
 

 

Operational Analysis in the Launch Environment 
 

 

George James, Mo Kaouk, Tim Cao, Vince Fogt, Rodney Rocha,  

Ken Schultz, Jon-Michael Tucker, and Eli Rayos 

Loads and Structural Dynamics Branch 

NASA Johnson Space Center 

Houston, Texas  77058 

 

Jeff Bell 

ESCG Jacobs 

Houston, Texas  77058 

 

David Alldredge and Tom Howsman 

Dynamic Concepts Incorporated 

Huntsville, Alabama  35806 
 

 

 

ABSTRACT 

 

The launch environment is a challenging regime to work due to changing system dynamics, changing environmental 

loading, joint compression loads that cannot be easily applied on the ground, and control effects.  Operational testing is 

one of the few feasible approaches to capture system level dynamics since ground testing cannot reproduce all of these 

conditions easily.  However, the most successful applications of Operational Modal Testing involve systems with good 

stationarity and long data acquisition times.   

  

This paper covers an ongoing effort to understand the launch environment and the utility of current operational modal 

tools.  This work is expected to produce a collection of operational tools that can be applied to non-stationary launch en-

vironment, experience dealing with launch data, and an expanding database of flight parameters such as damping.  This 

paper reports on recent efforts to build a software framework for the data processing utilizing existing and specialty tools; 

understand the limits of current tools; assess a wider variety of current tools; and expand the experience with additional 

datasets as well as to begin to address issues raised in earlier launch analysis studies.   

 

INTRODUCTION 

The spacecraft launch environment is a highly complex and non-stationary event that is characterized by high amplitude 

input forces, highly variable loads, a wide spectrum of responses, constantly changing vehicle mass, active control inte-

ractions, staging, and limited instrumentation.  At the same time, structural response analyses and loads estimations must 

be performed with models that are only partially validated using ground test data due to the fact that access to diagnostic 

and environmental ground tests are limited.  To compound matters, projects are tending to use reduced uncertainty fac-

tors designed to protect for loads increases and model unknowns.  As a result, the designs progress rapidly before loads 

and structural problems are uncovered.  This means that there are very few tools available to recover from structural dy-

namics issues in such a dynamic environment without costly redesigns late in the design cycle or in early operations.   

 

The inclusion of operational modal testing and analysis tools can be used to offset these limitations by providing more 

cost and schedule effective opportunities for diagnostic information extraction.  These opportunities are available on the 

ground and during flight as well as on full-up systems, subsystems, and components.  Since the ability to obtain good 

modal information is limited by ground test availability, the flight data from early test flights and early operational flights 

must be used to estimate such values.  Also, there are many more additional opportunities for modal information during 

manufacturing, environmental test, transportation, and natural excitation events.   

 

A hypothetical vehicle development program could be envisioned to use Operational Modal Analysis (OMA) in conjunc-

tion with traditional Experimental Modal Analysis (EMA) from the onset.  It is likely that a technically advantageous 

level of diagnostic testing could then be injected into the program.  EMA would be heavily used in the early stages of the 

program when a multitude of small-scale development tests could easily and inexpensively be injected into the schedule 

and operational testing opportunities are limited.  As the program matures, it becomes more difficult (but no less impor-
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tant) to inject diagnostic testing into the work flow but there are increasing opportunities to obtain operational data.  In 

the final stages of flight and operations, it becomes virtually impossible to exercise traditional test options and operation-

al testing becomes the primary tool. Figure 1 illustrates this notional relationship between EMA and OMA techniques. 

 

 
 

Figure 1.  Notional Relationship between EMA and OMA over the Life of a Hypothetical Program 

 

The reality of the OMA state of the art is such that not all of the available opportunities are at the same level of technical 

readiness.  Most of the OMA testing opportunities over the life of a program will be traditional well-behaved situations 

where long dwell times with a steady system can drive standard OMA tools.  These situations include such opportunities 

as environmental vibration testing, transportation-induced loading, or wind-excited pad stays.  The data from these op-

portunities can be consistently processed with current tools and the technology is well in hand and validated.   

