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DUAL ACCELEROMETER USAGE STRATEGY FOR ONBOARD
SPACE NAVIGATION

Renato Zanetti∗ and Chris D’Souza†

This work introduces a dual accelerometer usage strategy for onboard
space navigation. In the proposed algorithm the accelerometer is used
to propagate the state when its value exceeds a threshold and it is used
to estimate its errors otherwise. Numerical examples and comparison to
other accelerometer usage schemes are presented to validate the proposed
approach.

INTRODUCTION

In the presence of significant and consistent non-gravitational accelerations, accelerom-
eter measurements are often used in lieu of analytical expressions to propagate the state of
aerospace vehicles in model-based estimation algorithms such as the Kalman filter [1, 2].
In space applications, accelerometers are often used to propagate the state of the vehicle
through a translational maneuver, or “burn”. At all other times non-gravitational forces are
usually much smaller than the accuracy of most commercially available accelerometers,
therefore space vehicles commonly threshold the acceleromter, i.e. they use it only when
the measurements are above a predetermined value [3]. The Space Shuttle rendezvous and
proximity operations program (RPOP), for example, employs this strategy [4].

Rarely accelerometers are used as external measurements to update the state of the ve-
hicle. One example of this approach is Ref. [5] in which accelerometers are used in con-
junction with a filter bank for Mars entry navigation. Under this type of implementation, a
model of the non-gravitational forces is required. When on a launch pad a vehicle is sta-
tionary with respect to Earth and the predicted accelerometer measurement is very easily
obtained. Pre-launch operations therefore commonly employ accelerometer measurements
to update the estimate of its repeatable errors, such as biases, misalignments, and scale
factors.

Accelerometers usually have two types of repeatable biases. A constant bias (sometimes
represented as a first order Markov process [6] with very large time constant of the or-
der of 24 hours) and a faster changing Markov process with time constant of around one
hour. Velocity random walk (VRW) also corrupts the measurement, but this source of error
is not estimable because it is white acceleration noise. In the standard accelerometer us-
age by space vehicles the accelerometer errors are estimated from external measurements
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through their correlation to other states. This correlation is built during maneuvers at which
times the accelerometer measurement is incorporated into the filter dynamics. In between
maneuvers the accelerometer measurement is not used at all, therefore the estimate of the
one-hour Markov bias degrades, which results in a worst navigation performance during the
next maneuver. For vehicles with small thrusters and maneuvers far apart, this approach
is often not sufficient to meet mission goals. A common practice for these vehicles is to
use a simple averaging scheme to estimate the accelerometer bias prior to maneuvers. This
average is carried outside the navigation filter, therefore no correlation between the filter
error and the accelerometer bias estimation error is taken into account when formulating a
navigation solution.

This work introduces a dual accelerometer usage strategy for onboard space navigation.
In the proposed algorithm the accelerometer is used to propagate the state when its value
exceeds a threshold and it is used to estimate its errors otherwise. The paper is organized
as follows: accelerometer thresholding is first introduced, the navigation algorithm is then
presented and validated with numerical simulation, finally conclusions are drawn.

ACCELEROMETER THRESHOLDING

This section presents a simple example to show the need of accelerometer thresholding
in spacecraft navigation. Outside of thrust, drag is usually the biggest non-gravitational
acceleration source in low Earth orbit (LEO). The international space station (ISS) is used
as an example to quantify the contribution of drag. The ISS is a large structure placed
at an altitude of 400 km and is subject to high drag. A 2008 analysis from the Euro-
pean Space Agency∗ finds that the ISS coefficient of drag is 2.07, the frontal area between
700 and 2300m2 depending on the configuration, and the yearly average air density 3.98
10−12kg/m3. Assuming a configuration with frontal area 1000m2 the drag acting on the
ISS is 0.25N. The mass of ISS was 2.5 105kg in 2008, resulting in a drag acceleration of
10−6m/s2 or 0.1µg.

A relatively good accelerometer can have a one hour markov with steady-state standard
deviation σss = 10 µg. For each accelerometer’s axis, the markov bias ba evolves as

ḃa = −1

τ
ba + ν, (1)

where τ = 3600s and ν is a zero-mean white process with spectral density Sν = σ2
ss/(2τ).

