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Introduction:  Volatile siderophile elements (e.g., 

As, Sb, Ge, Ga, In, Bi, Zn, Cd, Sn, Cu, Pb) can place 

constraints both on early differentiation as well as the 

origin of volatiles.  This large group of elements has 

been used to constrain Earth accretion [1,2], and Earth-

Moon geochemistry [3].  Application to Earth has been 

fostered by new experimental studies of these elements 

such as Ge, In, and Ga [4,5,6].  Application to Mars 

has been limited by the lack of data for many of these 

elements on martian meteorites.  Many volatile ele-

ments are considered in the pioneering work by [7] but 

for only the small number of martian samples then 

available.  We have made new measurements on a va-

riety of martian meteorites in order to obtain more sub-

stantial datasets for these elements using the analytical 

approach of [8].  We use the new dataset, together with 

published data from the literature, to define martian 

mantle abundances of volatile siderophile elements.  

Then, we evaluate the possibility that these abundances 

could have been set by mid-mantle (14 GPa, 2100 ºC) 

metal-silicate equilibrium, as suggested by the mod-

erately and slightly siderophile elements [9].  Finally, 

we examine the possibility that some elements were 

affected by volatility and magmatic degassing.    

Analytical Methodology: Polished sections of 6 

martian meteorites (Shergotty, Zagami, Los Angeles, 

EETA 79001A, Y-000097, and Y-980459) were ana-

lyzed for 73 elements by UP193FX excimer laser abla-

tion system coupled to a Thermo Element XR at the 

Plasma Analytical Facility, FSU [8]. Spot sizes of 100 

µm, rastered over the surfaces at 25-50 µm/s, for areas 

ranging from 3-24 mm2 were used. All elemental peaks 

were collected in low resolution using triple mode de-

tection. Standards used included NIST SRM 610, 

USGS glasses BCR-2g, BHVO-2g and BIR-1g.  

Element correlations:  Correlations of siderophile 

elements with lithophile elements of similar compati-

bility in igneous fractionation processes have been 

used to estimate mantle abundances in differentiated 

bodies for which we have not direct mantle samples 

(e.g., [10]).  Here we examine the Ge-Si, In-Yb, and 

Cu-Ti pairs chosen based on previous work ([1,7]).  

Correlation of W-Ta, Zn-Ti, and Cd-Yb are also used 

below but not shown here.  Terrestrial examples are 

shown for comparison (Figs 1-3).  For Ge, the terre-

strial peridotites fall just below the trend formed by 

terrestrial basalt, and as a result the martian mantle 

 

 

 
Figures 1,2,3: Ge-Si, In-Yb, and Cu-TiO2 correlations 

for terrestrial peridotite, basalt, chondrites and mar-

tian basalt (shergottites) illustrating estimated martian 

mantle concentrations for each siderophile element. 
Red square is the bulk Mars composition of [11]; large 

red circle is the martian mantle estimate using the cor-

relations among shergottites, with guidance from ter-

restrial mantle-basalt trends. Data from [1,4, 7,16,19-

24] and this study. 
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estimate is placed just below the shergottite basalt 

trend.  For In, the spread in terrestrial mantle data is 

large, making the slope for the Earth more uncertain, 

but mimicking either a shallow or steep trend for mar-

tian samples results in little or no depletion of In in the 

martian mantle. Finally, Cu shows a significantly larg-

er depletion relative to the terrestrial peridotite and 

basalt.  Our new W data help better define the W dep-

letion derived by [9].  New Zn data indicate little to no 

depletion of Zn in the martian mantle, and Cd (like Cu) 

is depleted more in the martian mantle than in the ter-

restrial mantle. 

Core-mantle partitioning:  Righter and Chabot 

(2011) [9] proposed that the abundances of Ni, Co, 

Mo, W, V, Cr, P, and Ga were set by an intermediate 

depth magma ocean at 14 GPa and 2100 ºC.  The new-

ly defined mantle depletions of the volatile siderophile 

elements can be evaluated with respect to this model.  

Using the bulk Mars composition of [11] along with a 

22 mass % core with Xs = 0.17, we can calculate what 

D(met/sil) would be required to explain the above de-

rived mantle abundances.  These calculations account 

for depletion due to volatility, as did [9] for Ga and P.   

 For Cu and Ge, the predictive expressions of [12] 

and [4], respectively, can be used to calculate mantle 

abundances of 1.5 ppm (D(Cu) = 120) and 0.3 ppm 

(D(Ge) = 100), close to the values from the element 

correlation of 3.0 ppm and 0.7 ppm.  Zn and In both 

require D<0.1, and the high PT datasets of [13] and [5] 

both indicate these low values are highly possible for 

the PT conditions of [9].  Although there are not sys-

tematic partitioning data available for Cd, the D(Cd) 

required is 3, similar to a metal/silicate D(Cd) = 1.9 

determination by [14]. Whether this depletion can be 

explained solely by core formation should be tested 

with future high PT metal/silicate partitioning for Cd.  

It appears as if these five elements are also consistent 

with an intermediate depth magma ocean on Mars.   

Magmatic degassing:  It is not known whether 

shergottites have degassed and if so to what extent 

[15].  Many of the volatile siderophile elements could 

be susceptible to loss to volcanic gas during degassing 

[16].  Norman et al. (2004) [16] have shown that ele-

ments such as Re and Cd are more significantly lost 

than others such as Zn and Cu.  Subsequently, the 

Cu/Re and Cd/Dy ratios may yield information about 

how much of these elements may have been lost during 

magmatic degassing [16]. Terrestrial volcanic gases 

are most commonly dominated by H-C-O-S gases, but 

on Mars Cl is also a significant gas component, and Cl-

bearing melts and gases can promote the mobility of 

many elements including Cd and Re [18].  Examina-

tion of Cu/Re vs S trends in Hawaiian glasses illu-

strates the degassing trend of [16], and some portion of 

the martian sample data may indicate degassing.  Simi-

larly, for Cd/Dy vs. S there is a comparable decrease in 

Cd/Dy as there is in the Hawaiian suite, suggesting 

degassing may play a role.  We will examine more 

elements and try to place constraints on how much 

degassing could have affected elemental abundances of 

these elements. 

 
Figure 4: Cu/Re vs. S (ppm) for Hawaiian glasses [16] 

compared to martian basalt (Re data from [17] and Cu 

and S data from [19]).  These trends have been cor-

rected for fractionation which may lower Dy, and in-

crease Cu, Re, and Cd with degree of evolution. 
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