 

Alternatively, there are a few of situations where OMA opportunities involve situations where the tools are available for 

use but validation activities still need to be performed as the data has some inherent difficulties.  Examples of these types 

of situations involve full scale flight data where the launch system may be unsteady (due to fuel mass loss) and the envi-

ronment is uncertain but the loading is very impulsive in nature such as at pad release, staging, engine cut-off, or orbital 

thermal transitions.  The data produced in these situations will be available in short time segments and will include some 

inherent noise sources.  However, the impulsive nature of the loading will not tax the operational algorithms as the data 

will appear to be very traditional in nature.  Some bench-top mechanism or non-linear isolator tests would also fall into 

this category of OMA opportunities with well-developed tools in-hand but in need of validation activities.  

 

And finally there are some situations where OMA tool development is required.  The bulk of the vehicle launch phase is 

one such opportunity where the unsteady system properties coupled with random loading are taxing the technical readi-

ness.  The pressure to process short time records with little averaging to extract modal damping is a major issue to be 

overcome.  Most of this paper will be devoted to this group’s efforts to address these launch issues.  Another issue of 

similar need for development involves those opportunities where data takes from high-frequency acoustics tests need to 

be processed to extract structural dynamics parameters for vibroacoustics codes.  The ability to extract parameters (such 

as modal density, damping loss factors, coupling loss factors, input power) from high frequency/high modal density data 

is an area of active research. 
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TECHNICAL BACKGROUND 

The activities underway to inject OMA into future spacecraft programs by the authors of this work include the following: 

 

1. Develop a code to provide basic data analysis functions and a framework for multiple OMA modules; 

2. Module development of multiple OMA algorithms; 

3. Processing of a wide-range of available datasets with OMA tools to develop operational experience; 

4. Use of analytical datasets (simple numerical and full launch vehicle models) to understand specific issues; and 

5. Perform controlled analyses as needed to validate that the OMA tools are operationally ready for use.  

 

Code Development 

There are multiple precursor steps needed in the analysis of an OMA data set that are common to multiple approaches 

and even to traditional EMA.  These steps include reading in and converting the data, viewing the data, performing 

statistical and data quality assessments, breaking up the data into increments for analysis and/or averaging, converting to 

and from the frequency domain, calling analysis modules, resynthesizing the original data, etc.  It is critically important 

to have such a common framework in place to implement a wide range of unique tools (OMA in this case) at many entry 

points in a program development activity by a team of semi-independent engineers.  The acronym chosen for this 

software framework is MIDOS (Modal Identification of Dynamic Operational Systems) and is coded in MATLAB.  

MIDOS is currently functional for signal processing and data quality reviews and limited modal analysis capability.   

 

Module Development 

The multitude of entry points for OMA in a program development; the different needs for the multitude of anticipated 

programs; the multitude of different responsible engineers; and the need for different OMA techniques to help offset the 

inherent uncertainties in the technology all drive the requirement to have an open framework that allows the 

implementation of a multitude of OMA tools.  Hence a major activity involved the development of individual modules to 

implement a single technique for integration into the MIDOS framework.  The techniques currently developed, in 

development, or under consideration include: correlation function processing [1,2], Stochastic Subspace Identification 

(SSI) [3], Frequency Domain Decomposition (FDD) [4], wavelet processing [5], Hilbert-Huang [6], force reconstruction 

[7,8] as well as other supporting techniques such as mode shape extraction [9], harmonic removal [10], Maximum 

Entropy Method (MEM) [11,12], random decrement [13,14], etc.  Currently, there are limited modules built for standard 

OMA processing as well as unsteady launch processing based on correlation functions.  Modules based on other more 

advanced approaches are still in development.   

 

Data Processing 

A feature of this effort is the early emphasis on building some operational experience with real data sets to drive the 

subsequent code and module development activities.  It is expected that this data processing emphasis will continue 

throughout the life of this project when new and updated modules are developed, integrated into MIDOS, and subjected 

to validation exercises; when new datasets are made available; and when new engineers have a need or desire to exercise 

the tools.  The primary datasets used to exercise these modules or code includes the following: 

 

