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Abstract: The Reusable Solid Rocket Motor represents the largest solid rocket motor 
ever flown and the only human rated solid motor. Each Reusable Solid Rocket Motor 
(RSRM) provides approximately 3-million lb of thrust to lift the integrated Space Shuttle 
vehicle from the launch pad. The motors burn out approximately 2 minutes later, separate 
from the vehicle and are recovered and refurbished. The size of the motor and the need for 
high reliability were challenges. Thrust shaping, via shaping of the propellant grain, was 
needed to limit structural loads during ascent. The motor design evolved through several 
block upgrades to increase performance and to increase safety and reliability. A major 
redesign occurred after STS-51L with the Redesigned Solid Rocket Motor. Significant 
improvements in the joint sealing systems were added. Design improvements continued 
throughout the Program via block changes with a number of innovations including 
development of low temperature o-ring materials and incorporation of a unique carbon fiber 
rope thermal barrier material. Recovery of the motors and post flight inspection improved 
understanding of hardware performance, and led to key design improvements. Because of 
the multidecade program duration material obsolescence was addressed, and requalification 
of materials and vendors was sometimes needed. Thermal protection systems and ablatives 
were used to protect the motor cases and nozzle structures. Significant understanding of 
design and manufacturing features of the ablatives was developed during the program 
resulting in optimization of design features and processing parameters. The project 
advanced technology in eliminating ozone-depleting materials in manufacturing processes 
and the development of an asbestos-free case insulation. Manufacturing processes for the 
large motor components were unique and safety in the manufacturing environment was a 
special concern. Transportation and handling approaches were also needed for the large 
hardware segments. The reusable solid rocket motor achieved significant reliability via 
process control, ground test programs, and postflight assessment. Process control is 
mandatory for a solid rocket motor as an acceptance test of the delivered product is not 
feasible. Process control included process failure modes and effects analysis, statistical 
process control, witness panels, and process product integrity audits. Material controls and 
inspections were maintained throughout the sub tier vendors. Material fingerprinting was 
employed to assess any drift in delivered material properties. The RSRM maintained both 
full scale and sub-scale test articles. These enabled continuous improvement of design and 
evaluation of process control and material behavior. Additionally RSRM reliability was 
achieved through attention to detail in post flight assessment to observe any shift in 
performance. The postflight analysis and inspections provided invaluable reliability data as 
it enables observation of actual flight performance, most of which would not be available if 
the motors were not recovered. These unique challenges, features of the reusable solid rocket 
motor, materials and manufacturing issues, and design improvements will be discussed in 
the paper. 

                                                           
1 Reusable Solid Rocket Motor Chief Engineer, Space Shuttle Propulsion Chief Engineers Office, Marshall Space 
Flight Center, Huntsville, AL. 35812/EE02, Nonmember. 
2 Reusable Solid Rocket Motor Deputy Chief Engineer, Space Shuttle Propulsion Chief Engineers Office, Marshall 
Space Flight Center, Huntsville, AL. 35812/EE02, Nonmember. 



 
American Institute of Aeronautics and Astronautics 

 
 

2 

I. Introduction 
As of this date, the Space Shuttle Reusable Solid Rocket Motor (RSRM) was the largest diameter solid 

propellant motor used for space flight and the only large solid rocket motor (SRM) certified to launch humans into 
space. The RSRM basically consisted of four propellant-loaded steel case segments (forward, forward-center, aft-
center, and aft) with a binding liner and thermal protecting insulation, a head end igniter system with a safe and arm 
device, and a multicomponent metal nozzle structure with thermal protecting carbon phenolic liners. The propellant 
mixture consisted of aluminum powder (fuel), ammonium perchlorate (oxidizer), iron oxide (burn rate catalyst), 
epoxy curing agent, and a polymer binder that held the mixture together. An assembled motor was 126 ft long, 12 ft 
in diameter, and contained approximately 1.1-million lb of propellant (Figs. 1 and 2). At lift-off of the Space Shuttle, 
the two RSRMs provided 6.6-million lb thrust—the RSRMs provided 80% of the Space Shuttle lift-off thrust. 
Figure 3 is a graphical depiction of the SRB/RSRM detail.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The RSRMs burned for 2 minutes completing the Space Shuttle first stage, which ended at Solid Rocket Booster 
(SRB) separation. After separations the SRBs parachuted into the Atlantic and were recovered by the two SRB 
recovery ships. The ships returned the SRBs to the Kennedy Space Center for disassembly and postflight 
inspections. All recoverable hardware was then shipped back to Alliant Techsystems In. (ATK) facilities in Utah to 
undergo further disassembly, postflight inspection, and start the refurbishment process to make other sets of 
RSRMs.  

The RSRM was designed to make the most use of recoverable hardware. The majority of metal hardware was 
recycled through ATK’s Clearfield refurbishment plant in Utah and returned to a flight-qualified conditioned. There 
were innumerable accomplishments, lessons learned, and cultural changes during the Space Shuttle SRM Program; 
for brevity only a few have been selected to be discussed here. 

II. RSRM Evolution 
The contract to develop the Space Shuttle SRM was awarded to Thiokol Corporation in 1974. As shown in 

Figure 4, the company evolved throughout the history of the Shuttle Program as various mergers, acquisitions, and 
other name changes occurred between 1982 and 2011.  

Figure 5 is a chronological roadmap showing some of the major qualification tests, design changes, process 
improvements, and operational methodology changes that were incorporated for the SRM as it evolved and matured 
throughout the life of the Shuttle Program.2 Between July 1977 with the firing of Demonstration Motor No. 1 (DM-
1), and February 2010 with the firing of Flight Support Motor No. 17 (FSM-17), 52 static motor tests were 
successfully conducted at the ATK facilities in Promontory, Utah to support the Shuttle Program. A total of seven 
successful tests (four demonstration and three qualification tests) were completed prior to the first Shuttle flight in 
April 1981. The baseline motor, known as the SRM, was flown on the first seven Space Shuttle missions between 
1981 and 1983.1 

 

Figure 1. STS-1 first Space 
Shuttle launch—April 12, 1981. 

 

Figure 2. STS-135 last Space 
Shuttle launch—July 8, 2011. 
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Figure 3. SRB/SRM detail. 
 

