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A model of pulsed inductive plasma thrusters consisting of a set of coupled circuit equa-
tions and a one-dimensional momentum equation has been used to study the effects of
adding a second, parallel capacitor into the system. The equations were nondimensional-
ized, permitting the recovery of several already-known scaling parameters and leading to
the identification of a parameter that is unique to the particular topology studied. The
current rise rate through the inductive acceleration coil was used as a proxy measure-
ment of the effectiveness of inductive propellant ionization since higher rise rates produce
stronger, potentially better ionizing electric fields at the coil face. Contour plots repre-
senting thruster performance (exhaust velocity and efficiency) and current rise rate in the
coil were generated numerically as a function of the scaling parameters. The analysis re-
veals that when the value of the second capcitor is much less than the first capacitor, the
performance of the two-capacitor system approaches that of the single-capacitor system.
In addition, as the second capacitor is decreased in value the current rise rate can grow to
be twice as great as the rise rate attained in the single capacitor case.

I. Introduction

Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is
charged to an initial voltage and then discharged as a high-current pulse through a coil, inductively

coupling energy into the propellant. The field produced by this pulse ionizes the propellant, producing a
plasma near the face of the coil. Once a plasma is formed it can be accelerated and expelled at a high exhaust
velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic
field. While there are many coil geometries that can be employed to inductively accelerate a plasma, in
this paper the discussion is limited to planar geometries where the coil takes the shape of a flat spiral. A
recent review of the developmental history of planar-geometry pulsed inductive thrusters can be found in
Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT)2, 3 and
the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD).4

Pulsed inductive plasma accelerators possess many demonstrated and potential benefits,1, 3 providing
motivation for continued investigation. The electrodeless nature of these thrusters eliminates electrode
erosion, mitigating the lifetime and contamination issues associated with conventional electric thrusters.
Also, a wider variety of propellants is available for use when compatibility with metallic electrodes is no
longer an issue. Pulsed inductive accelerators have demonstrated operation on propellants like ammonia,
hydrazine, and CO2, and there is no fundamental reason why they would not operate on other propellants
like H2O. It is well known that for a given propellant pulsed accelerators can maintain constant specific
impulse Isp and thrust efficiency ηt over a wide range of input power levels by adjusting the pulse rate to
maintain a constant discharge energy per pulse. In addition, these thrusters have demonstrated operation
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Figure 1. A) General lumped-element circuit model and B) equivalent circuit model of a pulsed inductive
accelerator (after Ref. [2]). C) Equivalent electrical circuit model of an accelerator with a second, parallel
capacitor.

in a regime where ηt is relatively constant over a wide range of Isp. Finally, thrusters in this class have
operated at high energy per pulse, and by increasing the pulse rate they offer the potential to process very
high levels of power to provide relatively high thrust using a single thruster.

Pulse circuits for inductive thrusters have in the past typically been limited to a simple, ringing resistive-
inductive-capacitive (RLC) configuration like that shown in Fig. 1A and redrawn in Fig. 1B as an equivalent
circuit that is easier to model. However, as the field has developed proposed circuit topologies are becoming
more complex.5 In this paper, we proceed with an investigation of the circuit shown in Fig. 1C where a
second capacitor with value less than or equal to C1 is inserted downstream of the switch. This study was
motivated by a data set where the efficiency of a pulsed inductive thruster increased when the capacitor C2

was added.6 Unfortunately, the value of C1 was also increased when C2 was added and previous work has
shown that increasing C1 can also increase the efficiency.7 The authors of Ref. [6] additionally noted that the
voltage across C2 could be approximately double the charge voltage across C1 when C2 � C1. This result
was interesting because it implied that the voltage and commensurate current rise rate in the coil could be
increased by adding C2. A higher current rise rate can, in turn, produce stronger electric fields at the coil
face and potentially lead to better inductive ionization of the propellant.5

There exists a 1-D pulsed inductive acceleration model that employs a set of circuit equations coupled
to a one-dimensional momentum equation.2, 3 The model has since been nondimensionalized and used by
Polzin et al.7, 8 to define a set of scaling parameters and gain general insight into their effects on thruster
performance. In this paper we modify the acceleration model to account for the presence of C2 in the system
and then nondimensionalize the equation set to identify any new nondimensional scaling parameters that
arise for the new circuit topology. The current rise rate through the coil is computed for various cases, and it
is used as a proxy measurement to gauge the ability of the coil to inductively ionize the propellant. Finally,
we examine whether the addition of C2 imposes potential benefits or detriments on thruster efficiency and
Isp.

