Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities

The advent of the commercial space launch industry and NASA’s more recent resumption of operation of Stennis Space Center’s large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software’s architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities.

The project engaged all RPT Centers and NASA’s Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and its ability to migrate to other facilities such as Stennis, White Sands and Plumbrook.

For additional info contact the technical chairs:
Mr. Thinh Do, thanh.do@aero.org
Ms. Laura Fechete, fechetel@ssd.loral.com

Ensure your abstract is approved for public release
Celebrating Four Decades of the Aerospace Testing Seminar

ABSTRACT SUBMITTAL FORM: Abstracts due January 16, 2012

IV. COMMENTS *(PLEASE LIST AN ALTERNATE CONTACT AND ANY ADDITIONAL COMMENTS)*
Additional Authors and contributors will be supplied upon request.

V. ADMIN ONLY- DO NOT COMPLETE THIS SECTION
Date Received:
Abstract #:
Session:

For additional info contact the technical chairs:
Mr. Thinh Do, thinh.do@aero.org
Ms. Laura Fechete, fechetel@ssd.loral.com