Figure 4. ATK evolution. 
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Early evolution of the Space Shuttle vehicle involved a number of performance upgrades, including development 

of the high-performance motor (HPM). In October 1982 and March 1983, static test firings (Demonstration Motors 
6 and 7) were conducted to qualify several enhancements to the baseline motor. These enhancements involved 
increasing the motor chamber pressure, reducing the nozzle throat, increasing the nozzle expansion ratio, and 
modifying the propellant grain-inhibiting pattern to reshape the thrust-time history. These enhancements resulted in 
a 3-s increase in specific impulse and an additional 3,000 lb (1,360 kg) of payload. The first HPM motors were 
flown on STS-8 in August 1983. The SRM/HPM program included a total of 50 flight motors and 11 static test 
motors between 1977 and 1986.  

During the early 1980s, the long-range performance improvement plans involved development of a 
graphite/epoxy Filament Wound Case (FWC) to replace the steel case in the HPM design. This composite motor 
case (see Fig. 6) design (developed by Hercules Inc.) reduced the case weight from 98,000–69,000 lb (44,500–
31,300 kg) resulting in an additional 6,000 lb (2,700 kg) of Space Shuttle payload capability. 

Figure 5. RSRM evolution. 
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Two full-scale static tests, DM-6 and DM-7, were conducted in October 1984 and May 1985. A full-scale FWC 

Qualification Motor (QM-5) was assembled and ready to fire when the Challenger accident occurred. At that time, 
the first FWC flight motors were stacked and ready to support a July 1986 launch at the Vandenburg launch site in 
California. The FWC development and the plans to launch the Space Shuttle out of Vandenburg were subsequently 
abandoned. 

Following the Challenger accident, a redesigned SRM (the RSRM, first known as the “redesigned” SRM, but 
later as the “reusable” SRM) was developed and qualified between the spring of 1986 and the summer of 1988 in 
one of the most intense engineering efforts ever. During this period, extensive subscale and full-scale tests were 
conducted to verify the cause of the Challenger accident and qualify the necessary design changes. Six static tests 
were conducted (Engineering Test Motor No. 1A, Demonstration Motors Nos. 8 and 9, Qualification Motors Nos. 6 
and 7, and Production Verification Motor No. 1 (PVM-1)) including tests at hot and cold specification bounds with 
side loads applied to simulate those induced by the external tank 
attachments. PVM-1, the final static test prior to return to flight, 
was a full-scale flaw test motor to verify the redundant features of 
critical seals. The first flight of the redesigned booster occurred on 
STS-26 in September 1988 (Fig. 7). The key changes between the 
HPM and RSRM designs (Figs. 8–10) include (1) improved case 
metal hardware with a capture feature and third o-ring, (2) 
improved field joint thermal protection with a rubber J-leg replacing 
the putty, (3) added field joint heaters to ensure o-rings can track 
dynamic motions even under cold ambient conditions, (4) improved 
ply angles in nozzle phenolic rings to preclude anomalous 
pocketing erosion, (5) more robust metal housings in the nozzle to 
increase structural margins and accommodate dual and redundant o-
ring seals, and (6) an improved nozzle-to-case joint that added 100 
radial bolts to reduce the dynamic joint motion plus the addition of 
a bonded insulation flap with a wiper o-ring in place of the putty 
thermal barrier (years later the adhesive was removed and replaced 

with an insulation j-leg with pressure sensitive adhesive (PSA) and 
a carbon fiber rope thermal barrier).  

 
 

Figure 6. DM-7. 
 

Figure 7. STS-26 Post-Challenger launch. 
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Figure 9. RSRM nozzle. 
 

Figure 8. Field joint comparison. 
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Shortly after return-to-flight, an insulation J-leg thermal barrier was developed for the igniter inner and outer 

joints (Fig. 10). 
 

 

 
After the Challenger accident, NASA and ATK worked on improving their relationship and the way they were 

doing business together. The focus became working as a team with emphasis on communication, safety and 
technical excellence. As a result, NASA and ATK continued to make many RSRM improvements throughout the 
remainder of the Shuttle Program. Notable improvements to RSRM manufacturing processes, plant operating 
methodology, and risk management systems include (1) a rigorous postfire evaluation of flown and tested hardware, 
(2) continuous facility improvements including: a new nozzle bond facility, an advanced static test facility, a new x-
ray facility, a new propellant pre-mix facility, a new ultrasonic gantry system, a new automated eddy current 
inspection system for metal hardware, the switch from x-ray film to digital x-ray, the incorporation of humidity 
control in the insulation facility, the elimination of trichloroethane (TCA), also known as methyl chloroform, vapor 
degreasers due to the incorporation of greaseless case segment shipping containers, and a dedicated final assembly 

Figure 10. HPM and RSRM joint design. 
 

Figure 11. HPM and RSRM igniter comparison. 
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building, (3)  the use of witness panels for critical manufacturing processes, (4) the use of trending and statistical 
process control,  5) the use of Process/Product Integrity Audits and NASA Engineering and Quality Audits, (6) the 
use of Process Failure Modes and Affects Analysis (7) the transition from paper manufacturing planning instructions 
to paperless Electronic Shop Floor Instructions, (8) the incorporation of chemical fingerprinting to identify 
constituent anomalies of critical RSRM materials before their use on RSRM hardware, (9) the adoption of the 
Toyota Production System, known at ATK as the Performance Enterprise System, as a way of operating the ATK 
manufacturing facilities, and (10) the use of Process System Design.  

Many changes to the RSRM design were made after the Challenger accident to improve the safety and reliability 
of the motors. These changes were mainly driven by anomalous postfire observations, material obsolescence issues, 
and desired margin enhancements, In addition to those design changes identified above that were made as a result of 
the Challenger accident, some of the most notable design changes include: (1) the addition of silane primer, 
enhanced bond surface preparations, and improved assembly processes on nozzle liner bonds, (2) an improved room 
temperature vulcanized (RTV) thermal barrier excavation and backfill process in nozzle joints, (3) the replacement 
of the nozzle liner-to-housing adhesive with a new and improved adhesive, (4) the use of carbon fiber rope as a 
thermal barrier in nozzle joints No. 2 and 5, and the nozzle-to-case joint, (5) the use of North American Rayon 
Corporation (NARC) material carbonized at higher furnace temperatures to mitigate pocketing erosion in the nozzle 
throat (6) the redesign of the propellant fin transition region, (7) the removal of the inactive stiffener stub, (8) the use 
of intelligent pressure transducers (IPTs) to more accurately measure the motor ignition transient and pressure 
oscillations during motor operation, (9) the redesign of the field joint protection system to improve processing 
timelines at the Kennedy Space Center, (10) the switch from United Technologies Corporation, Chemical Systems 
Division (CSD) manufactured booster separation motors (BSMs) to ATK manufactured BSMs, (11) the change to 
improved resiliency o-rings in the field joints, nozzle joints, the BSM, and the igniter and Safe and Arm (S&A) 
gaskets, and (12)  the use of reformulated ethylene propylene diene monomer rubber (EPDM) in the factory joint 
weather seal and the carbon fiber EPDM of the aft dome. 