II. Governing Equations

A. Physical Model

A circuit-based model of a pulsed inductive accelerator previously developed by Lovberg and Dailey2 is
modified to account for the addition of the second capacitor as shown in Fig. 1C. In the lumped-element
circuit model shown in Fig. 1A,B, the external circuit (left side of the figure) possesses a capacitor bank with
capacitance C1, external inductance L0, resistance Re, and acceleration coil inductance LC . The plasma
also has an inductance equal to LC and a resistance Rp. The two circuits are inductively coupled through
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the coil, which acts as a transformer with mutual inductance M . The value ofM is a function of the current
sheet position z. In Fig. 1C, a second capacitor C2 is added between the primary capacitor bank and the
inductive coil. This has the effect of splitting the L0 and Re, with the value on the left and right sides of C2

linearly scaled by the factor n < 1 and (1 − n), respectively. Physically, we are assuming that the external
inductance and resistance in each leg is scaled by the position of C2 relative to C1 and the coil, with n
approaching unity as C2 is moved nearer to the coil.

A set of circuit equations for Fig. 1C are written through the application of Kirchoff’s law to each loop.
Rearranging the equations and adding a statement for the time-rate of change of charge on each capacitor
yields the following coupled set of first-order ordinary differential equations:

dI1
dt

=
V1 − V2 − nReI1

nL0
,

dI2
dt

=

{
LCV2 + (LCI3 +MI2)

dM

dt
− (1− n)ReLCI2 −RpMI3

}
/
{
LC [(1− n)L0 + LC ]−M2

}
,

dI3
dt

=
I2
dM

dt
+M

dI2
dt
I3Rp

LC
, (1)

dV1
dt

= − I1
C1
,

dV2
dt

=
I1 − I2
C2

,

where V1 and V2 are the voltages on capacitors C1 and C2, respectively.
The inductance of a planar, spiral inductive coil coupled to a plasma current sheet is difficult to compute

analytically. However, based on experimental measurements it has been found2 that the mutual inductance
can be modeled using the simple function

M = LC exp

(
− z

2z0

)
, (2)

which, when differentiated results in the following equation that governs the changing mutual inductance of
the circuit:

dM

dt
= −LC

2z0
exp

(
− z

2z0

)
dz

dt
. (3)

As the current sheet moves forward, it entrains and accelerates any enocuntered gas. The propellant
mass in the current sheet as a function of time can be written as

m (t) = m0 +

∫ t

t=0

ρAvz dt, (4)

where ρA = ρA (z (t)) is the linear mass density distribution and vz is the sheet velocity. The term m0

represents the initial mass of propellant in the sheet while the integral term represents the mass accumulated
by the sheet as it moves away from the acceleration coil.

The momentum equation for this system can be written as

LC I
2
2

2 z0
exp (−z/z0) = ρAv

2
z +m (t)

dvz
dt
. (5)

The left hand side represents the self-field electromagnetic force generated through the interaction of the
current and the magnetic field. The first term on the right hand side in Eq. (5) is the momentum investment
associated with ‘snowplowing’ propellant (i.e. accelerating the newly entrained propellant encountered by
the sheet from rest to the sheet speed) while the second term involves further acceleration of the already
entrained propellant.

The model lacks a plasma model to calculate temperature and resistivity and it does not contain any
plasma ionization, or ‘breakdown’, model, instead simply assuming that there is plasma present at t = 0.
These shortcomings were previously discussed in more detail in Ref. [7]. As in that previous work, the purpose
here is to use the model to search for relevant nondimensional scaling parameters and gauge their general
effect on performance, instead of looking for an exact matching of experimental data to the performance
model. However, we do note that even with the shortcomings, the 1-D, circuit-based acceleration model has
shown good qualitative and quantitative agreement with experimental data.1, 3
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B. Nondimensionalization of the Model

The nondimensionalization strategy previously employed with success in Ref. [7] can also be used in this
case. The following dimensionless terms are selected to aid in the conversion of the dimensional equations
to a nondimensionalized set:

I∗1 =
1

V0

√
L0

C
I1, I∗2 =

1

V0

√
L0

C
I2

I∗3 =
1

V0

√
L0

C
I3 t∗ =

t√
L0C

.

