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MSFC Liftoff Acoustics Analysis Activities 

• MSFC Fluid Dynamics Branch responsible for NASA liftoff 
environments

• Standard approach for acoustic environment prediction: Apply 
empirical plume noise methods (VAEPP, SP-8072, …)

• Resort to knock-down factors for effects not captured in 
empirical methods

• Launch pad topology uncertainties
– Sound reflections from complex pad geometry
– Plume impingement on launch platform
– Typically summed up as + 6 dB scale-up factor

• Water deluge sound suppression effects
– Would result in knock down factor
– Currently not used since no historical database available 

for credible bounds 
• Mature, validated CFD capability in place for liftoff flow field 

analysis
• Can we employ CFD to capture lift-off acoustic phenomena 

not captured by engineering methods?
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MSFC CFD Analysis Activities 
• CFD analysis tool at MSFC is Loci/CHEM 
• MSFC CFD analysis supports:

– Propulsion systems: Propellant delivery unsteady flows, combustion instability
– Liftoff plume induced environments: Mobile launcher, launch pad, and flame 

trench plume flow environments
– Ignition Over-Pressure (IOP) and start-up plume transient environment
– Plume and wind driven liftoff debris transport
– Launch pad hydrogen entrapment
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Space Shuttle, Ares, SLS  liftoff plume flow
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Loci/CHEM CFD Framework

• Loci computational framework
– Highly scalable automatic parallelization platform for computational field simulations
– Developed at Mississippi State University by Dr. Ed Luke
– Open Source under the Lesser GNU Public License (LGPL) License.

• Loci/CHEM density-based Navier-Stokes solver implemented in the Loci framework
– Generalized unstructured grids
– RANS, URANS, DES, Hybrid RANS/LES turbulence modeling
– Eulerian multiphase models for particulates and droplets
– Lagrangian multiphase models for particulates and droplets with particle 

vaporization, condensation, combustion
– Real fluids EOS for cryogenic injection and combustion analysis
– Non-gray radiation transport models (particle and gas phase radiation)
– Solution adaptive mesh refinement with various error estimators available
– Mesh deformation for fluid-structure deformation and fuel burn-back surface
– Overset moving body with prescribed motion and 6-DOF 
– Body Collision 6-DOF modeling 

• Extensively verified using Method of Manufactured Solutions Technique
• 2nd order space and 2nd order time accurate, but not low dispersion/low dissipation
• Production simulations typically 10M to 300M cells on 3000+ processors
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Samples of MSFC CFD Capabilities

• Acoustic driven loads
– SSME flow control valve fatigue fracture due to acoustic loading

• Engine start-up transients and Ignition Overpressure
– Ares-I Scale Model Acoustic Test (ASMAT)

• Water injection for launch pad water deluge simulation
– Two phase flow simulation with water droplet injection
– Effects of water phase on plume acoustic sources on pad

• Vehicle liftoff transient flow effects on pad and flame trench environment
– Full liftoff simulations staring from engine flow start-up transients all the way 

through liftoff trajectory vehicle motion
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CFD for Internal Acoustics

• Application in capturing internal flow acoustics
• Space Shuttle fuel flow control valve supersonic 

flow and impingement 
• Exciting tangential and radial mode cavity 

acoustics
• Valve poppet developed crack due to high cycle 

fatigue
• Loci/CHEM Hybrid RANS/LES simulations
• Captured occurrence of various tangential and 

radial modes up to 100kHz
• Excellent correlation with FEM modal analysis 

and failure mode forensic analysis
• Validated against calibration rig tests
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ASMAT IOP Simulation

• Ares-I Scale Model Acoustic Test (ASMAT)
– Tests of 5% scale model of Ares I vehicle
– Address vibration and  acoustic risks from Constellation 

Program.
– Scale model powered by Rocket Assisted

Take-Off (RATO) motor
– Stationary during firing
– 100+ pressure transducers on launch structure and vehicle
– Tests performed with and without water deluge

• Simulation Interest
– Demonstration of CFD capability for IOP prediction
– Well documented set of high fidelity measurements suitable 

for CFD validation
– Compare flow features to available imagery (Visible, IR 

cameras)
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ASMAT Nearfield and Farfield Acoustics

• Quantitative comparison of time and freq domain signals
• Major pressure peak amplitudes and timings captured with 5-10% error
• Nearfield (sensor close to source) frequency content captured well
• Farfield frequency content lost above ~1000 Hz
• Launch vehicle acoustic frequencies must be resolved to 5kHz minimum
• Requires improved grid resolution and algorithms for acoustic content tracking 

or separate CAA acoustic field propagation approach
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Launch Pad Water Deluge Effects