The majority of changes made to the RSRM were due to material obsolescence. For example, during a 10-year 
period beginning in the mid-1990s, more than 100 RSRM materials became obsolete. The largest contributing factor 
for why suppliers changed their materials stemmed from economics and the desire to reduce costs and can be 
captured in three main scenarios. First, suppliers changed their own materials and processes. Second, suppliers 
consolidated operations and either discontinued or otherwise modified their materials. Third, the product constituent 
materials were simply no longer available from subtier vendors.  

The need for compliance with US environmental regulations was another reason why some changes were made 
to the RSRM. For example, Environmental Protection Agency (EPA) regulations require the phase-out of ozone 
depleting compounds. NASA and ATK worked closely with the EPA to develop a strategy and timeline for 
eliminating the use of methyl chloroform as hardware cleaning method in the RSRM manufacturing process. 
Through extensive full-scale and sub-scale testing, new replacement materials were selected for hand cleaning and 
the use of Conoco HD2 grease was eliminated as the corrosion preventer for steel case segment hardware. By the 
time the Shuttle Program ended, most methyl chloroform usage had been eliminated except for that used for rubber 
activation during case insulation layup, flex bearing manufacture, field joint cleaning and pressure sensitive 
adhesive production. The yearly usage of methyl chloroform had dropped from the 635 metric tons (1.4-million lb) 
used in 1989 to approximately 4 metric tons (8800 lb) at the end of the program. 

The following brief summaries are examples of five significant and technically challenging projects that 
occurred during the life of the RSRM program. 

A. Insulation J-Leg  
The Presidential Commission on the Space Shuttle Challenger Accident concluded that the cause of the 

Challenger accident was the failure of the pressure seal in the aft field joint of the right SRB. The failure was due to 
a faulty design unacceptably sensitive to a number of factors. These factors were the effects of temperature, physical 
dimensions; character of materials; effects of reusability; processing; and the reaction of the joint to dynamic 
loading. One poor design characteristic leading to the cause of the accident was that the zinc chromate putty used 
between the mating tang and clevis field joint insulation was susceptible to the creation of gas paths and blow holes 
during segment stacking at KSC. During motor operation, these gas paths allowed hot gas and pressure to penetrate 
the joint setting up a condition for continuous high temperature gas flow which in turn eroded through the o-rings 
and allowed the gas to escape through the joint. The redesign team was faced with the challenge of coming up with a 
new design that solved this issue. The team considered several options, including an option that would allow the 
rapid pressurization of an open joint at motor ignition that would prevent the continuous gas flow through the putty 
experienced by the failed motor on Challenger. The team decided on a design solution that would attempt to totally 
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stop the flow of gas into the joint. The selected design (Fig.8) added a J-leg to the tang-side insulation with matching 
clevis side insulation and included pressure sensitive adhesive to act as a sealing and bonding agent for the mating 
surface.3 Figure 12 shows how the pressure-assisted insulation J-leg works.  

At ignition, motor gas enters the J-leg slot and with the aid of the pressure sensitive adhesive the J-leg tracks the 
clevis insulation keeping hot gas away from the downstream o-rings. This design was first used on RSRM-1 (STS-
26R). Although it was considered a thermal barrier and not a seal, this design proved to be very successful, and 
except for the RSRM-55 (STS-78) special cause, never allowed gas into the joint. RSRM-55 used a new water-based 
PSA whose properties were adversely affected by the high humidity conditions during application at KSC; the fix 
was to switch back to the previously used methyl chloroform based PSA. The successful performance of the J-leg in 
the field joint eventually led to the incorporation of this design feature into the igniter inner and outer joints, and the 
nozzle-to-case joint. 
 
 

 
Figure 12. Pressure-assisted insulation J-leg. 

B. Improved Resiliency O-Rings and Gaskets 
Brought to the forefront of major HPM design deficiencies by the findings from the Challenger accident 

investigation, an important aspect of proper field joint fluorocarbon o-ring performance is the ability to track the 
joint movement, or gap opening, experienced at motor ignition while still preventing leakage past the o-ring. This 
ability of a compressed o-ring to track joint motion is known as o-ring resiliency. Warm o-rings have better 
resiliency performance than cold o-rings. Thus, cold o-rings do not track joint motion as well as warm o-rings. 
Because of this fact, field joint heaters were added to the RSRM. Also added to the joint redesign were structural 
features intended to minimize the gap opening or maximum expected deflection (MED). Although the reduction in 
MED and incorporation of joint heaters did mitigate the known deficiency in tracking capability of the o-rings, the 
search for a better seal material continued throughout the RSRM program. After the Challenger accident and 
subsequent HPM redesign, a report issued by the National Research Council reviewed the RSRM and concluded that 
the joint heater power cables were a potential safety hazard and that ways should be pursued to remove them if 
possible. Thus, various test programs were undertaken over the years to evaluate potential replacement seal 
materials with the goal of better performance to enable the removal of the joint heaters. 

An improved GLT (good low temperature) fluorocarbon material known as Compound 17A had been developed 
for the Advanced Solid Rocket Motor (ASRM) program and evaluation testing was performed for the RSRM 
application. Although the material was shown to have good performance, it was found that there were significant 
problems in the material fabrication. Issues with splicing and grinding meant that fabricating o-rings would be 
extremely difficult so the effort was abandoned. 

Later, ATK internal R&D developed an improved fluorocarbon compound designated RDL5503. Development 
testing of this material was pursued, along with an improved GLT compound (LV1183). The RDL5503 was shown 
to be superior to the LV1183 material and was selected to be demonstrated on ETM-2. Full-scale assembly tests 
were performed in preparation for the static test demonstration. Although the RDL5503 material performed 
extremely well with significantly improved low-temperature capability, it was found that some of the constituent 
ingredients were corrosive and the o-ring manufacturer, Parker, declined to fabricate o-rings on a production basis 
due to the environmental and operator safety concerns, so this effort was also abandoned. 