1. Space Shuttle flight [15], 

2. Space Shuttle rollout [8], 

3. International Space Station (ISS), 

4. RR-1 lander tethered test flight [1], 

5. PA-1 test flight [1], 

6. Ares 1-X roll-out, 

7. Ares 1-X flight [16], 

8. Ares 1-X Liftoff, 

9. Acoustic panel tests, 

10. Orion Ground Test Article (GTA) acoustics Environmental Correlation Test (ECT), and 

11. Simplified analytical models [1]. 

 

As of the writing of this paper, several other data sets are being considered for inclusion in this list including (but not 

limited to) aircraft, launch vehicle, and ground vibration test sources.  The analysis activities related to datasets #8 and 

#11 above will be discussed in more detail in this paper.  Special emphasis will be paid to lessons-learned by previous 
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insights driven by analysis activities related to datasets #4,#5, #6, and #7.  A question of particular interest to this paper 

are the indications from the previous database processing exercises that the control system is affecting the estimated 

modal properties of the lowest bending modes during launch [1].  

 

Analytical Studies 

Another aspect of this development activity to date, has been the use of extremely simplified analytical models (one or 

two Degrees Of Freedom or DOF) to study specific questions – usually posed by the dataset processing activities.  

Reference [1] covers some of these activities.   A particularly vexing problem in launch analyses that have been studied 

with simplified analytical models is the “beating” phenomena (unexplained but repeated increases in correlation) seen in 

the correlation-based analysis approaches.  The need for more complex analytical data sets has become apparent with the 

need to study control system interaction effects.  Hence the use of analytical datasets with full-up launch vehicle models 

and liftoff/ascent tools has recently been added to the list of ongoing studies.   

 

Validation Activities 

The validation of the available tools has not begun in earnest as of this writing.  However, the datasets are being collected 

that will eventually be used to enable the needed validation.  Formal validation will take place over time but should be 

subjected to a complete documentation to allow for a true reference for these techniques.  The expected validation 

activities will involve some or all of the following:  

 

1. Comparison of MIDOS/OMA results with traditional EMA results for simple systems; 

2. Comparison of MIDOS/OMA results with known analytical solutions for simple and complex models in the 

launch environment;  

3. Comparison of MIDOS/OMA results from different MIDOS/OMA techniques on the same data set; and  

4. Comparison of MIDOS/OMA results with results from independent analysts and implementations. 

 

The current plan is to develop a full plan for validation after MIDOS is nearer to completion. 

 

Status of Launch Environment Processing 

There are two primary issues requiring near term attention that have resulted from the previous studies involving the 

analysis of launch data [1]:  (1) understanding the interaction with the control system; and (2) understanding and solving 

the short time record “beating” phenomenon.  The remainder of the paper will focus on the recent work on these issues. 

 

BEATING PHENOMENA 

The most significant complexity associated with operational analysis of launch systems is the unsteadiness due to rapidly 

changing mass properties.  This usually drives the available time records to be very short due to the need to utilize some 

type of sliding window analysis.  The analysis of several recent data sets (RR-1, PA-1, Ares1-X, simple analytical) has 

shown that one effect (when using the correlation-based processing approaches) is a beating-like phenomena which lim-

its the amount of the correlation functions that can be used for processing [1,16].    Although the first few low-lag points 

in the correlation functions are relatively unaffected, the higher-lag time data points can be relatively useless for analysis.  

Figure 2 illustrates the beating phenomena as illustrated by a simple one DOF analytical model of a 10 Hz mode excited 

by random white noise.  The random input is shown in the top plot of Figure 2.  The displacement response of the 10 Hz 

system is shown in the middle plot.  Displacement is used as opposed to the more easily measured acceleration as it illu-

strates the issue with more clarity.  Notice that the response shows random excitations of the 10 Hz system mode, which 

eventually damps out.  The lower plot provides the autocorrelation function of the displacement shown in the middle 

plot.  The beating phenomena are clearly seen as the correlation increases at longer lags.  Note that the “beating” termi-

nology is adopted as the correlation function looks like a time history of closely spaced modes interacting or “beating”.  

