administered to astronauts by inhalation, ingestion or 

injection.  Inhalation could be achieved though a ventilator circuit, facemask, nasal cannula, or creating a spacesuit 

or spacecraft atmosphere which is composed of or contains a non-flammable gas mixture of these therapeutic 



medical gases.  The use of Hydreliox, an exotic breathing gas mixture of 49% hydrogen, 50% helium and 1% 

oxygen for prevention of decompression sickness and nitrogen narcosis during very deep technical diving [57] is 

one example of human inhalation of hydrogen gas mixtures.  Drinking hydrogen-rich water (HW) appears to have 

comparable effects to hydrogen inhalation [58].  Although inhaled hydrogen gas may act more rapidly, oral intake of 

hydrogen-rich water is another method which may be more practical for daily life or suitable for continuous 

consumption in preventive or therapeutic uses.  Ingestion of gas dissolved solutions may prove to be more portable, 

easily administered, and a safe means of delivering molecular hydrogen [59].  Gas rich water in which the gases 

have been dissolved could be prepared by bubbling gases into solution under pressure or other dissolution methods 

like swept gas diffusion.  However, consideration will have to be given to loss of gas over time by dissolution and 

diffusion.  Alternatively, some therapeutic gases such as hydrogen could be generated in solution by chemical 

reaction with the solution such as magnesium (Mg + 2H2O  Mg(OH)2 + H2).  In this case for example, a magnesium 

stick could be inserted into the water just prior to drinking.  However, consideration will also have to be given to 

ingestion of other produced byproducts.  Though oral administration is safe and convenient, hydrogen can be lost 

from solution by dissolution and diffusion and some hydrogen is lost in the stomach or intestine, making it difficult 

to control the concentration of hydrogen administrated. Administration of hydrogen via an injectable hydrogen-rich 

solution may allow delivery of more accurate concentrations of hydrogen [60].  This method of administration has 

been demonstrated for hydrogen in mice [41]. 

 

CONCLUSIONS 

We hypothesize a systems approach of using various therapeutic medical gases as chemical radioprotectors in 

conjunction with biological signaling molecules to disrupt the chain of events initiated by radiation exposure and 

interfere with pathogenesis of disease.  This could have a profound positive effect as it addresses prevention, 

protection, and repair.  This represents a novel and feasible preventative/therapeutic strategy to address radiation-

induced adverse events and thus the challenge of space radiation.  While more studies are warranted to apply this 

therapy for space travel and determine details of optimum gas mixtures and therapy administration plans, it appears 

that it represents a potentially novel, therapeutic, and preventative strategy that may also ameliorate symptoms for 

other oxidative stress related diseases as has been shown in relevant ground-based (animal) models. 



LIST OF ABBREVIATIONS 

APOE Apolipoprotein E 
ARDS Acute Respiratory Distress Syndrom 
ATM ataxia telangiectasia mutated gene  
BWR Boiling Water Reactor 
DNA Deoxyribonucleic acid  
dROMS derivatives of Reactive Oxidative Metabolites  
FRAS Free Radical Analytical System  
GCR Galactic Cosmic Rays 
Gy Grey 
HTx Heart Transplantation 
HW Hydrogen Water 
HWC Hydrogen Water Chemistry 
HZE High Z and Energy (Z - Atomic #) 
LET Linear Energy Transfer 
OCP Open Circuit Potential 
QOL Quality of Life 
ROS Reactive Oxygen Specie 
SEP Solar Energetic Particles 
TBI Total Body Irradiation 
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TABLES AND CAPTIONS 

TABLE 1. Cited Properties of H2 as a Medical Gas with Suggested Chemical/Biological Mechanisms.  
Biochemical Mechanism Notes 

radical scavenging antioxidant • selectively reduces hydroxyl radicals (•OH) and peroxynitrite 
(ONOO--)  but did not eliminate O2

- or H2O2 when tested in  in vitro 
[42]. 