Late in the RSRM program, another effort was begun with a comprehensive industry search for a replacement 
seal material. Five likely candidate materials were evaluated, with three showing promise for further consideration. 
Parker made an attempt at slightly modifying the formulas of these three compounds to find an optimized balance of 
desired resiliency performance and material toughness and strength. When the results did not meet the goals of the 
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program, a design of experiment matrix was developed by ATK to understand the effects of varying some of the key 
constituent ingredients on the final performance and properties of one of the materials, LV1248. Based on the results 
of this study of 20 mini-mixes, the ratios for optimum performance were specified and resulted in the creation of the 
V1288 compound. Verification testing was performed to demonstrate that the final V1288 material performed as 
advertized and as designed, which it did. Physical properties, damage resistance, ablation resistance, resiliency, and 
dynamic pressure testing were performed and the material met all of the physical properties and thermal/ablation 
resistance characteristics of the RSRM baseline V1247 o-rings, but demonstrated equal tracking performance at 
temperatures approximately 40 °F lower than V1247. Splicing of V1288 o-rings required adhesive made from the 
old V1247 compound since the new material did not solvate very well, but testing showed that the new splice 
system (V1247 adhesive on V1288 o-rings) produced sufficient tensile strength and did not adversely impact the 
resiliency performance at the location of the splice. Testing of repairs was also performed. Full-size o-rings were 
fabricated from V1288 compound and were demonstrated on full-scale static test motors, FSM-12 and FSM-13, with 
flaws in the forward field joint to allow hot gas impingement on the V1288 capture feature o-ring for an assessment 
of its ablation resistance. A comprehensive qualification test program was followed to fully certify the new o-rings. 
The lab-scale batches of rubber used for the majority of the development and certification program were scaled up to 
a production-size mix process and demonstrated to be equivalent to the previous lab batches. V1288 o-rings were 
implemented in the RSRM field joints beginning with RSRM-105, and continued with the nozzle-to-case joint for 
RSRM-107. Nozzle internal joint implementation was staggered over several flights as remaining inventories of 
V1247 o-rings allowed. Although the elimination of joint heaters was now possible, a decision was made to keep the 
heater system. A reduction in the contingency LCC temperature was approved and significantly higher operating 
margins were achieved for all of the dynamic joints. Late in the program, V1288 material was also incorporated into 
the igniter inner and outer gaskets, the S&A gaskets, and the ATK BSM.  

C. ETM-3 Five Segment Margin Test 
In the late 1990s, ATK approached NASA with a Five Segment Booster concept that offered several benefits 

over the RSRM. The new motor used standard, “off-the-shelf” technology and was the same as the RSRM with the 
following changes: (1) added center segment, (2) new nozzle with larger nozzle throat, (3) thrust attach point in 
forward segment instead of forward skirt, (4) shorter, simpler forward skirt, (5) reduced burn rate propellant.  

The added performance of a five-segment motor would enable a number of significant safety improvements. For 
example, the return to launch site and transatlantic landing abort modes could be eliminated. Abort to orbit could be 
achieved with a five-segment booster even if one of the Space Shuttle main engines had to be shut down on the 
launch pad. The Space Shuttle could increase payload delivered to Space Station Alpha to 40,000 lb (18,000 kg). Or, 
this added performance could be used to enable orbiter upgrades that add inert weight, e.g., a crew escape module. 
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ATK proposed that a full-scale static test be performed to help the understanding of internal gas dynamics in 
support of a future Five Segment Booster design. The results of the Five-Segment Booster Phase A study were 
presented to the managers of the Space Shuttle Program in December of 2000. Based on projected program needs 
and the costs of implementing a Five Segment Booster, 
NASA chose to not pursue the Five Segment Booster for 
the Shuttle Program. However, the Shuttle managers 
recognized there were potential benefits to the Shuttle 
Program by testing an Engineering Test Motor (ETM-3). 
Because the five- segment motor produced a harsher 
environment than the four-segment RSRM, the test 
would provide important insight into performance 
margins of the RSRM. Conditions more severe than 
RSRM included: the thermal environment, structural 
loads, potential for detrimental erosive burning, 
enhanced acoustic activity, more slag generation, longer 
burn time, higher mass flow and Mach number, higher 

operating pressure and pressure drop down the motor, 
higher buckling and joint loading, and a higher fill 
volume and longer length propellant surface for ignition. 
The test also offered a unique challenge to the NASA and ATK engineers. From scratch, the team would have the 
design, build and test a new motor in roughly two years. Since it had been over two decades since the original 
Shuttle SRM had been designed and tested, it was an opportunity for the NASA and ATK engineers to be involved 
in a new design where they could sharpen their analytical skills and learn from the experience, which would be a 
benefit to the ongoing Shuttle Program and to future programs using SRMs. The go-ahead for execution of the 
ETM-3 test was given in February 2001. 

ETM-3 (Fig. 14) included the following changes from the RSRM four-segment motor design: 1) added center 
segment (added 273,000 lb of propellant over the RSRM), 2) bored out nozzle throat, 3) reduced burn rate 
propellant, 4) extended aft exit cone, 5) added chamfer to propellant leading edges, 6) modified center segment 
rubber inhibitor heights, and 7) modified center and aft segment insulation design. ETM-3 was instrumented with 
620 gauges and a total of 635 channels.  

 

ETM-3 was successfully tested in test stand T-97 of the ATK plant in Promontory, Utah on October 23, 2003. 
Examples of innovations developed specifically for, or as a result of ETM-3, include: advanced coupled fluid 

Figure 13. ETM-3 static test, October 23, 2003. 
 

Figure 14. ETM-3 modifications from RSRM. 
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structural interaction analysis that shortens run time from weeks or months to overnight, nozzle in-depth 
thermocouples, aft dome insulation in-depth thermocouples, field joint j-leg slot pressure transducers, erosive 
burning subscale test simulator and associated improved modeling techniques, and direct measurement of pressure 
and heat flux inside a motor chamber. 

ETM-3 demonstrated that the RSRM had robust margins. It was a great learning experience for the NASA/ATK 
workforce. And, it was a great step toward development of a future five-segment motor.  

D. Carbon Fiber Rope 
Early RSRM nozzle joints 1-5 were designed with a room temperature vulcanized (RTV) thermal barrier to 

protect o-ring seals during motor operation. The nozzle-to-case joint used polysulfide adhesive as a thermal barrier 
to protect the seals. As the RSRM flight history grew, frequent and undesirable gas paths, blow holes, voids, and tail 
voids through the thermal barriers were seen during postflight inspection. When o-ring erosion was seen on joint 3 
of the RSRM-44 (STS-70) and RSRM-45 (STS-71) nozzles, an RTV excavation and backfill process was developed 
for joints 3 and 4 as a corrective action. This fix proved to be very successful for those particular joints, and no 
further o-ring anomalies occurred throughout the remainder of the RSRM program. A joint 1 carbon fiber rope 
design was created and some development work was performed, but since it had a less severe operating environment 
than other joints, the condition was not a challenge to flight safety and a design change was never incorporated for 
RSRM. Although no significant o-ring erosion occurred on the other joints as the program progressed, flow paths 
through the thermal barriers persisted and the subject continued to be a frequent topic of discussion at Shuttle pre-
launch flight readiness reviews.  

