
DRAFT

(Preprint) AAS 12-236

RECENT IMPROVEMENTS TO THE COPERNICUS TRAJECTORY
DESIGN AND OPTIMIZATION SYSTEM

Jacob Williams ∗, Juan S. Senent †, Cesar Ocampo ‡, and David E. Lee §

Copernicus is a software tool for spacecraft trajectory design and optimization.
The latest version (v3.0.1) was released in October 2011. It is available at no cost
to NASA centers, government contractors, and organizations with a contractual
affiliation with NASA. This paper is a brief overview of the recent development
history of Copernicus. An overview of the evolution of the software and a discus-
sion of significant new features and improvements is given, and how the tool is
used to design spacecraft missions.

INTRODUCTION

Copernicus, a generalized spacecraft trajectory design and optimization system,1, 2, 3 is capable of
solving a wide range of trajectory problems such as planet or moon centered trajectories, libration
point trajectories, planet-moon transfers and tours, and all types of interplanetary and asteroid/comet
missions. Impulsive and finite burn (low to high thrust) propulsion systems based on chemical, so-
lar electric, or nuclear powered engines can be modeled. The segment1 is the fundamental building
block of a multiple-shooting based trajectory design process in Copernicus. A mission can be de-
fined by any number of segments, which can represent multiple spacecraft, multiple stages of a sin-
gle spacecraft, or can simply be computational segments used to obtain information about selected
states in the mission (for example to compute orbital elements or altitude). Segments can be inde-
pendent, connected via inheritance in complicated ways, or initially disconnected and constrained
to be connected during the optimization process. They can contain impulsive ∆v maneuvers, finite
burn maneuvers, and user-defined force models. Additionally, segment definition parameters such
as times, initial mass, mass discontinuities due to staging, initial state, engine parameters, impulsive
maneuver parameters and finite burn control law histories2 can all be optimization variables. Each
segment can have a different integration or propagation method and segments can be propagated
either forward or backwards in time. The system includes a variety of parameter optimization and
targeting methods.3

The Copernicus Project started at the University of Texas at Austin in August 2001. In June 2002,
a grant from the NASA Johnson Space Center (JSC) was used to develop the first prototype which
was completed in August 2004. In the interim, support was also received from NASA’s In Space
Propulsion (ISP) Program4 and from the Flight Dynamics Vehicle Branch of Goddard Spaceflight

∗ERC, Inc. (Engineering and Science Contract Group), Houston, Texas
†Odyssey Space Research, Houston, Texas.
‡Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, Texas.
§EG/Aeroscience and Flight Mechanics Division, NASA Johnson Space Center, Houston, TX 77058.

1



DRAFT

Center. The first operational version was completed in March 2006 (v1.0). The initial development
team consisted of Dr. Cesar Ocampo and graduate students at the University of Texas at Austin
Department of Aerospace Engineering and Engineering Mechanics. Since March 2007, primary
development of Copernicus has been at the Flight Mechanics and Trajectory Design Branch of JSC.

Copernicus was used extensively at several NASA centers as part of mission design and anal-
ysis work for the Constellation Program.5, 6 During this period (2006-2010), the developers of
Copernicus used the tool extensively at JSC for analysis of manned lunar missions, and many new
features not available in the original tool were added in order to enable specific analysis tasks. These
included: a batch processing capability to allow for many instances of Copernicus to run simulta-
neously in order to conduct large trade studies, the ability to use lower-fidelity models for trade
studies, and the ability to easily transition from low-fidelity to high-fidelity models, more capability
to interact with and exchange data with other software tools (input and output data), and various
usability improvements (e.g., improving the GUI to make the tool easier to use, making it easier to
manipulate segments, etc.). In addition, during this period, many internal code improvements were
made in order to make the program easier to upgrade, the run-time efficiency of the program was
improved, and a library of low-level routines known as the Copernicus Toolkit was created to allow
the ability to build other tools using the same code-base.7

In 2010 and 2011, the NASA In-Space Propulsion Technology Program also funded specific
Copernicus development tasks. These included new finite burn engine models, more flexible data
output, gravity assist maneuvers, a ∆v to finite burn conversion wizard, and new capabilities for
defining halo orbits about libration points. The new finite burn models included a BB/DD model for
engine efficiency vs. Isp, a mass flow rate and thrust vs. power polynomial model, a custom solar
power decay model, a non-propulsion systems reserved power model, and shadow models for SEP
engines. These model enabled more realistic simulation of real-world in-space propulsion systems.