The repetitive increases in correlation deviates from the theoretical damped sinusoids (as expected from OMA/NExT 

correlation functions [17]) and limit the ability to separate closely-spaced modes as only early-lags can be analyzed.     
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Figure 2.  Beating Phenomena in Correlation Functions as Illustrated with Single DOF Analytical Data 

 

As of the production of Reference [1], the authors did not have a working hypothesis on the cause of this beating pheno-

menon.  Also, a trial solution to the issue was attempted by summing the different cross and auto-correlation functions in 

an attempt to reduce the “beats”.  After performing additional analytical studies, a working hypothesis is now available.  

The beating seen in the correlation functions are a numerical increase in correlation due to the random increases in modal 

responses due to the input excitation.  Given this hypothesis, the idea of summing different correlation functions from 

different sensors is not expected to significantly reduce the beating effects as the random modal excitations would be 

global in nature and appear in most of the correlation functions.     

 

The most obvious approach to reduce the beating phenomena is to generate correlation functions with a technique that al-

lows frequency domain averaging or by averaging correlation functions in the time lag domain generated at different 

times [1].  Figure 3 shows the effects of this averaging approach.  This approach is completely viable for traditional oper-

ational modal situations as time record lengths are sufficient to allow multiple averages (either in the time lag domain or 

the frequency domain).  However, for the launch analyses, this approach is not viable due to the limited time records. 

 

An alternative approach to reduce the beating effects is via repeated correlation calculations using the same parent time 

data.  Figure 4 shows the effectiveness of this approach.  The top plot shows an autocorrelation function of a 10 Hz single 

DOF system excited randomly.  If a another correlation calculation is performed using the first autocorrelation function 

as the parent data then the correlation function shown in the middle plot results.  The bottom plot results after performing 

an additional eight correlation calculations using the function shown in the middle plot as the parent data (10 correlation 

calculations total).  This produces a damped sinusoidal function as expected [17].  It can be shown that the proper damp-

ing does result after a number of these correlations are performed.  However, the application of additional correlations 

beyond that does numerically alter the extracted damping.  Hence, this approach is not useful unless a metric is available 

to allow the analyst to know when to stop performing additional correlations. 
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Figure 3.  Use of Time Domain Averaging to Reduce Beating Phenomena in Correlation Functions  

 
Figure 4.  Use of Multiple Correlation Calculations to Reduce Beating Phenomena in Correlation Functions  

 

The Maximum Entropy Method (MEM) was used in the 1980’s to extend correlation functions using the earliest time 

lags to later time lags [11].  This approach is currently under assessment but is known to have significant sensitivity to 

the selected model order.  This has proven to be the case with the most recent studies; however the assessments are not 
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complete at this time.  Another technique that has been used is similar situations with reasonable results is the Random 

Decrement technique [13, 14].  This technique does produce correlation-type functions but the triggering process inhe-

rent in this approach may reduce the effects of the underlying modal excitations.  Hence, this team is expecting to take a 

fresh look at this early OMA process.   

 

In summary, there is a working hypothesis for the cause of the beating phenomena; which explains the inability of the 

previous solution approach (averaging correlation functions from multiple sensors [1]).  Two approaches for solving the 

issue have been found (temporal averaging of correlations and multiple sequential correlations) but neither have general 

utility.  A forth approach is under assessment (MEM) and a fifth is planned for assessment (Random Decrement). 

 

CONTROL SYSTEM EFFECTS 

Another question raised during the previous data processing studies was the interaction between the control system and 

the modal responses – primarily frequency and damping of the lowest bending modes [1].  An initial dataset has been ac-

quired to begin studying the control system effects.  This data set may also be used for some validation activities as well.  

The data is based on the Ares 1-X flight test.  Ares 1-X was a full scale flight test vehicle for the Ares 1 vehicle that flew 

in 2009.  The 327 foot tall vehicle consisted of a four segment Space Shuttle Solid Rocket Booster (SRB) configured as 

the first and only active stage.  A mass simulator of a fifth segment, an upper stage, and the Orion vehicle were also 

present on the vehicle.  Figure 5 shows the vehicle in-flight.   

 

 
 

Figure 5.  Ares 1-X Vehicle in Flight  

 

Note that OMA work has been used by this team on Ares 1-X data during ascent and roll-out.  Other teams have used 

OMA type approaches at other times during the build-up of the vehicle [16, 18].  The latest dataset is a lift-off dataset 

that includes the first few seconds after pad release.  Ten accelerometer measurements from the actual flight are provided 
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with four measurements in the axial or flight direction and three measurements in each of the two tangential directions.  