 In the late 1990s researchers at the NASA Glenn Research Center (GRC) were experimenting with braided 
carbon fiber rope and discovered that it had the ability to remove most of the thermal energy from a high 
temperature gas that passed through it without much 
noticeable damage after several minutes of 
exposure. The rope is very permeable and the high 
heat capacity of the carbon fibers allows for the 
efficient removal of heat (Fig.15).  

ATK, seeking a design solution that would 
eliminate gas paths through thermal barriers, 
collaborated with GRC on the development of a 
carbon fiber rope configuration that could be used 

in RSRM applications. The final rope design consisted of a 
carbon fiber center core surrounded by ten sheaths of braided 
carbon fiber (Fig. 16). 

ATK and NASA developed nozzle design solutions for these 
thermal barrier gas paths that utilized the heat dissipating 
qualities of the carbon fiber rope (Figs. 17, 18, and 19).  

The nozzle joint 2 and 5 designs eliminated the RTV thermal 
barriers (open volume allowed gas to fully pressurize the joint at 
ignition) and placed carbon fiber ropes upstream of the o-ring 
seals, cooling the hot combustion gases that passed through 
them to temperatures close to ambient. As an example of how 
well the new designs performed, photos of the typical joint 2 
condition before and after incorporation of the carbon fiber rope 
design is shown in Figure 20. The nozzle-to-case joint design 
incorporated an insulation j-leg thermal barrier and downstream 
carbon fiber rope ahead of the o-ring seals that protected them 
from high temperature exposure in case the J-leg leaked. All 
incorporated carbon fiber rope designs eliminated thermal 
barrier gas paths and performed flawlessly after their 
incorporation on flight hardware. 

Figure 15. Carbon fiber rope function. 
 

Figure 16. Carbon fiber rope. 
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E. ATK Booster Separation Motor (BSM) 
The original shuttle BSM was designed by United Technologies Corporation, Chemical Systems Division 

(CSD). This design flew on the first 120 Shuttle missions. In October 2003, ATK received an alternate source 
contract to develop BSMs with selected design and processing upgrades to further enhance motor reliability. The 
ATK design was heavily based on the CSD design with specific enhancements based on RSRM design practices and 
modern analytical approaches. The ignition system was completely redesigned to address lessons learned from an 
investigation of erratic ignition pressures conducted by CSD, ATK, and NASA. Other components of the motor 
remained essentially unchanged from the CSD design with minor adjustments made to address obsolescence 
concerns and lessons learned during the baseline flight program. Improvements introduced with the ATK BSM (Fig. 
22) included: (1) ATK manufactured only one motor configuration (at KSC, United Space Alliance performed the 
necessary BSM closeout depending on whether the BSM was mounted in the forward or aft position), (2) sling lined 
chamber (CSD was hand applied), (3) ATK BSMs were cast in batches of four motors rather than the 64 by CSD, 
(4) the design used a new stronger adhesive (TIGA), (5) redesigned graphite throat with improved margins, (6) 
interchangeable case and aft closures eliminated matched sets (7) incorporated new better resiliency low temperature 
o-rings, (8) increased o-ring squeeze, (9) added an igniter-to-case leak check port, and (10) redesigned igniter. 
During the development program for the ATK designed BSMs, CSD announced closure of the San Jose, CA facility 
that produced BSMs. This revelation led NASA to a sole source contract with ATK to manufacture the BSMs and 
eventually to the first flight of ATK BSMs in the forward position on STS-122 and in all positions on STS-126). All 
ATK BSMs exhibited excellent performance through the end of the Shuttle Program. 

 

 

 
 

Figure 17. Nozzle joint 2. 
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Figure 19. Nozzle-to-case joint. 
 

Figure 18. Nozzle joint 5. 
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Figure 21. The ATK BSM. 
 

Figure 20. Joint 2 RTV and carbon fiber rope design comparison. 
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II. RSRM—Highlighted Lessons Learned 

A. Nozzle Pocketing 
During the eighth Space Shuttle flight (STS-8), the carbon cloth 

phenolic (CCP) ablative rings on the forward nose of one of the 
nozzles (Fig. 22) exhibited a severe rate of material loss referred to 
as “Pocketing.”4 The ablative rings form the contour of the nozzle 
and protect the underlying metal structure from the super-hot 
exhaust gases. At the end of a nominal motor burn (123 s), there is 
usually enough material remaining to fire the nozzle a second time. 
However, the erosion rate on STS-8 was so great that only 8 seconds 
of ablative material remained. When carbon/phenolic plies are 
incorrectly oriented to the flow surface, stresses can exceed the hot 
charred material strength resulting in anomalous erosion.  

Before the Challenger accident, in both flights and static firings, 
there had been eight pocketing events in 66 nozzles at the nose inlet 
and one pocketing event in 66 nozzles at the nozzle throat. The 
problem of pocketing at the nose inlet was completely eliminated 
with the ply angle change that occurred with the first RSRM flight. 
Over the next 9-plus years there were zero pocketing events on 170 
nozzles. On the RSRM 56B nozzle (Sep. 96), both the RSRM 49A 
and RSRM 49B nozzles (Nov. 96), and the RSRM 57B nozzle (Aug. 
97) throat ring nozzle pocketing returned with accompanying 
downstream erosion. Because of this problem, a significant effort to 
understand the nozzle pocketing began. This effort, which involved a 
widespread technical community, was referred to as an enhanced 
sustaining engineering (ESE) effort; fault tree methodology was used 
to understand the pocketing mechanism. Over a 24-month period there 
were 6,300 mechanical, thermal, and physical property tests conducted. 
There were 1,650 PTTB tests, 1660 LHMEL (Laser Hardened Material 
Evaluation Lab) tests, 43 subscale tests, dissections of eight full-scale motor nozzles, seven scrapped nozzles and 
wrap, and cure and dissection of 11 full-scale instrumented tests.  