(6)

Other dimensionless terms that arise in the course of nondimensionalizing the equation set are:

z∗ =
z

z0
, V ∗

1 =
V1
V0
, V ∗

2 =
V2
V0
,

M∗ =
M

LC
, v∗z =

√
L0C

z0
vz.

(7)

The current sheet mass can be nondimensionalized as

m∗ = m∗
0 +

∫ t∗

0

ρ∗f (z∗) v∗z dt
∗, (8)

where m∗
0 = m0/mbit, ρ

∗ = ρ0z0/mbit, and mbit is the total propellant mass per pulse.
Using these nondimensional terms, equations (1), (3), (4), and (5) are written in dimensionless form as,

dI∗1
dt∗

=
1

n
(V ∗

1 − V ∗
2 )− I∗1ψ1 (9a)

dI∗2
dt∗

=

[
L∗V ∗

2 + (M∗I∗2 + I∗3 )
dM∗

dt∗
− I∗3M

∗L∗ψ2 − (1− n) I∗2L
∗ψ1

]
/
[
((1− n)L∗ + 1)− (M∗)2

]
(9b)

dI∗3
dt∗

= M∗ dI
∗
2

dt∗
+ I∗2

dM∗

dt∗
− I∗3L

∗ψ2 (9c)

dV ∗
1

dt∗
= −I∗1 (9d)

dV ∗
2

dt∗
= C (I∗1 − I∗2 ) (9e)

dM∗

dt∗
= −1

2
exp

(
−z

∗

2

)
v∗z (9f)

dz∗

dt∗
= v∗z (9g)

dv∗z
dt∗

=
[
α (I∗2 )

2
exp (−z∗)− ρ∗f (z∗) (v∗z )

2
]
/m∗ (9h)

dm∗

dt∗
= ρ∗f (z∗) v∗z (9i)

The initial conditions for solving the nondimensional set of equations are as follows.

I∗1 (0) = 0, M∗ (0) = 1,

I∗2 (0) = 0, z∗ (0) = 0,

I∗3 (0) = 0, v∗z (0) = 0,

V ∗
1 (0) = 1, m∗ (0) =

m0

mbit
.

V ∗
2 (0) = 0,

(10)
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C. Scaling Parameters

During the course of nondimensionalization, several new terms appear in Eqs. (9). These new terms are the
relevant scaling parameters of the system of equations and are defined as

C =
C1

C2
, L∗ =

L0

LC
, α =

C2
1V

2
0 LC

2mbit z20
,

ψ1 = Re

√
C1

L0
, ψ2 = Rp

√
C1

L0
,

(11)

which are similar to the parameters previously found for the single capacitor case.7 We proceed with a brief
discussion of the meanings of the scaling parameters.

1. Inductance Ratio L∗

A pulsed inductive accelerator circuit possesses an external inductance L0 and an acceleration coil inductance
LC . During a current pulse the moving plasma increases the circuit’s inductance from L0 to L0+LC (i.e.,
LC=∆L). The fractional change of inductance, (L∗)−1=∆L/L0, in a pulsed electromagnetic accelerator
provides a measure of efficiency,9 as this ratio is indicative of the fraction of energy that can be deposited
into electromagnetic acceleration of the gas. In an efficient pulsed inductive accelerator the value of L∗ must
be much less than unity or LC � L0.

2. Dynamic Impedance Parameter α

The dynamic impedance parameter α can be recast as the product of several important ratios:

α =
C2

1V
2
0 LC

2mbitz20
=

1

8π2

C1V
2
0 /2

mbitv2z/2
L∗
(
2π

√
L0C1

L0/L̇

)2

(12)

where L̇ is the dynamic impedance, defined as vzL
′, and L′ is the effective inductance per unit length,

equal to LC/z0. The ratio of the initial stored energy (C1V
2
0 /2) to the plasma kinetic energy (mbitv

2
z/2)

is recognized as the inverse of thrust efficiency η−1
t and will always be greater than one. The final term is

the ratio of the natural period of the driving external circuit, 2π
√
L0C1, to the time interval, L0/L̇, over

which the plasma’s motion increases the inductance of the circuit by one unit of L0. The former is the
timescale on which the external circuit naturally operates, while the latter is the timescale on which the
current sheet remains electromagnetically coupled to the acceleration coil. For a given configuration, there
exists an optimum value of α where the electromagnetic coupling timescale is matched to the frequency of
the external circuit, allowing for optimum transfer of stored electrical energy into directed kinetic energy.7