Corresponding analytical predictions of the same measurement locations and times are also provided from a full-up anal-

ysis of the liftoff regime.  These predictions have been developed with varying levels of complexity and completeness.  

Besides the full-up analysis with the wind loading and the flight controller effects, a thrust-only data set is provided as 

well as a dataset with the thrust and wind effects but no controller effects [19].  Although this dataset represents this 

team’s first foray into understanding control system effects, the real control interactions of interest will not be seen until 

ascent as the pad release transients are a dominant loading.  Additionally, since models of the system are available, stu-

dies related to hybrid force reconstruction techniques [8] may be performed.   

 

Axial Direction Data 

A natural breakdown of the data analysis (at least for the low frequency system modes) was to assess axial direction in-

formation separate from tangential direction information.  An early step in the processing of the actual flight data was to 

determine if the modal properties are changing.  A sliding window analysis of the four axial outputs was performed.  For 

the analytical datasets, the time record was  broken into 12 increments.  Each increment was 26% of the total analysis 

time and each one was shifted by 6.5% of the total analysis time.  The use of this unusual time metric of % of total analy-

sis time is to avoid any export control data issues.   The MATLAB “xcorr” function was used to generate auto-and cross 

correlation functions.  Each increment was subjected to a 4
th

 order Butterworth digital filter applied with the MATLAB 

“filtfilt” command.  The bandpass was from 1% of the sampling rate to 4% of the sampling rate.  The pass band was cho-

sen to contain the first two expected axial modes.  As with the time data, the unusual frequency metric of % of sampling 

frequency was chosen to avoid any export control issues.  The Eigengensytem Realization Algorithm (ERA) was used to 

process one autocorrelation function and three cross-correlation functions from each increment assuming 20 modes.  The 

complete 500 point correlation functions were used.   

 

Figure 6 shows the sliding window analysis of the axial data from the analytical thrust+wind+controller dataset.   The ho-

rizontal axis provides each of the 12 increments as a different “Case #”.  The vertical axis provides the frequencies given 

as % of sampling frequencies.  The color code provides the extracted damping ratio in % of critical.  Note that the axial 

modes are expected at 2.2% and 3.3%.  The important information from this plot is that the modal frequencies do not 

significantly change over the total time analyzed.  Hence, subsequent analyses of this dataset can be processed as if the 

data is stationary.   Note that the other analytical data sets showed similar results.   

 

Figure 7 provides the full time record (top plot), the linear frequency domain representation (middle plot), and semi-log 

frequency domain representation (bottom plot) of one of the axial sensors used for this analysis.  Note that this dataset 

looks very much like a decaying sinusoid and converting to a correlation function is of limited utility.  However it is a 

good exercise of some features of the processing software.  The data was processed with the same filter and ERA para-

meters as the swept data discussed above.  However, the entire dataset was used as one increment for this analysis.  Time 

0 was when the loads on the hold-down posts were as close to zero as possible.  The extracted modes in this case were 

2.2% with .5% damping and 3.3% with .7% damping.  Figure 8 provides a synthesis of the autocorrelation function using 

these parameters.  Note that the peak values and slopes of the two peaks were reproduced well.  This suggests that the 

frequencies and damping estimations were reasonable for this dataset. 

 

The actual flight data had to be processed slightly differently.  The first and second axial modes were extracted separate-

ly.  The first axial mode was estimated using sensor at the same four locations as the analytical data sets were using.  The 

time records were again processed using approximately the same max time as the analytical data sets.  The filter pass 

band went from 2% to 2.8% of the analytical sampling frequency.  Since the flight data was sampled at a different rate 

than the analysis data was output, the analytical sample rate was used as the scale factor to allow a direct comparison be-

tween the two data sources.  Figure 9 shows the filtered data set that was used for this analysis.  Only 80% of the correla-

tion function was used and the ERA run assumed two modes.  The resulting mode was at 2.3% with .9% damping.  A 

synthesis of the 80% correlation function is shown in Figure 10.  The modal frequency and damping appear to be cap-

tured appropriately.   
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Figure 6.  Sliding Window Analysis of the Ares 1-X Liftoff Thrust+Wind+Controller Data  

