Heavy Lift Capability with a New Hydrocarbon Engine (NHE)

Ed Threet, NASA MSFC
James B. Holt and Alan Phillips, NASA MSFC
Jessica A. Garcia, Jacobs ESTS Group
Agenda

• MSFC ACO Overview
• Study Objective/Approach
• Heavy Lift Concept Configurations
• Configurations Derived from the LRB
• Effect of Engine Out on 100 MT Configuration
• Summary
We Are An Office Specializing In Pre-Phase A & Phase A Concept Definition

- Human Exploration Systems
- In-Space Transportation and Science Systems
- Launch Vehicle Systems
Launch Vehicle Design Process

Note: Cost and Reliability Analyses were not performed for this study
Determine the thrust requirement for a new LOX Rich Stage Combustion Kerosene (RP) Engine that can lift 100 MT to LEO in a 2 Stage series configuration… and by adding strap-on LRBs with the same engine lift 140 MT using common stages to minimize design and development costs. Evaluate other potential concepts derived from the engine/stages.
Launch Vehicle Architecture and Element Commonality Approach Using NHE

Thrust Trades (1.0 Mlbf Vac – 1.3 Mlbf Vac Class)

NASA Heavy Lift 1
100 MT

Design for Common 2nd Stage with J-2X-285

NASA Heavy Lift 2
140 MT

Design for Common 1st Stage Add LRBs for increased Payload Requirements

Single Engine LRB Could become 1st Stage In New Launch Vehicle

Potential Use in New Reusable First Stage for Air Force

Not Analyzed in this Study

Potential DoD / Commercial Application

Potential Use in New

NHE
General Top Level Ground Rules and Assumptions

- Vehicle Stages up to 33 ft diameter
- Vehicle not higher than 390 ft
- Thrust / Weight at liftoff not less than 1.2
- NHE engine thrust to not exceed 1.3 Mlbf vacuum
- Ascent axial acceleration to not exceed 5.0 g
- NHE has continuous throttling capability
- Second Stage is LOX/LH2 using J2X-285

NHE Engine Assumptions

- Vac Isp: 332 s
- T/W = 70
- Mixture Ratio: 2.7
- Engine Length: 180 in.
- Engine Nozzle Diam: 120 in.

* Engine Assumptions Provided by ER21 Propulsion Team at MSFC
Payload to LEO as a Function of First Stage Thrust at Liftoff

For 100 MT Capability with Six First Stage Engines, NHE Thrust Requirement is 1.08 Mlbf @ SL / 1.25 Mlbf @ Vac per Engine

\[y = 1.817817E-05x - 1.297062E+01 \]
\[R^2 = 9.970072E-01 \]
Heavy Lift Vehicle Results

Vehicle Data

<table>
<thead>
<tr>
<th>140 MT</th>
<th>100 MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.22 Mlb</td>
<td>5.42 Mlb</td>
</tr>
<tr>
<td>GLOW</td>
<td></td>
</tr>
<tr>
<td>33.2 Klb</td>
<td>33.2 Klb</td>
</tr>
<tr>
<td>Shroud</td>
<td></td>
</tr>
<tr>
<td>112 Klb</td>
<td>112 Klb</td>
</tr>
<tr>
<td>2nd Stage Dry Wt.</td>
<td>2nd Stage Dry Wt.</td>
</tr>
<tr>
<td>4.07 Mlb</td>
<td>3.69 Mlb</td>
</tr>
<tr>
<td>1st Stage Prop.</td>
<td>1st Stage Prop.</td>
</tr>
<tr>
<td>91.8 Klb</td>
<td>91.8 Klb</td>
</tr>
<tr>
<td>LRB Dry Wt.</td>
<td></td>
</tr>
<tr>
<td>501 Klb</td>
<td>501 Klb</td>
</tr>
<tr>
<td>LRB Prop.</td>
<td>LRB Prop.</td>
</tr>
<tr>
<td>143.7 MT</td>
<td>104.2 MT</td>
</tr>
<tr>
<td>Payload</td>
<td></td>
</tr>
</tbody>
</table>

(Emphasizing Commonality)

- **1st Stage LOX/RP**: 6 – NHE
- **2nd Stage LOX/LH2**: 4 – J-2X-285
- **LRB LOX/RP**: 1 – NHE
Launch Vehicles from the NHE LRB

New Launch Medium Class Launch Capability Could Be Derived from the LRB Used as a first stage in a series burn concept.

- **1st Stage**
 - LOX/RP
 - 1 – NHE

- **2nd Stage**
 - LOX/LH2
 - 1 – J-2X-285

Payload:
- 11.5 MT LEO
- 4-7 MT GTO depending on structural design

Propellant:
- 1st Stage Propellant – 719 Klb
- 2nd Stage Propellant – 902 Klb

- **GLOW**
 - 901 Klb
 - 12.9 MT LEO

- **1st Stage Propellant – 501 Klb**

Modify LRB by Increasing Propellant Load

Use LRB as is Remove Nosecone
Engine Out Capabilities of the 100 MT Vehicle

<table>
<thead>
<tr>
<th></th>
<th>Nominal</th>
<th>2nd Stage EO</th>
<th>1st Stage EO</th>
<th>EO Both Stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOW</td>
<td>5.42 Mlb</td>
<td>5.42 Mlb</td>
<td>4.51 Mlb</td>
<td>4.51 Mlb</td>
</tr>
<tr>
<td>2nd Stg Dry Mass</td>
<td>112 Klb</td>
<td>112 Klb</td>
<td>112 Klb</td>
<td>112 Klb</td>
</tr>
<tr>
<td>2nd Stage Prop</td>
<td>955 Klb</td>
<td>655 Klb</td>
<td>963 Klb</td>
<td>656 Klb</td>
</tr>
<tr>
<td>2nd Stg % Offload</td>
<td>12.1% Offload</td>
<td>40.0% Offload</td>
<td>11.4% Offload</td>
<td>39.6% Offload</td>
</tr>
<tr>
<td>1st Stg Dry Mass</td>
<td>337 Klb</td>
<td>337 Klb</td>
<td>337 Klb</td>
<td>337 Klb</td>
</tr>
<tr>
<td>1st Stg prop</td>
<td>3.69 Mlb</td>
<td>4.02 Mlb</td>
<td>2.83 Mlb</td>
<td>3.17 Mlb</td>
</tr>
<tr>
<td>1st Stg % Offload</td>
<td>9.5% Offload</td>
<td>1.3% Offload</td>
<td>30.5% Offload</td>
<td>22.2% Offload</td>
</tr>
<tr>
<td>Payload LEO</td>
<td>104.2 MT</td>
<td>89.0 MT</td>
<td>77.9 MT</td>
<td>65.1 MT</td>
</tr>
</tbody>
</table>
Summary

• A Family of Launch Vehicle Concepts can be Derived from a New Hydrocarbon Stage Combustion Engine (NHE) to Meet Future Civil, Military, and Commercial Space
 – NHE Thrust Requirement Determined at 1.25 Mlbf @ Vacuum
 – Heavy Lift Capability in the 100 MT – 140 MT Class Defined
 – ELV Payload Class Capability with Single NHE

• Stage Commonality Can Be Utilized and Still Meet Performance Requirements
 – Reduced Development, Manufacturing, and Operations Costs

• Missions Can Be Flown with Engine Out For Crewed Flights or High Value Payloads For Increased Launch Reliability
 – Payload Capabilities of 65 MT to Nearly 90 MT can Still be Obtained with the 100 MT Vehicle Depending on the Amount of Engine Out is Desired