3. Circuit Parameters ψ1, ψ2 and C
The critical resistance ratios ψ1 and ψ2 were shown in previous work to control the nature of the current
waveforms.7 The new parameter C also has an effect on the nature of the current waveforms. Proceeding
with an analysis similar to that performed in Ref. [7], we search for limiting-case solutions to Eqns. (9a)-(9e).
Decoupling the current sheet dynamics (i.e., the acceleration and sheet motion) from the problem allows us
to apply the condition

M∗ = 1,
dM∗

dt∗
= 0,

which simplify the circuit equations. Under these assumptions, the circuit equations can be combined and
rewritten as

d2I∗1
dt∗2

+ ψ1
dI∗1
dt∗

+
(C + 1)

n
I∗1 =

C
n
I∗2 ,

(1− n)
d2I∗2
dt∗2

+ (1− n)ψ1
dI∗2
dt∗

+ CI∗2 = CI∗1 − ψ2
dI∗3
dt∗

,

dI∗2
dt∗

− dI∗3
dt∗

= L∗ψ2I
∗
3 (13)
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If the right side of the third equation in (13) is small, then the induced current in the plasma mirrors the
current in the coil

I∗3 ≈ I∗2 .

This is the case where the coil and plasma currents are well-coupled, which is expected in efficient accelerators.
The third equation of (13) can be substituted into the second to yield

(1− n)
d2I∗2
dt∗2

+ [(1− n)ψ1 + ψ2]
dI∗2
dt∗

+ CI∗2 = CI∗1 − ψ2
2L

∗I∗3 (14)

This second-order non-linear ODE is similar to the one found in Ref. [7]. If the last term on the right-hand
side is comparitively small, then the forcing term contains only I∗1 , which will never be small and cannot be
neglected. We can gain insight by writing the homogeneous solution

I∗2 = A0 exp (−Ψt∗) sin

(( C
(1− n)

−Ψ2

)1/2

t∗
)
, (15)

where

Ψ ≡
(
ψ1 +

ψ2

(1− n)

)
/2.

In this case, the damping is a function of the critical resistance ratios while the natural frequency is addi-
tionally a function of the parameter C.

The term on the right hand side of the first equation in (13) will also never be small. However, we can
write the homogeneous solution for I∗1 as

I∗1 = B0 exp

(
−ψ1

2
t∗
)
sin

((
(C + 1)

n
− ψ2

1

4

)1/2

t∗
)
. (16)

Though these are only the homogeneous solutions to the simplified electrical response equations, there
are several observations that can be made as a result of this exercise. The parameters ψ1, ψ2, and C control
the electrical responses in the circuit. Increasing the parameter C increases the ringing frequency of both
I∗1 and I∗2 , with the frequencies approaching each other as C becomes very large. To neglect the non-linear
terms presented by the current I∗3 , the values of L∗ and ψ2 must be such that

ψ2
2L

∗ � 1,

ψ2L
∗ � 1.

Finally, Eq. (9e) can be used to show that as C approaches infinity, the derivative dV ∗
2 /dt

∗ will only remain
bounded if I∗1 = I∗2 . Physically, this is the case where C2 is removed from the system, permitting the recovery
of the response for the circuit shown in Fig. 1B.

III. Nondimensional Solutions

A. Solution Strategy

The set of coupled first-order ODEs given in Eqs. (9) can be solved numerically once the mass distribution
and the set of scaling parameters given in Eqs. (11) are specified. The performance metrics chosen for this
study are the exhaust velocity, v∗z , and the thrust efficiency, which is written in terms of nondimensional
parameters as

ηt =
m∗ (v∗z)

2

2L∗α
. (17)

Note that this corrects the equation given for efficiency in Ref. [7] where the square term was left off v∗z
(though it was included in the analysis contained in the reference).

In solving any set of first-order (in time) differential equations, it is important to know when the time
histories of the computed variables (specifically v∗z in our case) should be queried to calculate performance.
This question is, in fact, critical to the evaluation of these accelerators. For our non-dimensional model, the
integration period will end when one of the following two conditions is reached:
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1. The end of the first half-cycle of the accelerator coil discharge is reached and the current I∗1 reverses
in sign.