In order to establish to which accuracy this markov bias can be estimated, we assume a
continuous Kalman filter, we also assume no non-gravitational forces acting on the vehicle,
therefore the accelerometer measurement is

y = ba + η (2)

for each axis. The velocity random walk η is a zero-mean white process, a spectral density
Sη = (10 µg

√
s)2 is assumed, which is a relatively good value. The estimate of the markov

∗http://www.esa.int/esaMI/Space_In_Bytes/SEM7FXJ26DF_0.html
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bias evolves as
˙̂
ba = −1

τ
b̂a +K(y − b̂a), (3)

where K = P/Sη and P is the estimation error variance evolving as

Ṗ = −2

τ
P +

2

τ
σ2
ss − P 2/Sη. (4)

After some algebra it follows that the steady-state value of the estimation error standard
deviation is

√
Pss = 1.5µg. Even under the optimistic assumptions of this example the

estimation error of the markov bias is 15 times bigger than drag. When using the com-
pensated accelerometer measurement to propagate the state an additional error source is
the VRW. During non-thrusting phases it is therefore much more accurate not to use the
accelerometer to propagate the state but to use a simple drag model.

DUAL ACCELEROMETER USAGE STRATEGY

In all spacecraft missions the authors are aware of accelerometers are thresholded during
orbital coast flight (sometimes this operation is referred to as accelerometer gating). In
the majority of this mission the accelerometer bias is estimated to improve the navigation
solution. The estimation occurs in either of two ways. A common solution is to include the
accelerometer bias as a state in the filter and to estimate it through external measurements
and the correlations built during maneuvers. The issue with this approach is that when
maneuvers occur far apart the estimate degrades in-between maneuvers, often resulting in
a poor knowledge of the bias when the following maneuver occurs. The usual solution to
this problem is to have an external estimator of the accelerometer bias. While this sec-
ond solution usually produces good results, it completely ignores the inevitable correlation
between the states in the filter and the accelerometer bias estimate. To optimally account
for this correlation we propose an integrated filter that uses the estimate of the bias during
maneuvers and estimates it during coast flight.

Accelerometer measurements fed to the navigation filter are usually integrated accel-
erations over the last time step and they are compensated for sculling errors. Sculling
compensation means that the effects of the rotation of the vehicle during the time step are
compensated and the measurement ∆ṽbk is an inertial change in velocity between times
tk−1 and tk coordinatized in the body-fixed frame at time tk. When the filter is called it first
propagates the position (r), velocity (v), and accelerometer bias (b) to the current IMU
time tk as

d

dt
r̂i = v̂i (5)

d

dt
v̂i = ĝi + âi (6)

d

dt
b̂b = −1

τ
bba. (7)

When the accelerometer measurement is above a threshold the estimated non-gravitational
acceleration âi is obtained from the accelerometer measurement âi = Ti

b(tk) (∆ṽbk/∆t −
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b̂b). When the measurement is below the threshold âi is either zero or a model of drag,
depending on the application. Matrix Ti

b(tk) is the coordinate transformation from the
body-fixed frame at time tk to the inertial frame. Other states such as attitude can easily be
incorporated in the filter.

When the accelerometer is included during propagation the state is only updated with
external measurements. When the accelerometer is thresholded an estimate of the mea-
surement ∆v̂bk is formed. This estimate is given by

∆v̂bk =

∫ tk

tk−1

(bba + db)dt = τ
(
e∆t/τ − 1

)
b(tk) +

∫ tk

tk−1

dbdt ' ∆t
(
b(tk) + db

)
, (8)

The measurement mapping matrix for the accelerometer measurement, Ha is a 3×nmatrix,
where n is the number of states in the filter. Matrix Ha has zeros everywhere except for an
identity matrix times ∆t at the 3× 3 block corresponding the accelerometer bias state. The
Kalman gain is calculated as usual

Kk = P−k HT
a (HaP

−
k HT + Ra)

−1, (9)

where P−k is the a priori estimation error covariance matrix and Ra is the accelerometer
noise covariance. The accelerometer white noise is expressed in terms of a velocity random
walk with an associated spectral density Sa whose units are the square ofm/s/

√
s or, more

frequently, µg
√
s. Therefore the covariance of the noise over an IMU step ∆t is given by

Ra = Sa ∆t. (10)

It is not desirable to update all the states, only the accelerometer bias should be updated.
Therefore a consider gain K∗k is formed by zeroing all the rows of Kk corresponding to the
other states. Since the new gain is not optimal the Joseph’s formula is used to obtain the
a posteriori covariance

P+
k = (In×n −K∗kHa) P−k (In×n −K∗kHa)

T + K∗kRa(K
∗
k)

T. (11)

The state is updated as
x̂+
k = x̂−k + K∗k

(
∆ṽbk −∆v̂bk

)
. (12)

The choice of the threshold value is usually driven by the thruster size, the accelerometer
accuracy, and engineering judgement. A good rule of thumbs is to threshold the accelerom-
eter when the measurement is below the 3σ value of the sum of the bias and noise, assumed
independent

(∆ṽbk)
T∆ṽbk < 9

(
trace Ba∆t

2 + trace Sa∆t
)
, (13)

where Ba is the accelerometer bias covariance from the IMU specifications. If ∆ṽbk is
compensated with the estimate of the bias, Ba is replaced with the accuracy of the bias
estimate. It is also possible to choose a non-constant threshold