• Pathfinder simulations of water injection into launch pad plume environment for 
SLS concepts

• LC39 launch pad with detailed flame trench
• Launch pad with four rainbirds emitting sprays of water – uneducated guess on 

placement
• Mixing of liquid engine and SRB plume composite gas mixtures
• Lagrangian particle model in Loci/CHEM used to model the water spray with water 

drop break-up and phase change 
• Approx. 200M cells, Tracking Tens of millions of particles
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Launch Pad Water Deluge Effects

• Presence of water on deck surface 
considerably changes turbulent kinetic 
energy regions from plume spillage

• Alters impedance for plume mach wave 
noise reflection

• Pathfinder CFD simulations demonstrated 
possibility of multi-species, multi-plume liftoff 
simulations with multi-phase gas-water 
effects

• Practical design application: Use CFD 
modeling to target regions of high turbulent 
kinetic energy to reduce noise sources

• Support launch pad design with targeted 
placement of rain birds for maximum 
acoustic mitigation effect

• Challenge will be to resolve acoustic wave 
propagation in direct simulation: hybrid   
CFD-CAA seems only reasonable approach
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Reduction of Plume 500 K Iso-Surface from 0.7 to 4.5 seconds

Reduction of turbulent kinetic energy at deck level



Flame Trench Water Deluge Effects

• Single-phase, gas-only CFD predicts incorrect (faster) trench wave development 
compared to experimental data

• Presence of liquid water reduces mixture sound speed, slowing wave propagation

‘Nominal’ is experimental data

• Achieving stable Loci/CHEM multi-phase CFD runs of Water Deluge
• Injecting water at 200,000 gallons per minute with 30M particles active in launch 

pad SRB holes
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Shuttle Liftoff Plume Flow

• Space Shuttle SRB plume impingement environment 
• Transient trench flow starting from SRB ignition followed by moving body plume 

transient plume impingement environment
• Captures transient start-up flow and IOP under launch pad and plume spillage onto 

pad deck during liftoff motion
• Overset grid 6-DoF simulation
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Extend CFD Analysis to Liftoff Acoustic

• Examples demonstrate Loci/CHEM CFD tool offers validated high-fidelity physics 
capability 

• Mature CFD modeling capability is in place to capture many dominant liftoff 
aerothermal flow environment features

• Desired next step to apply this multi-physics capability to also tackle effects on 
launch acoustic environment 

• Important to retain complex physics feature modeling capability since they also drive 
acoustic field characteristics

– Multiple plumes with different plume gas composition (directivity)
– Plume impingement, spillage turbulence modeling (new sources)
– Turbulent plume mixing, requiring LES (Mach wave noise) 
– Plume characteristics under launch pad and in flame trench
– Water deluge multi-phase effects on turbulent (acoustic) energy

• Problem: Loci/CHEM numerics are 2nd order time, 2nd order space accurate but not 
low dispersion/low dissipation

• May be too dissipative for preserving farfield acoustics (see ASMAT example)
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CFD Based Liftoff Acoustic Modeling

Two avenues towards high-fidelity CFD based liftoff acoustics predictions

• Long-term approach: Improve CFD algorithms beyond current 2nd order accuracy
– Higher order spatial and temporal accuracy 
– Lower numerical dissipation schemes
– Difficult to achieve while retaining multi-species, reacting, turbulent plume flow 

important for capturing acoustic sources
– Evaluating various higher order numerics developments (low dissipation schemes), 

but not production ready

• Near term approach: Implement hybrid approach of CFD + CAA
– Utilize existing plume modeling fidelity to capture acoustic sources originating from 

plumes, impingement, water suppression effects
– Existing CFD modeling features important physics (multi-phase plume, turbulence, 

LES, gas-water phase effects from deluge, etc.) but too dissipative
– Propagate CAA from source surfaces enveloping noise source regions
– Reduced risk and timely availability: Only requires development of communication 

between Loci/CHEM CFD results and existing CAA solutions
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Computational Acoustic Simulation Approaches

Approach Method Description Prediction Quality Computational Cost /
Practical Feasibility

Direct CFD Method
(without any Acoustic 
Solution Method)

Solve Full Navier-Stokes Equations
- Direct Numerical Simulations (DNS)
- Large-Eddy Simulations (LES, MILES)
- Unsteady Reynolds Avg. NS (URANS)