2. The sheet travels three characteristic lengths, z∗ = 3.

The first condition is based on the fact that when the accelerator current goes through zero, it is going
though a point of high dI/dt. While the acceleration model doesn’t incorporate any ionization physics, it is
well known that a new current sheet can form at the face of the coil during current reversals, causing what
is known as a “crowbar discharge”. If this occurs, the initial current sheet ceases to undergo acceleration. If
at the time of current reversal the final current sheet mass m∗

f is less than the injected propellant mass bit
m∗

bit, conservation of momentum can be used to correct the end-of-calculation final value of velocity (v∗z )f
to give the velocity as

v∗z =
m∗

f

m∗
bit

(v∗z )f . (18)

The second condition stems from the existence of a finite axial distance between the current sheet and the
coil, beyond which the two are essentially decoupled electromagnetically. The separation distance z∗=3 is
chosen as our cutoff for electromagnetic coupling as it represents an inductance change in the circuit of 95%
of the coil inductance. Above this cutoff value, the integration yields no significant change to the calculated
performance.

For the present study, a triangular (linearly decreasing) mass distribution is used. This is given by

ρ∗A =

{
ρ∗0 (1− z∗/δ∗m) z∗ ≤ δ∗m
0 z∗ > δ∗m,

where ρ∗0 = 2/δ∗m, δ∗m = δm/z0, and δm is the (dimensional) depth of the propellant layer.

B. Solutions

1. Electrical Response as a Function of C and n

We first present representative waveforms showing the electrical behavior of the accelerator as a function of
C in Fig. 2 and n in Fig. 3. The former gauges the effect of the capacitance ratio C while the latter gives
insight into the effect of the position of capacitor C2 in the line relative to C1 and the coil. Waveforms for
I∗1 , I

∗
2 and dI∗2/dt

∗ are presented, where the latter provides a measure of the inductive voltage across the
coil and are being used in this study as proxies for the ability of the coil to inductively ionize propellant.

In Fig. 2 we observe that currents I∗1 and I∗2 have the standard damped-sinusoidal response of an LRC
circuit with a higher-frequency waveform superimposed on the response. The modulation in all the waveforms
increases in frequency and decreases in amplitude as C is increased. For C = 1 we observe a nearly resonant
energy transfer between C1 and C2 with the rise rate of the current in the coil relatively low in comparison
with the other cases. As C is increased to 100, the maximum value of dI∗2/dt∗ approaches 2.

The changing value of n appears to most affect the response of the current I∗1 in Fig. 3, with the amplitude
of the oscillation superimposed on the wave decreasing with increasing n. We observe that for smaller n
values dI∗2/dt∗ oscillates much longer and, like I∗1 , with greater amplitude, having the greatest peak value
for the smallest n displayed. It is easiest to observe in Fig. 3G,H that the overall average behavior of I∗1 and
I∗2 are roughly equivalent (I∗1 ≈ I∗2 ) for the cases where C equals 100, which was predicted in the limiting
case solutions for C sufficiently large. The form and magnitude of the waveform for I∗2 does not appear to
change much with n, implying that the acceleration process is generally unaffected by the position of C2 in
the line. For the remainder of this study we use n = 0.2 to obtain greater current rise rates.

2. Nondimensional Performance

Contours of constant computed performance (ηt, v
∗
z ) and dI∗2/dt

∗ found through solving the governing
equations for a range of C and α values are presented in Fig. 4A-C. For a fixed C the efficiency possesses a
local maximum with respect to α, which is consistent with the interpretation of α as a dynamic impedance
matching parameter. The efficiency at a fixed α initially increases with increasing C, eventually asymptoting
at C between 10 and 100. The velocity increases with α and like the efficiency it also asymptotes as C is
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Figure 2. Waveforms for I∗1 , I
∗
2 , and dI∗2/dt

∗ showing the variation in each for A)-C) n = 0.2, C = 1, D)-F)
n = 0.2, C = 10, and G)-I) n = 0.2, C = 100.

Figure 3. Waveforms for I∗1 , I
∗
2 , and dI∗2 /dt

∗ showing the variation in each for A)-C) n = 0.2, C = 100, D)-F)
n = 0.5, C = 100, and G)-I) n = 0.8, C = 100.
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increased. The current rise rate is a weak function of α, but increases very quickly as C is increased until
asymptoting just below a value of dI∗2 /dt∗ equal to 2.