• does not decrease the steady-state levels of nitric oxide (NO) [42] 
which may be beneficial as endogenous NO signaling pathways 
modulate pulmonary vascular tone and leukocyte/endothelial 
interactions [61]. 

• increases antioxidant enzymes such as catalase, superoxide 
dismutase or heme oxygenase-1 [45,46]. 

anti-apoptotic • postulated to inhibit caspase-3 activation [62]. 

anti-inflammatory • down-regulation of pro-inflammatory cytokines, such as 
interleukin (IL)-1 β, IL-6, chemokine (CC motif) ligand 2 and 
tumor necrosis factor-α (TNF-α) [63,64]. 

 

TABLE 2. Cited Properties of NO as a Medical Gas with Suggested Chemical/Biological Mechanisms. 

 

Biochemical Mechanism Notes 

radical scavenging antioxidant • NO reacts with peroxy and oxy radicals generated during the 
process of lipid peroxidation.  The reactions between NO and 
these ROS can terminate lipid peroxidation and protect tissues 
from ROS-induced injuries [65]. 

• induces the rate-limiting antioxidant enzyme, heme oxygenase 
(HO)-1 thus imparting resistance to H2O2 induced cell death  
[66]. 

• in bacteria, activates the redox-sentive transcriptional regulator 
protein (oxyR), resulting in the subsequent expression of 
protein protective against ROS [67]. 

anti-inflammatory • inhibiting P-selectin expression and leukocyte recruitment [68].   

decreased radiosensitivity • vasodilator through relaxation of vascular tone by stimulating 
soluble guanylate cyclase (sGC) and increased cGMP content in 
vascular smooth muscle cells [22]. 



TABLE 3. Cited Properties of CO as a Medical Gas with Suggested Chemical/Biological Mechanisms. 

 

TABLE 4. Cited Properties of H2S as a Medical Gas with Suggested Chemical/Biological Mechanisms. 

 

Biochemical Mechanism Notes 

radical scavenging antioxidant • binds to the heme moiety of mitochondrial cytochrom c oxidase.  By 
binding to the heme, CO may prevent degradation of heme proteins which 
induce tissue injury by rapidly promoting peroxidation of the lipid 
membranes of cells [69, 70]. 

• reduces mitochondria-derived ROS thus resulting in lower levels of ROS 
generation in which an adaptive cellular response is triggered leading to 
cell survival rather than cell death [71-73]. 

• can induce HO-1 in cells to protect against injury [74-76].  Thus, 
detrimental excess of heme can be immediately removed by HO-1 
enzymatic activity induced by CO. 

decrease radiosensitivity • impedes O2 transport as it binds to hemoglobin with an affinity 240 times 
higher than that of O2. 

Biochemical Mechanism Notes 

radical scavenging antioxidant • antioxidant inhibitor of peroxynitrite-mediated processes via activation of 
N-methly-D-aspartate (NMDA) receptors [77]. 

• shield cultured neurons from oxidative damage by increasing levels of 
glutathione [78]. 

• induce upregulation of HO-1, anti-inflammatory and cytoprotective genes 
[79, 80].   

• inhibits myeloperoxidase and destroys H2O2 [81].   

anti-apoptotic • reduces IR induced apoptosis via reduction of cleaved caspase-3 
and cleaved poly (ADP-ribose) polymerase (PARP) [82].  

anti-inflammatory • inhibit leukocyte adherence in the rat mesenteric microcirculation 
during vascular inflammation [37].   

decrease radiosensitivity • vascorelaxtion and vasodilation of isolated blood vessels via vascular 
smooth muscle KATP channel-mediated hyperpolarization [37, 22]. 

• transiently and reversibly inhibiting mitochondrial respiration [37]. 

metabolic alteration  • produces a “suspended animation-like” metabolic status with hypothermia 
and reduced oxygen demand in pigs (who received it intravenously) [83]. 
and mice (who received hydrogen sulfide via inhalation) [84, 85]. 
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