The following sections describe specific features and recent improvements to Copernicus.

IMPULSIVE MANEUVER UPGRADES

Several new options have been added to allow more flexibility in the use of ∆v maneuvers in
Copernicus. They are described below.

Lambert Maneuvers

Optimization of impulsive ∆v maneuvers was present in Copernicus from the beginning. A recent
addition was the ability to also specify a ∆v in order to target another state or body using Lambert’s
algorithm. The Gooding Lambert routines8 are used for this. They allow multiple transfer options
when computing a Lambert transfer, including multiple revolutions and the choice of transfers in
the > π or < π directions. Figure 1 shows an example. The transfer options are all available
in the Copernicus GUI. The “selection criteria” is a Copernicus feature that allows the automatic
selection among a set of selected transfer solutions in order to minimize or maximize the individual
maneuvers (or the sum of the two). For example: target a state in a single revolution or less, using
either a > π or < π transfer, selecting the one which minimizes the initial maneuver. Lambert
maneuver can also be combined with gravity assist parameters described below to design gravity
tours (described further below).

2



DRAFT
Figure 1. Multiple Solution in Lambert’s Problem. In the Copernicus implementa-
tion, all the solutions are available, including multi-rev solutions. The user indicates
which solution to use (and can specify to use the one which maximizes or minimizes
the initial or final maneuver, or the sum of the two maneuvers.

3



DRAFT

Gravity Assist ∆v Maneuver Parameterization

A ∆v maneuver can be used to approximate a high-thrust maneuver by a spacecraft, but can also
be used to approximate a gravity assist flyby of a planetary body (i.e., assuming a patched-conic
approximation). In Copernicus, this feature was added by allowing an impulsive ∆v maneuver
to be parameterized as a zero-sphere-of-influence (ZSOI) planetary flyby maneuver. This allows
a planetary flyby to be modeled as an instantaneous change in velocity at the body,9 using either
the ∆v0 or the ∆vf of a Copernicus segment. The new ZSOI parameters (rp, φ, ∆v∞, and ∆vrp)
are described in Table 1. Maneuvers parallel to the velocity vector at periapsis (∆vRp) or infinity
(∆v∞) can also be included in the parameterization. These represent maneuvers performed by the
spacecraft, and result in the incoming and outgoing v∞ vectors having different magnitudes.

For the patched-conic approximation, the v∞ vectors (before and after the flyby) are obtained
from the Copernicus segment nodes t0 or tf (as shown in Figure 2). It is assumed that the node
position is at the center of the flyby body. In general, this can be achieved as an initial condition
(if the ZSOI maneuver is at t0), imposed as a constraint, or as the result of a Lambert maneuver
targeting the flyby body. The segment ∆v is ∆vZSOI , the difference in the v∞ vectors from the
“Heliocentric” point of view:

∆vZSOI = v+
∞ − v−∞ (1)

For a pure flyby (unpowered), the specified clock angle (φ) and hyperbolic turning angle (δ) are
used to rotate the v−∞ to produce the v+

∞ vector, as shown in Figure 3. The turning angle is simply:

δ = 2 sin−1

(
1

rpv2
∞/µ+ 1

)
(2)

Where rp is the periapsis of the hyperbola, µ is the gravitational parameter of the flyby body, and
v∞ is the magnitude of v−∞ or v+

∞ (which are equal for a pure flyby).

Maneuvers parallel to the velocity vector at periapsis (∆vRp) or infinity (∆v∞) can also be in-
cluded in the parameterization. These represent maneuvers performed by the spacecraft, and result
in the incoming and outgoing v∞ vectors having different magnitudes. If using ∆v∞, this magni-
tude is simply added to the v+

∞ after the rotation is performed (refer to Figure 3). If using ∆vrp ,
then this velocity is added to the velocity at periapsis.

The direct version of the transformation takes v−∞, rp, φ, (∆v∞, or ∆vrp) and computes v+
∞.

The inverse transformation takes v−∞ and v+
∞ and computes rp, φ, (∆v∞, or ∆vrp). The inverse

transformation is used when the maneuver is also a Lambert maneuver (see below). In this case,
∆vZSOI is determined by the Lambert algorithm, and the gravity assist parameters are not inde-
pendent quantities.