 

 
Figure 7.  Time and Frequency Data of an Axial Output from the Ares 1-X Liftoff Thrust+Wind+Controller Set  
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Figure 8.  Axial Correlation Synthesis of an Output from the Ares 1-X Liftoff Thrust+Wind+Controller Set  

 

 
Figure 9.  1

st
 Axial Output of an Accelerometer from the Ares 1-X Liftoff Data  
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Figure 10.  1

st
 Axial Correlation Synthesis of an Accelerometer from the Ares 1-X Liftoff Flight Data  

 

The second axial modal analysis was performed with only two of the axial sensors.  The filter was set to 2.8% to 4% of 

the analytical sampling frequency.  Six modes were expected by the ERA estimation.  Figure 11 provides the synthesis of 

the autocorrelation of the same sensor output as provided in Figure 9.  As expected, the situation is more complicated 

with real data than with the analysis as there appear to be two strong modes.  Figure 12 provides the synthesis of the 

cross-correlation between the first and second axial sensors used in this analysis.   The situation is again different as there 

only appears to be one strong mode.  The modal estimation of this data set found viable modes at 2.9% with 1% damp-

ing; 3.4% with 1.5% damping; and 3.6% with 3.2% damping. More analysis would be required to fully sort out this 

second axial mode.   

 

Table 1 provides a summary of the axial mode results.  All three analytical data sets produced virtually the same modal 

frequencies and damping ratios.  Furthermore, these frequencies were as expected from the known model inputs.  There 

was no discernable impact of the control system on these results.  However, the effect on the axial modes was not ex-

pected to be great.  The flight data produced slightly higher frequency and damping values in the first mode.  The second 

mode needs additional work to understand the results and make a reasonable comparison. 

 

Tangential Direction Data 

It was found that the tangential data analysis was more robust if the different modes were best processed individually.  

The 2
nd

 and 3
rd

 bending modes were extracted without significant difficulty but some additional improvements are possi-

ble.  As with the axial modes, sliding window analyses suggested that the analytical datasets did not need to be analyzed 

as unsteady systems  The Thrust+Wind+Controller dataset was analyzed for the 2
nd

 bending mode by using all six tan-

gential outputs 4
th

 order Butterworth forward/reverse filtered outside of .4% to 1% of the sampling rate.  The MATLAB 

“xcorr” function was used to generate auto-and cross correlation functions.  The Eigengensytem Realization Algorithm 

(ERA) was used to process one autocorrelation function and five cross-correlation functions assuming 20 modes.  80% of 

the 1893 data point time histories were used for processing. Figure 13 shows one filtered time history with one strong 

peak and other associated phenomena.  Figure 14 shows the synthesis of the autocorrelation of the Figure 13 data.   
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Figure 11.  2

nd
 Axial Output of an Accelerometer from the Ares 1-X Liftoff Data  

 

 
Figure 12.  2

nd
 Axial Correlation Synthesis of an Accelerometer from the Ares 1-X Liftoff Flight Data  
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Table 1.  1
st
 and 2

nd
 Ares 1-X Axial Mode Results 

 
 

 
Figure 13.  Tangential Output from the Ares 1-X Liftoff Thrust+Wind+Controller Set Targeting 2

nd
 Bending 

 



14  

 
Figure 14.  Tangential Correlation Synthesis of an Output from the Ares 1-X Liftoff Thrust+Wind+Controller Set 

 

The other analytical data sets were processed with the same parameters as the Thrust+Wind+Controller for the 2
nd

 bend-

ing mode processing.  The 2
nd

 bending flight data used 70% of the full correlation functions, which were also generated 

with the MATLAB “xcorr” function.  The filter pass band for the flight data was .4% to 1% of the analytical frequency.  

Five ERA modes were assumed.    The pass band for the filter was 1% to 2% for the third bending mode analysis for the 

flight data as well as all three analytical data sets.  All three analytical data sets and the flight data analyses used 80% of 

the available correlation functions from the same six sensors and processed with ERA assuming 5 modes.  Table 2 pro-

vides the extracted frequency and damping results for the 2
nd

 and 3
rd

 bending modes from this exercise.  There were some 

minor differences as the controller was added but there is not enough data here to make any generalizations.  

