Abstract Information

Title: Using Innovative Techniques for Manufacturing Rocket Engine Hardware

- **Submitted for consideration to:** LPS
- **For inclusion in Technical Area:** 4
- **Security Classification of Presentation:** Unclassified
- **Security Classification of Paper:** Unclassified
- **Contract Number(s) Under Which Work was Performed:** NASA J-2X
- **Is this paper an update?** Yes
- **Has it been presented elsewhere?** Yes
- **Is this a student paper?** No

Author Information

Author/Presenter Name: Erin M. Betts
Affiliation: NASA
Address: 4203/ER21
City: MSFC
State: AL
Zip: 35812
Telephone: 256-544-5260
Telefax:
e-mail: Erin.Betts@nasa.gov

2nd Author: David C. Reynolds
Affiliation: NASA
Address: 4203/ER32
City: MSFC
State: AL
Zip: 35812
Telephone: 256-544-5694
Telefax:
e-mail: David.C.Reynolds@nasa.gov

3rd Author: David E. Eddleman
Affiliation: NASA
Address: 4203/ER33
City: MSFC
State: AL
Zip: 35812
Telephone: 256-544-6410
Telefax:
e-mail: David.E.Eddleman@nasa.gov

Additional Author(s): Andy Hardin
Affiliation: ERC Incorporated
Address: 4203/JP50
City: MSFC
State: AL
Zip: 35812
Telephone: 256-544-1741
Telefax:
e-mail: Andy.Hardin@nasa.gov
MANAGEMENT APPROVAL

The individual below certifies that the required resources are available to present this paper at the above subject JANNAF meeting.

Responsible Manager authorizing presentation: Thomas D. Byrd
Title/Agency: J-2X Deputy Program Manager/NASA
Telephone Number: 256-544-7147 e-mail: Thomas.D.Byrd@nasa.gov
Date: 6/13/2011
Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries.

Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using the Workhorse Gas Generator (WHGG) test setup at MSFC’s East Test Area test stand 116, the duct was subject to extreme J-2X gas generator environments and endured a total of 538 seconds of hot-fire time. The duct survived the testing and was inspected after the test. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.