Though that extensive effort it was determined that: 
• Pocketing occurs at high char layer temperature >2,500 °F 
• Pocketing requires fiber reinforcement failure 
• Pocketing is sensitive to surface ply angle 
• Ply distortion occurs in throat billets that can result in a higher angle ply region at the flame surface 
• Some CCP has a higher propensity to pocket 
• Production CCP material varies greatly in pocketing propensity at 90 °F 
It was also determined that the pocket propensity variables were: 
• Fabric carbonization temperature 
• Fabric carbonization rate 
• Scouring of white fabric 
Because of these studies, changes were made and the following ten flights and two static motors had zero 

pocketing issues. In May 2001, FSM-9 experienced multiple pockets (with a maximum depth of 0.38 inch) and 
downstream wash erosion. A review of all relative variables identified in the ESE effort showed everything within 
family. However, the carbonization temperature may have been on the lower end of family. A change to target a 
higher (but in family) carbonization temperature was made. After this change, there were no occurrences of 
pocketing at the throat.  

B. RSRM Insulation J-Leg Design 
Several instances of o-ring erosion and blow-by occurred in the primary seal locations of the field joints and 

nozzle-to-case joint on pre-RSRM motors between 1977 and 1986. The design used putty between the motor 
segments as a thermal barrier to protect the o-rings. Occasional voids in the putty would channel hot gas jets that 
would vaporize the surface of the rubber o-ring material. During case pressurization at ignition, the joints would 

Figure 22. Nozzle pocketing.  
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move such that the o-ring would lose contact with the metal parts, and hot gas would leak or “blow by” the seal. The 
ability of the o-ring to track this dynamic motion is significantly degraded at low temperatures. Engineers 
understood that the primary seal could fail, but were convinced that the secondary seal would hold. Both the primary 
and secondary seals failed when Challenger was launched on a cold day in January 1986.  

C. Primary Seal and Thermal Barrier Enhancement (1986)  
Pressure-sensitive adhesive bonded rubber insulation “J-leg” and a “capture feature o-ring” were developed to 

provide field joint thermal protection. A polysulfide bonded flap and “wiper o-ring” were developed as the thermal 
protection system for the nozzle-to-case joint. A “capture feature,” radial bolts, and joint heaters were added to the 
respective joints to ensure the ability of the o-ring to track any dynamic motion with a 2× margin. See Fig. 11 for a 
comparison of the HPM and RSRM designs and a description of the items listed above. Since these features were 
added, not one of the primary o-rings on the RSRM field joints or nozzle-to-case joints has been pressurized (over 
700 total joints flown or tested).  

Thermal barriers made from putty can focus hot gas jets that will damage the elastomeric seal. The seals must be 
able to track dynamic motion of metal components at operational temperatures.  

D. STS-78 Field Joint Gas Penetration Event 
The space shuttle RSRM uses an internal insulation “J-joint” design for the mated insulation interface between 

two assembled RSRM segments. In this assembled (mated) segment configuration, this J-joint design serves as a 
thermal barrier to prevent hot gases from affecting the case field joint metal surfaces and o-rings. A Pressure 
Sensitive Adhesive (PSA) provides some adhesion between the two mated insulation surfaces. In 1995, after 
extensive testing, including a successful test on Flight Support Motor (FSM)-5 (full scale RSRM static test), new 
Ozone Depleting Chemicals (ODC)-free PSA was selected for flight on STS-78, which was launched on June 20, 
1996. Postflight evaluation of the case field joints at Kennedy Space Center on July 1, 1996 revealed hot gas 
penetration into all the field joints on both motors past the J-leg insulation tip. Although not a flight safety threat, the 
J-joint hot gas intrusion on STS-78 was puzzling to the investigators since the PSA had previously worked well on 
the FSM-5 full-scale static test.  

A team was assembled to thoroughly study the J-joint and PSA further. All J-joint design parameters, measured 
data, and historical performance data were re-reviewed and evaluated by subscale testing and analysis. Although 
both the ODC-free and baseline PSA were weakened by humidity, the initial ODC-free PSA strength was 
significantly lower. The gas penetration event was intentionally duplicated in subscale tests and on FSM-7 and 
FSM-8 full-scale static tests. Because the next Space Shuttle (STS-79) hardware was also stacked with the same new 
PSA, the decision was made to destack and replace the PSA.  

The root cause of the RSRM-55 J-joint insulation gas penetration leakage was the ODC-free PSA. This change, 
in conjunction with the significant joint deflection at ignition (highest occurrence in center and aft field joints) and 
extended high humidity conditions at the launch site in Florida (not present in Utah on FSM-5), resulted in a PSA 
strength reduction significant enough to allow the J-leg to separate from the clevis insulation a few seconds into 
motor operation. A significant amount of testing confirms that all three of the following conditions must exist 
simultaneous to cause the J-joint leakage:  

1. New ODC-free PSA in the joint  
2. Joint exposed to a history of high humidity (KSC levels)  
3. A joint that experiences significant but normal joint motion 
Post-test FSM-8 inspections revealed very similar charring characteristics as observed on RSRM-55.  
Internal instrumentation capable of obtaining real-time internal motor data was developed on several static tests. 

This static test instrumentation was used on the FSM-8 joint simulating RSRM-55 environments and proved that key 
parts of this theory are correct:  

1. ODC-free PSA degraded by humidity undergoing normal joint rotation caused the RSRM-55 joint leakage 
2. Leakage occurred early in motor operation   

E. RSRM Test Program 
One major advantage liquid engines have as compared to any SRM is the ability to test the flight unit, the liquid 

systems people refer to this as a “Green-Run.”  If an SRM flight unit was tested, the propellant and insulators would 
be spent and require complete refurbishment including replacement of the insulators and propellant, it would in 
effect no longer be the original flight unit, but rather a different unit with some less known reliability—SRMs cannot 
be green-run. The required high reliability of the Space Shuttle RSRM had to be attained by other methods. This 
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included the constant vigilance and focus on all the necessary elements of RSRM flight safety (Fig. 23).5 One of 
these key elements was an intensive test program that included multiple levels of subscale and full-scale testing. 