 

Table 2.  Ares 1-X 2
nd

 and 3
rd

 Bending Mode Results 
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The first bending mode has been a difficult mode to extract from ascent flight data [16].  This liftoff data and analytical 

has also proven to be a difficult data set from which to extract the first bending mode.  Figure 15 shows one of the six 

outputs used to estimate the modal parameters after filtering from 0% to .4%.  The analytical data was found to provide 

1
st
 bending modes most readily after decimating the data by 10 times.  Note that the MATLAB function “decimate” was 

used to filter and then decimate.  The Figure 15 data was decimated before plotting.  The synthesized correlation function 

is provided in Figure 16.  It is fairly obvious from Figures 15 and 16 that longer correlation functions are needed to allow 

this low frequency mode fully express itself in the correlation data.   

 

 
Figure 15.  Tangential Output from the Ares 1-X Liftoff Thrust+Wind+Controller Set Targeting 1

st
 Bending 

 

Table 3 contains the results of the first bending mode for the vehicle.  It is obvious here as well that the consistency of 

current approaches have broken down with this data set for the first bending mode.  The intent was to process all three 

analytical data sets with the same parameters.  In this case those data sets were processed with all eight tangential sensors 

after decimating by 10 and filtering from 0% to .4% of the undecimated original analytical data rate.  ERA was expecting 

10 modes for all three analyses.  80% of the six correlation functions were used for processing.  The flight data processed 

all six tangential sensors as well but used a different reference channel for correlation calculations.  70% of the correla-

tions functions were used for analysis.  The filter band pass was between .1% and .6% of the analytical sampling rate.  

The ERA identification was expecting 5 modes.  The flight data was not decimated.   It appears that the decimation was 

critical to getting the data into a proper range for the identification.  It may be that decimation would have helped the 

identification of the 2
nd

 bending mode as well. 

 

Control System Observations 

There are indications that the control system can systematically affect damping as expected.  However, this data set alone 

is not appropriate to drive general statements.  Longer data sets including those at later more challenging flight times 

would be needed.  This data set is excellent to help begin the validation process as the models are available and the data 

had been provided in increasing steps of complexity.  Additional work with this data set will be performed in the future.  
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Figure 16.  Correlation Synthesis the Ares 1-X Liftoff Thrust+Wind+Controller Set Targeting 1

st
 Bending 

 

Table 3.  Ares 1-X 1
st
 Bending Mode Results 

 
 

 

 

SUMMARY AND CONCLUSIONS 

The difficult liftoff and ascent launch vehicle environment has shown to be amenable to in-situ processing in the past.  

Therefore, the goal of obtaining a common set of tools to perform operational modal analysis on a wide range of flight 

vehicles and program milestones is still viable.  However, it has been found that the launch environment does have some 

vexing issues that still need to be worked.  One of these issues is the beating phenomena seen in the short time records. 

The current hypothesis is that this phenomenon is due to numerical increases in correlation due to the periodic but ran-
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dom excitations of the modal system.  These phenomena can be reduced by averaging in the time or frequency domain or 

by taking multiple correlation processing steps.  The Maximum Entropy Method and the Random Decrement methods 

are being assessed to also assist in overcoming the beating phenomena.   

 

The next issue is the potential adjustment of flight loads by the vehicle control system during flight.  An early Ares 1-X 

data base has been used to begin the studies of controller effect.  However more extensive later time records are needed 

fully address this issue.  However, there are some interesting consistencies and simplifications in this data set that make 

the Ares 1-X liftoff data a good candidate for using in later validation exercises.  

 

Development work is expected to meet the needs for the full-up launch analysis tools including the activities mentioned 

above.  Additional ongoing activities include continuing development of the MIDOS code, module development for ad-

ditional OMA algorithms, operational analyses of existing and new datasets (including analytical data), and validation 

activities for the final implementation.  On a parallel track, development activities are also needed to extend the OMA 

technologies into the needs for high-frequency analyses.  All of these activities are to address the need to use operational 

modal analysis to provide for diagnostic testing in multiple niches during the life of a spacecraft vehicle development.      
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