It is worth comparing solutions to the two-capacitor case (Fig. 1C) with solutions to the single-capacitor
case (Fig. 1A,B) to gauge the effect of the added capacitor C2 on accelerator performance. Curves of
computed performance (ηt, v

∗
z ) and the maximum value of dI∗2 /dt

∗ for C equal to 1.5, 5, 10, and 100 are
presented in Fig. 4D-F. An additional curve on each graph appears for the single-capacitor case (with the
maximum value of dI∗1 /dt∗ given in Fig. 4F). We observe that there is not a large difference in the terminal
exhaust velocity v∗z of the single and two-capacitor cases for any value of C. The efficiency graph shows
that the two-capacitor case asymptotes to the single-capacitor solution as C approaches 100, implying that
a capacitor C2 can be added without detrimentally affected thruster performance. Additionally, as C is
increased the maximum current rise rate through the coil in the two-capacitor case asymptotes to a value
that is twice the single-capacitor case.

m
a
x

D

E

F

Figure 4. Contour plots of A) efficiency, B) nondimensional velocity, and C) maximum value of dI∗2/dt
∗ as a

function of varying C and α. Values of ψ1, ψ2, and L∗ are 0.05, 0.13, and 0.121, respectively. Comparison of D)
efficiency, E) nondimensional velocity, and F) maximum dI∗/dt∗ through the inductive coil as a function of α
for various values of C and for the single-capacitor case. The values of maximum dI∗2/dt

∗ are given in F) except
for the single capacitor case, where the maximum dI∗1/dt

∗ is shown.
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IV. Discussion

The data presented in the previous section helped gauge the effect on performance that the addition of
capacitor C2 would have. Comparing the efficiency for the single and two-capacitor cases demonstrates that
the performance above a certain value of C is not adversely affected by the the addition of the capacitor
C2. This result is somewhat expected because the overall behavior of current I∗2 (seen in Fig. 3) is relatively
well-behaved, with only a small modulation superimposed on top of the main waveform, as opposed to the
much larger excursions observed in Fig. 2 for smaller values of C. In addition, at C of 100 the waveforms for
I∗1 and I∗2 are approximately equivalent, implying that the presence of the capacitor C2 is having little effect
on the overall current through the inductive coil that is inducing fields in the plasma and acting on the gas
to accelerate it.

As C is increased, the value of dI∗2/dt
∗ asymptotes to twice the value of dI∗/dt∗ through the coil in the

single capacitor case. The reason for this can best be understood by focusing on the first current loop (I1) in
Fig. 1C. If there is no resistance in the loop, when C1=C2 (C = 1), the charge from C1 transfers completely
to C2, with the current I∗1 peaking when the voltage on each capacitor is equal and going to zero as the
voltage on C2 equals the original voltage on C1. Consequently, the voltage across the coil is still roughly the
same value as it would have been if C2 was not present. This neglects resistive losses and doesn’t account
for the fact that much of the charge, instead of going through the coil from C2, instead transfers back to C1

robbing potential current and dI∗2 /dt∗ through the coil (a situation illustrated in Figs. 2A-C.).
We can best understand the case where C1 � C2 by further simplifying current loop I∗1 so it consists

only of C1, C2, and nL0. (Neglecting the current loops I∗2 and I∗3 and their associated lumped electrical
elements does not detract from the reasoning that follows and serves to simplify the explanation.) Initially,
the voltage on C1 changes very little as the discharge progresses. The maximum current I∗1 , corresponding
to dI∗1 /dt

∗ = 0, occurs when the voltage on C2 is approximately equal to the initial charge voltage on C1.
As time progresses further the voltage on C2 continues to rise, eventually reaching a theoretical maximum
value that is approximately twice the initial voltage on C1 when the current I∗1 = 0 and the value of dI∗1/dt

∗

is a local minimum. Translating this to the full circuit, we observe that this would imply a voltage across the
coil that is approximately twice the voltage possible in the single capacitor case, yielding a commensurate
doubling of dI∗/dt∗ through the coil.

V. Conclusions

We have used a nondimensional pulsed inductive acceleration model to study the effects of adding a
second, parallel capacitor into the circuit topology. Inserting the second capacitor into the system was
motivated by limited data showing that the voltage appearing across the accelerator coil could be increased
significantly over the initial charge voltage. Increasing the voltage across the coil has been shown to be
important in the process of inductively ionizing the propellant. The nondimensionalization of the modified
model led to identification of new scaling parameters that are unique to the particular topology. The physical
meanings of the new parameters and their effects on accelerator performance were explored through a series
of theoretical arguments and numerical simulations. The value of current rise rate through the coil is used
as a proxy measure for the voltage across the coil, with higher values of dI/dt potentially yielding better
inductive propellant ionization. The following insights were gained in this study.