Table 1. New ZSOI ∆v Maneuver Parameters

Symbol Description

rp Periapsis radius magnitude
φ Clock angle (angle between Ẑ and B vectors)

∆v∞ Velocity magnitude change at infinity (i.e., the sphere of influence)
∆vrp Velocity magnitude change at periapsis of the hyperbola

4



DRAFTFigure 2. ZSOI Maneuver Parameterization (Heliocentric View). A ∆v from a
Copernicus segment which occurs at the center of a body (in this case, Earth), can be
parameterized as a ZSOI flyby maneuver.

Figure 3. ZSOI Maneuver Parameterization (Planetocentric View). For an unpow-
ered flyby (∆vrp = 0), the clock angle (φ) and the hyperbolic turning angle (δ) are
used to rotate the v−∞ to produce the v+

∞ vector. The difference between the two v∞
vectors is transformed into the heliocentric frame, and becomes the segment ∆v.

5



DRAFT

Combining Lambert and Gravity Assist

The Lambert and ZSOI gravity assist ∆v features can be used together to specify a Lambert
maneuver that is also a gravity assist. The gravity assist parameters are then computed from the
Lambert ∆v, for the specified flyby central body. An example use of this new capability is the ability
to create a patched-conic trajectory where a powered planetary flyby targets a specified endpoint
(e.g., another body). For example, in the mission concept shown in Figure 11b, the ∆vZSOI could
be a Lambert maneuver which targets the center of the destination body (Mars). When a segment
∆v maneuver is both a ZSOI flyby and a Lambert maneuver, then the Lambert ∆v (computed
from the central body, the segment duration, and the target state) is transformed into the ZSOI
parameterization. If the ZSOI parameterization uses ∆vrp , then this represents the component of
the gravity assist performed as a powered flyby maneuver at periapsis. During the optimization, this
component can be constrained (e.g., an upper bound could be imposed, or it could be driven to zero
to produce a pure gravity assist). If converting the maneuver to a hyperbolic segment (as in Figure
11c), the powered component is inserted as a maneuver at periapsis of the inserted segment. This
feature is explained below.

Conversion of a Gravity Assist ∆v Maneuver to a Hyperbola

A new feature was also added to automatically convert a ∆v maneuver parameterized as a ZSOI
gravity assist into a hyperbolic mission segment at the flyby body. This feature inserts two segments
into the mission: one propagated forward in time and the other backwards in time. The initial state is
a hyperbola centered at the flyby body, with a true anomaly of zero, and a periapsis radius and clock
angle equal to the values from the ZSOI ∆v parameterization. To complete the hyperbolic state, the
v∞ vector will be equal to the planet-relative velocity in the original segment. If a non-zero ∆v∞
or ∆vrp is used, then this maneuver will also be added to the inserted segment. The new segments
are then propagated to the sphere of influence of the flyby body.

This feature enables the user to optimize a trajectory using patched-conic ∆v’s, and then easily
convert the ∆v’s to realistic planetary flybys. An example in shown in Figure 4. In this figure,
the dashed black line is a ZSOI flyby trajectory with only the Sun in the force model. A ∆v is
applied at the center of Jupiter, and is parameterized as a ZSOI maneuver. The solid blue line is the
corresponding hyperbolic segments (with Jupiter in the force model). A zoomed-out view is also
shown of the sphere-of-influence radius. Once the flyby segments are inserted, the user can then
connect them to the rest of the mission via an optimization or targeting process.

∆v to Finite Burn Conversion

One of the goals of Copernicus is to provide a user-friendly way to design complex trajectories.
The use of “wizards” that can be used to automatically solve common sub-problems is one mani-
festation of this objective. The first such wizard added to Copernicus allows a user to easily convert
an impulsive ∆v maneuver into an equivalent finite burn maneuver, and then insert the finite burn
segment into the mission (as shown in Figure 5). This process is accomplished by using the ∆v
maneuver as an initial guess for a finite burn maneuver,10 which is then optimized to close the con-
straints and maximize the post-maneuver mass. The initial guess for the finite burn duration (∆tFB)
is computed using the rocket equation:

∆tFB =
m0c

T

(
1 − e−∆v/c

)
(3)

6



DRAFTHyperbola

Patched Conic

Sphere of Influence

Figure 4. Conversion of a patched-conic trajectory into a hyperbola. The patched-
conic trajectory includes the Sun only in the force model. An impulsive ∆v is applied
at the center of Jupiter. The hyperbolic trajectory includes Jupiter in the force model.
The zoomed-out view shows the sphere-of-influence radius.

