NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Reusable Solid Rocket Motor - Accomplishments, Lessons, and a Culture of SuccessThe Reusable Solid Rocket Motor represents the largest solid rocket motor ever flown and the only human rated solid motor. Each Reusable Solid Rocket Motor (RSRM) provides approximately 3-million lb of thrust to lift the integrated Space Shuttle vehicle from the launch pad. The motors burn out approximately 2 minutes later, separate from the vehicle and are recovered and refurbished. The size of the motor and the need for high reliability were challenges. Thrust shaping, via shaping of the propellant grain, was needed to limit structural loads during ascent. The motor design evolved through several block upgrades to increase performance and to increase safety and reliability. A major redesign occurred after STS-51L with the Redesigned Solid Rocket Motor. Significant improvements in the joint sealing systems were added. Design improvements continued throughout the Program via block changes with a number of innovations including development of low temperature o-ring materials and incorporation of a unique carbon fiber rope thermal barrier material. Recovery of the motors and post flight inspection improved understanding of hardware performance, and led to key design improvements. Because of the multidecade program duration material obsolescence was addressed, and requalification of materials and vendors was sometimes needed. Thermal protection systems and ablatives were used to protect the motor cases and nozzle structures. Significant understanding of design and manufacturing features of the ablatives was developed during the program resulting in optimization of design features and processing parameters. The project advanced technology in eliminating ozone-depleting materials in manufacturing processes and the development of an asbestos-free case insulation. Manufacturing processes for the large motor components were unique and safety in the manufacturing environment was a special concern. Transportation and handling approaches were also needed for the large hardware segments. The reusable solid rocket motor achieved significant reliability via process control, ground test programs, and postflight assessment. Process control is mandatory for a solid rocket motor as an acceptance test of the delivered product is not feasible. Process control included process failure modes and effects analysis, statistical process control, witness panels, and process product integrity audits. Material controls and inspections were maintained throughout the sub tier vendors. Material fingerprinting was employed to assess any drift in delivered material properties. The RSRM maintained both full scale and sub-scale test articles. These enabled continuous improvement of design and evaluation of process control and material behavior. Additionally RSRM reliability was achieved through attention to detail in post flight assessment to observe any shift in performance. The postflight analysis and inspections provided invaluable reliability data as it enables observation of actual flight performance, most of which would not be available if the motors were not recovered. These unique challenges, features of the reusable solid rocket motor, materials and manufacturing issues, and design improvements will be discussed in the paper.
Document ID
20120001536
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Moore, Dennis R.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Phelps, Willie J.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
August 25, 2013
Publication Date
September 27, 2011
Subject Category
Launch Vehicles And Launch Operations
Report/Patent Number
M11-1027
Meeting Information
Meeting: AIAA SPACE 2011 Conference and Exposition
Location: Long Beach, CA
Country: United States
Start Date: September 27, 2011
End Date: September 29, 2011
Sponsors: American Inst. of Aeronautics and Astronautics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available