• As in the single capacitor case, there exists a value of the dynamic impedance parameter α for which
thrust efficiency is maximized. This optimum corresponds to a matching of the driving circuits natural
oscillation time scale to the residence time scale of the current sheet in the acceleration zone.

• The efficiency and maximum dI∗2 /dt
∗ through the coil suffer for lower values of capacitance ratio C,

with much of the charge transferring back and forth from C1 to C2 instead of going through the coil
and performing work on the propellant.

• The efficiency of the two-capacitor system approaches the theoretical efficiency of the single capacitor
topology for C � 1, with the commensurate value of dI∗2/dt

∗ asymptoting to a value twice as large as
that possible in the single capacitor case.

• As C is increased, the gross behavior of the current waveforms for I∗1 and I∗2 match. The differences in
these waveforms consists of a high-frequency modulation overlayed on the gross waveform. For a given
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C the modulation is a function of n, which represents the position of C2 relative to C1 and the coil.
The value of n greatly affects the level of modulation on I∗1 but only slightly affects I∗2 , implying very
little change in the acceleration process as a function of n.
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Introduction

• Typically pulsed inductive thrusters limited to a simple RLC ringing circuit

• A single data point (from 1971) indictated adding a second capacitor in theA single data point (from 1971) indictated adding a second capacitor in the 
system downstream of the main bank offered potential performance 
improvement and a greater inductive voltage drop across the coil
• Implies higher dI/dt through the coil

• Greater dI/dt through the coil could result in more efficient and/or complete 
inductive breakdown/ionization of the propellant

• In this study
• Model the system with a second capacitor, nondimensionalizing to 

explore the global properties
• Calculate the effect of the second capacitor on performance
• Calculate dI/dt through the coil, using it’s value as a proxy measurement 

f th bilit t i d ti l i i th ll t

2

for the ability to inductively ionize the propellant



Circuit Model

• Two current loops, coupled through the inductive acceleration coil

• Equivalent circuit• Equivalent circuit

3



Circuit Model w/Additional Capacitor

• Added new capacitor C2

• Stray inductance L0, external resistance Re split between loops for I1 and I2Stray inductance L0, external resistance Re split between loops for I1 and I2

• Constant n associated with how close C2 is to C1

4



Circuit Equations

• Governing equations for current (from Kirchoff’s law)

• Governing equations for voltage on the capacitors (from charge conservation)

• Governing equation for the mutual inductance (empirical model)

5



Acceleration Model Equations

• Mass Accumulation Equation (snowplow model)

• Momentum Equation

EM Force

‘Snowplowing’

AccelerationEM Force Acceleration

6



Non-dimensionalization

• Initial non-dimensional terms

• Additional terms
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Non-dimensional equations
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Initial Conditions / Scaling Parameters

Initial conditions Scaling Parameters

Capacitance Ratio Dynamic Impedancep y p
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Results

Increasing C
decreases swing in 

I * increases ringing

Increasing C increases 
dI*/dt* across the coil

I1 , increases ringing 
frequency

Increasing n decreases amplitude and ringing frequency of I1* and dI2*/dt*, but does not affect the average 

10
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Performance as a function of C and α

• For fixed C, efficiency has a maximum 
as a function of αas a function of α

• Efficiency at a constant α increases with 
increasing C, asymptoting for C between 
10 and 100

• Current rise rate increases with 
increasing C, asymptoting to a value of 2

11



Comparing performance to single-capacitor case

A C h 100 ffi i• As C approaches 100, efficiency 
approaches that of the single-capacitor 
case

• Current rise rate increases with 
increasing C, asymptoting to a value of 2, 
which is 2x the fixed value for the single 
capacitor case

• Performance in unaffected, while 

12
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Conclusions

• As in the single-capacitor case, there is an optimum dynamic impedance 
ratio α that maximizes performance

• Efficiency, maximum dI2*/dt* suffer at lower values of C, with charge 
oscillating between C1 and C2 instead of passing through the coil

• Efficiency of the two-capacitor system approaches the single-capacitor 
case for C >> 1, with the commensurate dI2*/dt* growing to twice the value 
of dI*/dt* through the coil in the single-capacitor case

• As C increases, the gross behavior of I1* and I2* match.  The differences 
consist of differing high-frequency modulations overlaid upon the gross 
waveformswaveforms.
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