7



DRAFTFigure 5. Conversion of a ∆v to a Finite Burn. The finite burn trajectory begins and
ends on the original impulsive trajectory.

where c is the engine exhaust velocity (Ispg0), T is the engine thrust, and m0 is the initial mass.
The start time guess for the finite burn is t0 = t∆v −∆tFB/2. If u is the finite burn thrust direction
unit vector at t∆v (the time of the ∆v maneuver), then the initial guesses for u, u̇, and ü are:

u = ∆v̂ (4)

u̇ = 0 (5)

ü = (3µ/r5)
[
(r · u)r− (r · u)2u

]
(6)

where r is the position vector and µ is the gravitational constant of the central body. The equation
for ü assumes a central body force field only. The finite burn control law is assumed to be:

α(t) = α0 + α̇0(t− t0) +
1

2
α̈0(t− t0)2 (7)

β(t) = β0 + β̇0(t− t0) +
1

2
β̈0(t− t0)2 (8)

where α(t) and β(t) are the thrust direction right ascension and declination control history (α0, α̇0,
α̈0, β0, β̇0, β̈0 are constant parameters to be optimized). The vectors u, u̇, and ü (defined at t∆v)
are converted to α(t∆v), α̇(t∆v), α̈(t∆v), β(t∆v), β̇(t∆v), and β̈(t∆v), then propagated to t0 (the
start of the finite burn) to provide an initial guess for α0, α̇0, α̈0, β0, β̇0, and β̈0.

This feature provides an easy way to convert between a impulsive ∆v and a feasible finite burn,
using any of the engine models available in Copernicus. This enables a faster lower-fidelity solution
to be computed, and then converted into feasible solution using realistic engine models. Once this
is done, the trajectory can then be further refined if desired (i.e., optimization of the thrust history
and/or engine parameters). This is another feature which facilitates a design process of producing
high-fidelity trajectories by starting with simple models which can be converged quickly.

8



DRAFT

EXPANDED STATE PARAMETERIZATIONS

A state parameterization is a set of (up to six) variables, called state parameters, that can be used
to represent the state of a spacecraft in a specified reference frame at a specified epoch. The most
common state parameterizations are cartesian (position and velocity), and classical orbital elements.
However, there are many different ways of parameterizing any state vector.11 In a generalized tra-
jectory design and optimization system, it is convenient to have multiple ways to specify, inherit,
optimize, and constrain states, in order to provide maximum flexibility in the design process. New
state parameterizations have been added to Copernicus in recent revisions, including the Gooding
universal element set12 (which exhibits very low loss of precision during transformations to and
from position and velocity), and modified equinoctial elements13, 14 (which eliminates the singular-
ities present in the classical orbital element set).

In addition, thorough unit testing of the state transformation subroutines enables the accuracy of
each of the parameterizations to be studied, and the best algorithms identified for performing the
transformations. Rigorous testing also enables the identification of numerical issues and singulari-
ties. For example, for the computation of geodetic altitude and latitude in the geographic parameter-
ization, the original iterative algorithm was replaced with the closed-form Heikkinen algorithm,15

which was found to exhibit better numerical accuracy.

In general, the state parameterizations in Copernicus can be used to represent any state vector.
Two of the specialized parameters are described below, which do not apply to all states, but have
specific applications to certain classes of states.

Hyperbolic State Parameterization

The hyperbolic state parameterization, only valid for hyperbolic states, contains the most param-
eters of any state parameter set in Copernicus. This parameterization has many uses when dealing
with hyperbolic orbits6 (for example, to guarantee that a state is always hyperbolic, while still al-
lowing some of the orbital parameters to vary during optimization). A recent revision expanded
this parameterization to include many new state parameters, including B-Plane parameters.16, 17, 18

For a hyperbolic flyby, the B-plane is the plane perpendicular to the v∞ vector, and centered at the
flyby body (as shown in Figure 6). In addition, to be completely general, Copernicus includes two
B-plane definitions (the standard one, and one referenced to the v+