Subscale testing covers the entire spectrum of tests that range from the dog-bone type tensile tests of propellant 
batches, witness panel peel and tensile testing of insulator materials that follow all flight hardware processes to 
small scale motor tests that include a 5-inch diameter Center Bore (5-in. CP) used to get propellant burn rate, and 
larger motor tests like the 70-lb char motor to evaluate insulation performance, the 24-inch diameter Solid Rocket 
Test Motor (SRTM) used to screen design or material change concepts and the 48-inch diameter MNASA Modified 
NASA Motor (MNASA) used for further screening and to check expected performance on a motor that closely 
resembles the RSRM (Fig. 24). The highest level test is the full-scale Flight Support Motor (FSM), a true replicate 
of the RSRM flight motor, but very highly instrumented to collect as much data as possible. As you might expect, 
these full-scale motors are very expensive and time consuming tests, we were only able to tests about one FSM per 
year on the RSRM program. The main purpose of the FSM changed somewhat from its original concept. Originally 
an FSM was going to be a flight unit taken off the line and tested to totally represent the other units being 
manufactured during the same time period. The FSM necessarily evolved to being the “Change Precursor”—many 
of the required changes on the RSRM Program (mostly obsolescence driven) required tests on full-scale static 
motors prior to flight. Our desire was to test all changes on static tests before flight. Part of the NASA culture to 
“test what you fly, fly what you test” was a derivative of the RSRM Program. It is this attention to testing coupled 
with an intensive post-fire inspection and intensive postflight inspection of all flight hardware and particular 
attention to process control makes up for the inability to green-run the RSRM.  

 

 

 
Figure 23. RSRM overview. 
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F. RSRM Postflight Inspections 
Another key element of maintaining RSRM flight safety was the amount of emphasis placed on postflight/post-

fire inspections.6 The rigor and detail applied to RSRM inspections is unique to the SRM industry. It was rather 
fortunate on the Space Shuttle Program for the decision to recover the SRBs after each Space Shuttle launch and 
refurbish the hardware to maximize reusability. The decision to recover the hardware permitted a detailed 
assessment of the hardware during the disassembly process. At the completion of first stage of a Space Shuttle 
Launch, the SRB separate from the vehicle and parachute down and land in the Atlantic Ocean about 100 miles off-
shore from the launch site. The SRBs are retrieved by the Booster Recovery Ships, Liberty Star and Freedom Star. 
The ships’ crews recover the SRBs and return them to Kennedy Space Center for safing, disassembly, and to 
undergo postflight inspection. For each Space Shuttle launch we send a crew of RSRM Design Engineers, 
Manufacturing Engineers, and Quality Engineers responsible for the hardware both from ATK Utah and from 
Marshall Space Flight Center to inspect and evaluate the performance of the hardware during hardware disassembly 
and document hardware condition (Fig. 25). Any unusual or unexpected conditions are given special attention and 
all require disposition prior to the next Space Shuttle Launch. There was a disciplined approach for identifying, 
evaluating, and dispositioning any In-Flight Anomalies (IFAs) or any reportable conditions. Even small performance 
differences are noted and require disposition. The same types of inspections are performed after an RSRM Flight 
Support Motor (FSM) static test fire with the same rigor applied. Any first flight or first test engineering changes are 
noted in a special issues document for the postflight/post-fire inspectors’ review prior to performing inspections. 
The performance of the hardware relative to any engineering change made was always thoroughly evaluated and 
documented. At the time of this print, no other SRMs, current or previous, had this degree of detailed postflight 
inspection. 

 

Figure 24. RSRM testing. 
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Seven Elements of Good Flight Rationale 
After the Challenger accident the RSRM Program developed an improved approach for the thorough evaluation 

of all significant issues and developed an improved way to communicate how these issues were dispositioned. From 
STS-26 (return-to-flight post-Challenger) through STS-135 (last flight of the Shuttle Program) the RSRM Program 
was known throughout the NASA and the contractor team as the Program that ‘”pounded the issues flat.”  After 
Columbia accident we formally documented the approach we used to evaluate issues and shared this approach with 
all elements of the Space Shuttle and later to other areas of NASA and many of the support contractors and then to 
others throughout the aerospace industry. We termed this approach the “Seven Elements of Good Flight Rationale.”  
The purpose of the approach was to create a consistent methodical process to discuss the basis of flight safety of 
significant issues being worked. The approach helped indentify strengths and weaknesses in flight rationale and 
provided a good tool for communicating all of the risk. Historically, flight rationale highlighted only the strong 
points; weaknesses were not thoroughly communicated and may not have been totally understood by managers 
responsible for accepting risk. Once weaknesses are identified, mitigating actions can be assigned to improve the 
posture, if improvement is required to get to acceptable or improved flight rationale—this approach can be used as a 
tool to identify was needs to be done to improve flight rationale. The objective of the approach is to understand the 
risks, mitigate risk as much as possible, communicate all around about the risks remaining, and then decide if we 
can accept the risk. The initial part of this is identifying significant issues that affect system risk. Once the issue is 
identified and understood, decide how this issue can possibly keep you from meeting your objectives, e.g., part can 
break, component or system can fail to perform as desired, program goal may not be met. The next step is to define 
the risks that need to be assessed, e.g., risk of an event or consequence of an event, does the risk affect flight safety, 
mission success, cost, schedule, supportability. A Failure Modes and Effects Analysis (FMEA) approach is a good 
way to define the risk by defining what can prevent objectives from being met. For each issue, a well defined risk 

Figure 25. RSRM postflight. 
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problem statement should be developed to keep the focus on what you are trying to mitigate. Then the issue should 
be evaluated against the Seven Elements. The Seven Elements of Good Flight Rationale are as follows” 

(1) Solid technical understanding – Do we know how/why this condition occurred?  Was it impact, expired shelf 
life, moisture loss, residual stress, etc.?  Did we use a fault tree? Do we understand the extent of the crack, high 
density indication (HDI), damage, foreign object debris (FOD), etc.? Do we know what the foreign material is? 
What are the plausible contaminants and how could they be harmful? Do we understand how/why components with 
similar indications performed the way they did? Is there a fix/repair for this unit/article? Do we understand the repair 
process/condition? Are the generic design and process robust and in control? 

(2) Condition relative to experience base – Have we dealt with this problem before? How is this the same? How 
is it different? Do we have flight or test history with this defect? With this repair? Other programs? How are we the 
same? Are we different? Was the similar feature actually exercised in a test? What was the outcome? 

(3) Bounding case established – What bounding scenarios (test, analysis, etc.) have been evaluated in the attempt 
to bound or envelope the issue? e.g., upper 3-sigma loads, lower A basis allowables, a specific worse hardware 
condition? What assumptions were made? Where are they conservative? Where are they not conservative? Were all 
the failure modes addressed? Have we assessed the “what if we’re wrong” scenarios? 

(4) Self limiting aspects –Physical reasons why the defect or condition will not get worse than current state or 
degrade. How can the condition exceed the bounding case? Is the system failsafe or fault/failure tolerant?  Are there 
built in redundancies if the feature does fail? 