Best
Good but Questionable
Poor

Most Expensive / Not feasible
Expensive / Not Feasible
Least Expensive / Unreliable

CFD-CAA Method
- CFD-LEE
- CFD-APE

Coupled Navier-Stokes (LES) and 
Linearized Euler Equation (LEE) or 
Acoustic Perturbation Equation (APE)

Good
Extremely Expensive Due to 
Mesh Resolution Requirements 
of Both LES and Acoustics
Only Feasible for Small-Scale

CFD-Surface Integral 
Analytical Methods (Lighthill
Kirchhoff or FWH)

Coupled Navier-Stokes (LES/RANS) and 
Analytical Methods for Far-Field Acoustics Reasonable

Feasible but Not Applicable for 
Sound Reflections in the Acoustic 
Domain

CFD-BEM CFD Simulations (LES/RANS) Coupled
with Helmholtz Equation via Boundary 
Integral Equation (BIE) Form

Good
CFD Computational Expense
Feasible For Large-Scale 
Applications

• Complex plume path (through mobile launch ducts, deflection under ML, plume 
exiting flame trench) 

• Reflection, diffraction, attenuation of acoustic waves on ML and tower structures 
• Selected BEM as most suitable for complex launch pad topology
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FastBEM CAA

• Evaluation of implementation of BEM method for hybrid CFD/CAA is underway
• Facilitated through NASA Small Business Technology Transfer project (STTR) to utilize 

technology from existing software: FastBEM Acoustics (Prof. Liu, U. Cincinnati)
• FastBEM Solves Helmholtz Equation via Boundary Integral Equation (BIE) Form
• Fast multi-pole BEM for solving 3-D, interior/exterior, radiation/scattering problems with 

velocity, pressure and impedance BCs
• Fast Multi-pole Method (FMM) reduces the cost (CPU time & storage) for BEM to O(N)
• Demonstrated fast and accurate wideband acoustic analysis from low to high frequencies 

without compromising the BEM model size and accuracy
• Large-scale acoustic BEM models with unknowns (DOFs) up to several millions solved on 

PCs and even larger models on supercomputers
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Radiation Scattering

FastBEM Examples

Radiation Due To Engine Vibrations

Acoustic Pressure

Radiation Due To Propeller Vibrations

Building 
without Barrier

4-meter 
Barrier

Effect Of Sound Barrier On
Noise Level (dB) On Building
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Liftoff CFD-CAA Process Implementation
• Establish process to extract source surface enclosing acoustic noise source regions

– Complicated enclosure surface result from plume interaction with structures
– Explore approaches to automating enclosure generation

• Develop handover process of acoustic enclosure surface to FastBEM input BC 
utilizing existing Loci/CHEM native post-processing tools

• Demonstrate FastBEM software capability to analyze complex launch pad topology
– Large domain, complex enclosed structures topology
– Port software to NASA supercomputer facilities

• Validate process against standard acoustic experiments (supersonic plumes, etc.)
• Identify modifications and improvements for NASA specific applications
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CFD-CAA Process Validation and Maturation

• Upon successful completion of proof-of-concept and process development, enter 
phase of establishing production capability for NASA problems

• Identify adequacy of existing Loci/CHEM modeling accuracy for generating high 
quality noise source data to extract on enclosure surface

• Identify best practices guidelines for CFD simulation to achieve proper resolution 
of noise sources

– CFD simulation grid density, time-step resolution, turbulence modeling 
– Placement and resolution of enclosed source surface for proper handover of 

acoustic source characteristics
• Demonstrate and validate tools and process for relevant cases
• Prime candidate is ASMAT: highly instrumented, both dry and wet simulations 

available
• Welcome suggestions and cooperation with CFD-CAA community for suitable 

validation cases
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Conclusions

• MSFC Fluid Dynamics Branch responsible for NASA liftoff environments
• Sophisticated, validated CFD analysis capability in place for liftoff flow environments 

(pad and flame trench aerothermal, IOP, debris transport, …)
• Now extending CFD analysis to predict liftoff noise 
• Intent is to apply CFD to capture effects not included in empirical liftoff acoustic 

methodologies: plume impingement, flame trench plume interaction, water deluge, …
• Selected hybrid CFD-CAA approach to retain benefits of multi-physics CFD 

capabilities
• Selected BEM approach for CAA because of capability to capture interaction with 

complex launch pad topology
• Development under way to establish CFD-to-CAA data extraction and exchange 

process
• Extensive demonstration and validation planned for realistic launch pad cases (e.g., 

ASMAT)
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