∞ vector which can be used for
backward integration). The new hyperbolic state parameters (φ, θ, B, B ·T, B ·R, δ, and r±) are
described in Table 2, where:

Table 2. New Hyperbolic State Parameters

Symbol Description

φ Clock angle (angle between Ẑ and B vectors)
θ Aim point orientation (angle between T̂ and B vectors)
B Magnitude of the B vector

B ·T Dot product of B and T̂ vectors
B ·R Dot product of B and R̂ vectors
δ Hyperbolic turning angle (angle between v−∞ and v+

∞ vectors)
r± Radius magnitude (> 0 past periapsis, and < 0 before periapsis).

9



DRAFT

• B is the vector from the planet to the point where the asymptote of the hyperbolic flyby
trajectory pierces the B-plane.

• Ŝ is a vector parallel to the v∞ vector (and perpendicular to the B-plane).

• Ẑ is the projection of the z-axis of the selected coordinate frame into the B-plane. In Coperni-
cus, any frame can be used for this purpose (for example, the ecliptic frame or the body-fixed
frame of the flyby body).

• R̂ is the negative of Ẑ.

• T̂ is the cross product of Ŝ and Ẑ.

An example use of the new parameters is shown in Figure 7, which uses the v−∞, φ, δ, and r± state
parameters to define an Earth-centered hyperbolic state. Also note that the hyperbolic state param-
eterization works together with the ZSOI ∆v maneuver parameterization, enabling the conversion
of a ZSOI ∆v maneuver into a hyperbolic segment.

Halo Orbit State Parameterization

In the latest revision of Copernicus, a new state parameterization was added that can be used to
easily define halo orbits. First, the user needs to select a two-body rotating frame (Earth-Moon,
Sun-Earth, etc.) with its center at one of the collinear libration points: L1, L2 or L3. Second,
the amplitude of the halo orbit has to be defined. The user can specify the amplitude in the z or
x-axis. This amplitude is just a 1st order approximation of the actual amplitude of the halo orbit.
When defining a halo orbit, the selected amplitude (Ax or Az) has to satisfy certain constraints.19

If the specified amplitude does not generate a halo orbit, a pop-up error dialog will be generated. In
this dialog, the minimum required amplitude will be shown. Third, the halo orbit family: North or
South (see Figure 9) should be selected and finally the location of the initial state on the halo orbit
is defined by the phase parameter τ (see Figure ??). τ increases in the direction of motion.

With the previous information, Copernicus can now calculate the state on the halo orbit. The user
has two options for the accuracy of this initial state: Richardson’s 3rd order approximation19, 20 and
differentially corrected with 1 or 2 revolutions of accuracy. Since the Richardson’s approximation
requires less computational time, it can be used for quick scans where not much accuracy is required
(this approximation is valid for solutions with accuracy less than half a revolution). If more accuracy
is needed (e.g. the halo orbit has to be propagated for 1 or 2 revolutions), a differentially corrected
with 1 or 2 revolutions of accuracy can be used. The Richardson’s solution is used as an initial
guess and then a differentially corrected solution is obtained.21 The accuracy of these solutions
is 1 km after one or two revolutions of the orbit. If there is no convergence in the differential
correction method, a warning message is generated in the console window. This message will also
contain some information about the accuracy of the obtained solution (e.g. the number of half-revs.
the solution satisfy the accuracy criteria). The computational time associated with the differential
correction method is higher than one of the Richardson’s approximation. Thefore, this option might
slow down the solution of the whole optimization problem that Copernicus is trying to solve.

Although this new feature makes it simple to define states on halo orbits, the differential cor-
rection method might not converge for all the feasible amplitudes. For those cases, the user can
define a differential correction scheme on his own by using the Copernicus optimization variables
and constraints.

10



DRAFTFigure 6. B-Plane Parameters. The B-plane is perpendicular to the v∞ vector, and
centered at the flyby body. The clock angle φ is the angle between Ẑ and B, and the
aim point orientation (θ) is the angle between T̂ and B.

Figure 7. Example Hyperbolic State. This example uses the v−∞, φ, δ, and r± state
parameters to define an Earth-centered hyperbolic state.

11



DRAFT
Figure 8. Graphical user interface components used to define halo orbits.