(5) Margins understood - What are the predicted margins for the discrepant or repaired part? Have they changed 
from baseline? What are the margins for the bounding case? Is the component/feature in an area of high or low 
thermal or structural margin? How far are we from a cliff? 

(6) Assessment based on data, testing and analysis – Is the final assessment based on test data and analysis or on 
expert opinion and gut feel? Where do we actually have data? Are we using too much engineering judgment? Was 
the test/measurement/analysis technique standard and proven or new? Do we understand all the assumptions that 
went into the assessment? Does the analysis/assessment rely on a series of dependent or independent assumptions? 

 (7) Interactions with other elements/conditions addressed – Are there any known, compounding interactions with 
other issues, components, changes, etc.? How have the potential interactions been identified? How/when will they 
be addressed? 

Figure 26 is an example of how the Seven Elements tool can be used to guide the process of improving flight 
rationale posture. 

The Seven Element Process is an effective tool in understanding, characterizing and communicating the risk to 
the risk decision makers. It creates a consistent, methodical process to discuss the basis for flight safety that helps 
communicate risk and identify strengths and weaknesses in the flight/acceptance rationale. It is a robust technical 
assessment that focuses on the facts and removes emotion from characterizing risk. When implemented early in the 
process, it provides a “roadmap” in the development of the safety of flight rationale. Seven Elements is an excellent 
communication tool for risk decision makers. Focuses on the holes—unknowns and uncertainties are key 
information for informed decision making. It tells the whole story – not just the positive or negative items. This tool 
probably has widespread applicability throughout the Aerospace Industry and possibly throughout any industry 
dealing with risk. 
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III. Thoughts on Minority/Alternate Opinions 
 
The people who worked RSRM over the life of the Space Shuttle Program had to deal with many significant 

issues that came up from time to time. We always had a large diverse group of folks working the issues at both the 
contractor and NASA level. A diverse group will always bring the most ideas to the table which provides the best 
chance of getting to the best path. Although we prefer to have a consensus, and we always work hard to get as much 
agreement as possible, occasionally there were times when we did not get full agreement, but reached a point in time 
when decisions needed to be made to get past the disagreements so work could continue. In these circumstances we 
had what some refer to as “Minority Opinions,” also referred to as “Dissenting Opinions,” or the words that we 
prefer which were “Alternate Opinions.”  RSRM had a few alternate opinions over the life of the RSRM program; 
there were a few things we learned from dealing with these minority opinions that we would like to share here.  

A. Seek out minority opinions 
We have found that sometimes you need to seek out minority opinions. They are not always obvious. Silence 

doesn’t always mean agreement – if you have a lot of thinkers supporting you as we normally did, sometimes you 
need to give them time to think about it. We found it wise to not allow any fence sitters, there are usually people 
who well tell you that is doesn’t matter to them, or that they have no preference, but after more thorough evaluation, 
or just more time, we have found this to not be the case—almost always there is a preferred decision if the issue is 
studied enough. 

B. Have a team of folks listen carefully – Hear Them Out 
We have found it wise to pull in a team of three of so people that would be considered experts or knowledgeable 

on the subject and knowledgeable on what is being recommended by the alternate opinion. We suggest that you try 
to avoid arguing or making counterpoints until they’ve been thoroughly heard out. Always keep in mind that the 
alternate opinion could be right. 

C. Make a decision and tell them how you got there 
Eventually decisions will need to be made for continued progress. Evaluate all the information you have and 

make a decision. If you go counter to what is being recommended by the alternate opinion, explain to them how you 
got to your decision. 

D. Be an advocate for the minority opinion 

Figure 26. Seven elements tool. 
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Even though your decision may be counter to the alternate opinion, you should become an advocate for the 
opinion and encourage and offer to take it forward—remember as stated above, they still could be right. If they want 
to take the alternate opinion forward, use the management chain to hear the alternate opinion and use your decision 
as your recommendation to management. 

E. Allow folks to change their minds 
When the “Thinkers” are given more time to think about the issue and positions, sometimes they change their 

minds on things. Just because someone had previously taken a position that is in agreement with your current 
direction, there can be new data or a new way of thinking that causes them to take another position. The reverse can 
also be true, people with alternate opinions sometimes hear from the experts or just think about the issue some more 
and change their positions. We would recommend that you freely allow either of these. 

IV. Summary 
The Space Shuttle Reusable SRM was a highly reliable human-rated SRM. At the time of this print, the RSRM 

was the largest diameter SRM to achieve flight status and the only large scale SRM to be human-rated. The RSRM 
achieved this high reliability by applying special attention to Process Control, Testing, and Postflight, and by 
thoroughly and timely communicating and dealing with all issues encountered. We followed a structured and 
disciplined approach for identifying and dispositioning all issues and all “out-of-family” conditions. We learned to 
carefully consider and disposition alternate opinions. We tried to learn as much as we could from our lessons. 
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(perhaps using a fault tree)
 Condition relative to experience base

 Experience base includes full-scale flight, ground test, or qualification level tests
 Bounding case established

 Using physics based understanding, determine the bounding case (e.g., lower 
A-basis allowables, upper three sigma loads and environments, anchored with 
test data)

 Self limiting aspects
 Physical reasons why it can’t get any worse than the bounding case or show the 

part is fail-safe
 Margins understood

 Adequate margins, ideally not substantially reduced from baseline
 Assessment based on data, testing and analysis

 Final risk assessment based on test data and analysis, not gut feel or expert 
opinion

 Interactions with other elements/conditions addressed
 Address interactions with other conditions (MRB, changes, technical issues), 

and vehicle elements

RSRM - 8

Implemented 2001



 Seek out minority opinions
 Silence doesn’t always mean agreement – a lot of thinkers support us

 Don’t allow any fence sitters

 Have a team of folks listen carefully – Hear Them Out
 Pull in some help from expert(s)

 Avoid arguing or making counterpoints until they’ve been heard out

 Keep in mind they could be right

 Make a decision and tell them how you got there
 Be an advocate for the minority opinion

 Encourage and offer to take it forward

 Use the management chain

 Allow folks to change their minds
 New data or new way of thinking
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 RSRM is a highly reliable human-rated Solid Rocket Motor

 Largest diameter SRM to achieve flight status

 Only human-rated SRM

 RSRM reliability achieved by:

 Applying special attention to Process Control, Testing, and 

Postflight

 Communicating often

 Identifying and addressing issues in a disciplined approach

 Identifying and fully dispositioning “out-of-family” conditions

 Addressing minority opinions

 Learning our lessons

RSRM - 10

We are NASA/Contractor team

working together with common goals
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