(∆ṽbk − b̂b∆t)T(∆ṽbk − b̂b∆t) < 9
(
trace P−aa∆t

2 + trace Sa∆t
)
, (14)
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where P−aa is the 3 × 3 portion of the covariance corresponding to the accelerometer bias
state. Spacecrafts usually operate at low angular rates, but in case of high rates the term
b̂b∆t in Eq. (14) needs to be replaced by∫ tk

tk−1

T
b(tk)
b(τ) bb(τ) dτ, (15)

where T
b(tk)
b(τ) is the transformation matrix that takes the vehicle’s body frame at time τ into

the body frame at time tk.

This section assumes that the entire accelerometer measurement is either applied or
thresholded, it is also possible to develop similar algorithms by considering the measure-
ment from each axis independently.

NUMERICAL RESULTS

An orbital rendezvous is used as an example. The target spacecraft is placed on a circular
400km orbit. The chaser vehicle is placed in a circular orbit 4km below the target and
14km behind. At a downrange of 13.2km an altitude rase maneuver is commanded. This
maneuver is a 135 degree lambert targeting taking the chaser to 1.4km below and 4.3km
behind the target. A clean up maneuver is performed half the way during this transfer.
A circularization maneuver is performed once the end of the transfer (2030s). A third
maneuver is performed that will take the chaser 500m below the target with zero relative
velocity. Figure 1 shows the relative trajectory. The origin is the location of the target,
while the line represent the relative position in time. The y-axis is the altitude, while the
x-axis is downrange.
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Figure 1. Relative In-Plane LVLH Trajectory
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The simulated true environment contains a 9 by 9 gravity model and atmospheric drag.
The filter is a nine state filter with relative position, velocity, and accelerometer bias. The
propagation includes J2 effects and no drag. The chaser vehicle has a 20N thruster and a
mass of 1000kg. The accelerometer errors are given in Table 1.

Error Type 1σ Error Units

Time Constant 3600 s
Markov Bias 100 µg

Velocity Random Walk 100 µg
√

s

Table 1. Accelerometer Model Error Parameters

Together with the accelerometer there is a long range radar whose errors are shown in
Table 2. The radar provides range to the target as well as azimuth and elevation to it.

Error Type 1σ Error Units

Range Error 5 m
Angles Errors 0.5 deg

Table 2. Radar Model Error Parameters

The initial filter covariance is diagonal with entries as shown in Table 3, while the veloc-
ity process noise covariance is 10−6m2/s3.

Error Type 1σ Error Units

Relative Position 10 m
Relative Velocity 0.1 m/s

Accelerometer Bias 100 µg

Table 3. Initial Estimation Errors

Figs. 2 and 3 show the filter’s performance without thresholding the accelerometer (i.e.
the accelerometer measurement is always used to propagate the vehicle state). The lines
show the estimation error standard deviation. Figs. 4 and 5 show the filter’s performance
with thresholding the accelerometer. Figs. 6 and 7 show the filter’s performance when the
accelerometer bias is estimated from the accelerometer measurements outside maneuvers.
Figs. 8 and 9 show a direct comparison of the three methods. It can be seen that the new
algorithm outperforms the simple thresholding scheme during firing of the thrusters.

CONCLUSIONS

This papers presents a dual accelerometer usage in an orbital Kalman filter. The ac-
celerometer is both used to propagate position and velocity during maneuvers and to update
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Figure 2. Position Estimation Error Without Thresholding
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Figure 3. Velocity Estimation Error Without Thresholding
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Figure 4. Position Estimation Error With Thresholding
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Figure 5. Velocity Estimation Error With Thresholding
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Figure 6. Position Estimation Error New Algorithm
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Figure 7. Velocity Estimation Error New Algorithm
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Figure 8 Comparison of Position Estimation Error, green line shows no threshold,
black line with threshold and red line is the new algorithm
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Figure 9 Comparison of Velocity Estimation Error, green line shows no threshold,
black line with threshold and red line is the new algorithm
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the state outside of maneuvers. The advantage of this approach is its superior performance
than simply thresholding the accelerometer. The correlation between accelerometer bias
and position and velocity during the maneuvers is not sufficient to adequately estimate the
bias during coast flight. Therefore the estimate of the bias degrades outside of maneuvers
adding considerable uncertainty during subsequent maneuvers. A common solution to this
problem is to estimate the accelerometer bias outside of the navigation filter just prior to
a maneuver is performed. A simple averaging scheme is often used, but a Kalman filter is
also a possibility. The advantage of the proposed scheme over a separate bias estimator is
that a single estimator is globally optimal because it accounts for all the correlations.
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