PROPAGATION METHODS

Each segment in Copernicus can have its own propagation method (or they can all use the same
one). One recent upgrade to Copernicus was the inclusion of Kepler propagation methods (early
versions only included explicit integration). Kepler methods available in Copernicus include the
Battin,22 Goodyear,23 and Shepperd24 methods. Kepler propagation methods can be used for
central-body patched conic trajectories. Can also switch to high-fidelity integration. Copernicus
also includes a suite of both fixed and variable-step explicit integration methods. These include
Runge-Kutta, Adams, Encke, Nystrom, and extrapolation methods.

DIFFERENTIAL EVOLUTION

Differential evolution,25 a population based stochastic optimization method, has been added to
Copernicus. DE has proven useful in the design of interplanetary missions.26 The inclusion of DE
into Copernicus further expands the ability of the tool to solve complicated trajectory optimization
problem within a single software tool. Within Copernicus, the user also has the ability to switch
between DE and gradient-based methods (e.g., SQP). DE can be used to search the solution space
to produce a set of population members which can then be refined using another method. DE is par-
ticularly useful for situations with discontinuities which would cause gradient-based optimization
methods to fail (for example, switching between a single and multi-revolution Lambert solution).

12



DRAFT

Figure 9. Different views of the north and south halo orbit families.

13



DRAFT

EXAMPLE MISSION DESIGN

Copernicus contains a set of building blocks with which the user can use to solve a wide range
of trajectory design and optimization problems. The flexibility of the Copernicus approach facili-
tates the modeling of many types of trajectory optimization problems as well as the generation of
a methodology required to solve them. Though there are multiple ways in which any trajectory
optimization problem can be modeled, there are some that will have better convergence properties
than others for a given choice of solution method. Copernicus is not a “black box” to solve prob-
lems with little or no input from the user, nor is it simply an algorithm, but a tool to assist the user
in designing and solving the problem. Using Copernicus is a creative process, requiring the user
to decide how many segments are needed to model the trajectory, how to parameterize the states
and maneuvers, which algorithms to use, etc. The integrated graphical user interface (GUI) and 3D
graphics also provide continuous feedback during solution process.

All of these building blocks can be combined to design very complicated missions. The same
problem can be solved using different levels of complexity and fidelity as needed within the same
program. The user can start with simplified models and can gradually build a more complex and
realistic solution to the problem. Some examples of this include:

• Solving a trajectory problem using simplified force models (e.g., pointmass gravity), and then
activating a higher-fidelity force model (e.g., atmospheric drag, high-order gravity, or solar
radiation pressure) and resolving.

• A ∆v maneuver can first be estimated using Lambert targeting and then added to the opti-
mization problem.

• Gravity assists can be modeled using a zero sphere of influence patched conic model and then
converted to actual planetary flybys.

• A complex trajectory problem can be solved using optimized ∆v maneuvers, which are then
converted to finite burn maneuvers.

• Differential Evolution and patched conic trajectories can be be used to quickly search for
favorable solutions, which can then be refined using higher-fidelity models and gradient-based
optimization methods.

Copernicus allows a gradual mission design approach where simplified models can be used for
initial scans or trade studies and then, using the same tool, the user can start adding more realistic
features to the optimization problem or new phases to the mission, etc (Figure 11 shows an example
of this process).

Show some example missions and how they are designed using Copernicus.

Example: Flyby sequence using lambert maneuvers and ZSOI parameterization.

Using the Copernicus Toolkit to build other programs. Parametric studies. GTOC5 solu-
tion: Toolkit + Copernicus.

See Figure 11 for a mission design concept that includes the use of the new ∆v to finite burn
and gravity assist to hyperbola conversion features. These new features are additional building
blocks that can be used as part of a trajectory design and optimization process that begins with an

14



DRAFT

infeasible initial guess using simplified models and ends with a converged high-fidelity solution. A
description of this kind of step-by-step mission design (from simple to complex models) is given in
References.3, 27

In our GTOC-528 solution (shown in Figure 10), a combinatorial search program was developed
using the Toolkit. This allowed the same models to be used for the search as the final trajectory.
The final trajectory with finite burns was optimized in Copernicus, using the impulsive solution as
an initial guess.

SOFTWARE ARCHITECTURE

Upgrades using object-oriented features of Fortran 2003/2008. Would like to talk some
about the software architecture

Just some notes...

