We present the discovery and mass measurement of the cold, low-mass planet MOA-2009-BLG-266Lb, made with the gravitational microlensing method. This planet has a mass of $m_p = 10.4 \pm 0.4$ MEarth and orbits a star of $M_{\text{star}} = 0.56 \pm 0.09$ MSun at a semi-major axis of $a = 3.2 \pm 1.9/-0.5$ AU, and an orbital period of $7.6 \pm 7.7/-1.5$ yrs. The planet and host star mass measurements are due to the measurement of the microlensing parallax effect.

This measurement was primarily due to the orbital motion of the Earth, but the analysis also demonstrates the capability measure microlensing parallax with the Deep Impact (or EPOXI) spacecraft in a Heliocentric orbit. The planet mass and orbital distance are similar to predictions for the critical core mass needed to accrete a substantial gaseous envelope, and thus may indicate that this planet is a failed gas giant. This and future microlensing detections will test planet formation theory predictions regarding the prevalence and masses of such planets.