Copernicus is written in the Fortran programming language.

CATO (Computer Algorithm for Trajectory Optimization) a Fortran 90 trajectory optimization
program from the 1990s that included object-based programming concepts.29, 30 At the time, a
full set of object-oriented language features was not available in Fortran. The original version of
Copernicus included some Fortran 77 code, along with more modern Fortran 90/95 (for example,
a Copernicus segment was implemented as a Fortran TYPE). With the advent of Fortran 2003 (and
later Fortran 2008), more object-oriented features became available. The first object-oriented fea-
ture in Copernicus was the upgraded data output feature in 2010, which was implemented as a
polymorphic array.

FUTURE WORK

Planned features, and/or stuff that would be nice to have... the logical evolution of the tool
that we have now...

Collocation segments. Any segment would have the ability to be a collocation segment. The
collocation variables and constraints would automatically be added to the optimization problem.
Segments could be switched back and forth between collocation and explicit integration, etc.

Plug-in architecture for User-defined guidance/control laws and constraints. Relative motion,
rendezvous, and formation flying.

Additional state parameterizations for other types of periodic and quasi-periodic orbits (such as
Lypunov and Lissajous orbits).

More GUI “wizards” to automate complicated tasks.

More object-oriented internal upgrades. New features will follow object-oriented design princi-
ples using Fortran 2003/2008. Older code will be upgraded as necessary.

ACKNOWLEDGMENT

This work was funded by the NASA Constellation and Orion projects, and the NASA In-Space
Propulsion Technology Program. The authors would like to acknowledge Jerry Condon (NASA/JSC)
and John Dankanich (Gray Research Inc.) for their support of Copernicus development.

15



DRAFT
Figure 10. Copernicus Screenshot of a 15-Asteroid Solution to the GTOC-5 Problem.
The initial impulsive guess was generated using a program built using the Copernicus
Toolkit. The finite burn solution was optimized in Copernicus. In this figure, the cyan
arcs are coast periods and the red arcs are thrust periods.

16



DRAFT

Figure 11. Copernicus Mission Design (adapted from27). This example shows a
mission that escapes one body, performs a powered flyby of a second body, and ends
up captured by a third body. The process begins with an infeasible initial guess using
simplified models and ends with a converged high-fidelity solution.

17



DRAFT

REFERENCES
[1] C. Ocampo, “An Architecture for a Generalized Trajectory Design and Optimization System,” Proceed-

ings of the International Conference on Libration Points and Missions, June 2002. Girona, Spain.
[2] C. Ocampo, “Finite Burn Maneuver Modeling for a Generalized Spacecraft Trajectory Design and

Optimization System,” Annals of the New York Academy of Science, Vol. 1017, May 2004, pp. 210–
233.

[3] J. Williams, J. S. Senent, C. Ocampo, R. Mathur, and E. C. Davis, “Overview and Software Architec-
ture of the Copernicus Trajectory Design and Optimization System,” 4th International Conference on
Astrodynamics Tools and Techniques, May 2010. Madrid, Spain.

[4] L. D. Kos, T. P. Polsgrove, R. C. Hopkins, D. Thomas, and J. A. Sims, “Overview of the Development
for a Suite of Low-Thrust Trajectory Analysis Tools,” AIAA/AAS Astrodynamics Specialist Conference,
August 21-24 2006. AIAA 2006-6743.

[5] M. Garn, M. Qu, J. Chrone, P. Su, and C. Karlgaard, “NASA’s Planned Return to the Moon: Global
Access and Anytime Return Requirement Implications on the Lunar Orbit Insertion Burns,” AIAA/AAS
Astrodynamics Specialist Conference and Exhibit, August 2008.

[6] J. Williams, E. C. Davis, D. E. Lee, G. L. Condon, T. F. Dawn, and M. Qu, “Global Performance
Characterization of the Three Burn Trans-Earth Injection Maneuver Sequence over the Lunar Nodal
Cycle,” AAS/AIAA Astrodynamics Specialist Conference, August 2009.

[7] J. Williams, S. M. Stewart, G. L. Condon, D. E. Lee, E. C. Davis, J. S. Senent, and T. F. Dawn, “The
Mission Assessment Post Processor (MAPP): A New Tool for Performance Evaluation of Human Lunar
Missions,” Proceedings of the 20th AAS/AIAA Space Flight Mechanics Meeting, February 14-17 2010.
AAS 10-191.

[8] R. Gooding, “A Procedure for the Solution of Lambert’s Orbital Boundry Value Problem,” Celestial
Mechanics and Dynamical Astronomy, Vol. 48, 1990, pp. 145–165.

[9] J. E. Prussing and B. A. Conway, Orbital Mechanics. Oxford University Press, 1993.
[10] C. A. Ocampo, “Exact Impulsive to Time Optimal Finite Burn Trajectory Automation,” Unpublished

Manuscript, The University of Texas at Austin.
[11] G. R. Hintz, “Survey of Orbit Element Sets,” Journal of Guidance, Control, and Dynamics, Vol. 31,

May-June 2008.
[12] R. H. Gooding, “On Universal Elements, and Conversion Procedures to and from Position and Velocity,”

Celestial Mechanics, Vol. 44, 1988.
[13] P. J. Cefola, “Equinoctial Orbit Elements - Application to Artificial Satellite Orbits,” AIAA/AAS Astro-

dynamics Specialist Conference, September 1972.
[14] M. J. H. Walker, B. Ireland, and J. Owens, “A Set of Modified Equinoctial Orbit Elements,” Celestial

Mechanics, Vol. 36, August 1985.
[15] M. Heikkinen, “Geschlossene formeln zur berechnung raumlicher geodatischer koordinaten aus

rechtwinkligen koordinaten,” Z. Ermess., Vol. 107, 1982.
[16] W. Kizner, “A Method of Describing Miss Distances for Lunar and Interplanetary Trajectories,” External

Publication No. 674, Jet Propulsion Laboratory, August 1959.
[17] W. Kizner, “Some Orbital Elements Useful in Space Trajectory Calculations,” Technical Report No.

34-84, Jet Propulsion Laboratory, July 1960.
[18] A. B. Sergeyevsky, G. C. Snyder, and R. A. Cunniff, “Interplanetary Mission Design Handbook, Vol-

ume 1, Part 2: Earth to Mars Ballistic Opportunities, 1990-2005,” JPL Publication 82-43, NASA Jet
Propulsion Laboratory, September 1983.

[19] D. L. Richardson, “Analytic Construction of Periodic Orbits About the Collinear Points,” Celestial
Mechanics, Vol. 22, 1980, pp. 241–253.

[20] D. L. Richardson, “Halo Orbit Formulation for the ISEE-3 Mission,” Journal of Guidance and Control,
Vol. 6, 1980, pp. 543–548.

[21] R. Thurman and P. A. Worfolk, “The Geometry of Halo Orbits in the Circular Restricted Three-Body
Problem,” tech. rep., The Geometry Center, 1996.

[22] B. Uzzell, “Derivation and Documentation of the New Battin Conic Subroutines,” JSC Internal Note
No. 77-FM-3, NASA Johnson Space Center, Jan 1977.

[23] A. Klumpp, “Performance Comparison of Lambert and Kepler Algorithms,” Interoffice Memorandum
314.1-0426-ARK, NASA Jet Propulsion Laboratory, January 1991.

[24] S. W. Shepperd, “Universal Keplerian State Transition Matrix,” Celestial Mechanics, Vol. 35, 1985.
[25] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach to Global

Optimization. Springer, 2005.

18



DRAFT

[26] A. D. Olds, C. A. Kluever, and M. L. Cupples, “Interplanetary Mission Design Using Differential
Evolution,” Journal of Spacecraft and Rockets, Vol. 44, September - October 2007.

[27] C. A. Ocampo and D. V. Byrnes, Mission Design and Trajectory Optimization. John Wiley & Sons,
Ltd, 2010.

[28] “5th Global Trajectory Optimisation Competition,” http://mech.math.msu.su/gtoc5/.
[29] D. V. Byrnes and L. E. Bright, “Design of High-Accuracy Multiple Flyby Trajectories Using Con-

strained Optimization,” AIAA/AAS Astrodynamics Specialist Conference, August 1995.
[30] J. N. Hatfield, “CATO (Computer Algorithm for Trajectory Optimization): an implementation of For-

tran 95 object-based programming,” SIGPLAN Fortran Forum, Vol. 22, April 2003, pp. 2–7.

19

http://mech.math.msu.su/gtoc5/

