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10 

11 Abstract 

12 We simulate the transport of the volcanic cloud from the 1991 eruption of Mount 

13 Pinatubo with the GEOS-5 general circulation model. Our simulations are in good 

14 agreement with observational data. We tested the impOliance of initial condition 

15 corresponding to the specific meteorological situation at the time of the eruption by 

16 employing reanalysis from MERRA. We found no significant difference in the transport 

17 of the cloud. We show how the inclusion of the interaction between volcanic sulfate 

18 aerosol and radiation is essential for a reliable simulation of the transport of the volcanic 

19 cloud. The absorption of long wave radiation by the volcanic sulfate induces a rising of 

20 the volcanic cloud up to the middle stratosphere, combined with divergent motion from 

21 the latitude of the eruption to the tropics. Our simulations indicate that the cloud diffuses 

22 to the northern hemisphere through a lower stratospheric pathway, and to mid- and high 

23 latitudes of the southern hemisphere through a middle stratospheric pathway, centered at 

24 about 30 hPa. The direction of the middle stratospheric pathway depends on the season. 

25 We did not detect any significant change of the mixing between tropics and mid- and 

26 high latitudes in the southern hemisphere. 

27 

28 Volcanic eruptions are a major source of stratospheric aerosol [Deshler, 2008]. Sulfur 

29 dioxide injected into the stratosphere by large eruptions is oxidized into sulfate aerosol 

30 and can increase the background aerosol mass by orders of magnitude. The induced 

31 perturbation the stratospherie can persist some years. During 
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32 time the aerosol can spread over the whole globe, changing the global climate in a 

33 significant way [Robock, 2000]. 

34 Mt. Pinatubo is located in the Philippines (15.1 oN, 120AOE). Pinatubo erupted on 

35 June 15th
, 1991, injecting about 20 Tg of sulfur dioxide into the atmosphere [Bluth et af., 

36 1992]. The resulting sulfate cloud was detected at altitudes higher than 30 km 

37 [McCormick and Veiga, 1992] and, after about one year, roughly one third of the 

38 volcanic aerosol was still present in the atmosphere. 

39 The sulfate cloud generated by the eruption of Mt. Pinatubo circled around the 

40 Earth within 3 weeks of the eruption [Guo et al., 2004; McCormick and Veiga, 1992], 

41 crossing the equator and diffusing to mid- and high latitudes in both the northern and the 

42 southern hemispheres. 

43 Such a broad meridional spreading of the cloud is not typical of all tropical 

44 eruptions. For example, the cloud from the June 1982 EI Chich6n eruption, which is 

45 located 2° north of Mt. Pinatubo, was mainly confined to the northern hemisphere 

46 [McCormick and Swissler, 1983]. Young et al., [1994] first suggested that the cross-

47 equatorial transport of the Mt. Pinatubo cloud was due to local absorption of infrared 

48 radiation from the troposphere. Timmreck et ai., [1999a] confirmed this hypothesis from 

49 a theoretical point of view with a one-simulation study with the MAECHAM4 Hamburg 

50 climate model. 

51 Niemeier et al., [2009] applied the most recent version of the MAECHAM5 

52 Hamburg climate model, coupled to an aerosol microphysical model, to the study of the 

53 Pinatubo eruption. Other studies, such as Stenchikov et af., [1998], Kirchner et al., [1999] 

et , [2009a; 2009b] used prescribed 
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55 It is still unclear if the eruption of Mt. Pinatubo modified the circulation in the 

56 southeru hemisphere. Robock et 01., [2007] identified no significant anomaly in the 

57 southern hemisphere circulation in their simulations with the NASA/GISS ModelE 

58 general circulation model. In contrast, Karpechko et 01., [2010], Marshall, [2003], Roscoe 

59 and Haigh, [2007] and Crooks and Gray, [2005] found a negative response of the 

60 Southern Annular Mode in both models and observations. 

61 In this paper, we simulate the eruption of Mt. Pinatubo and the dispersal of the 

62 subsequent sulfate cloud with the Goddard Earth Observing System (GEOS-5) general 

63 circulation model [Rienecker et 01., 2008], coupled to the GO CART aerosol transport 

64 module [Colarco et of., 2010] and the StratChem stratospheric chemistry module 

65 [Pawson et 01., 2008]. GEOS-5 is here for the first time applied to the simulation of 

66 stratospheric volcanic aerosol. 

67 In section 2, we describe the model and the modifications introduced to simulate 

68 stratospheric volcanic aerosol. Given the large amount of observations, the eruption of 

69 Mt. Pinatubo is a good test for the ability of GEOS-5 to correctly simulate the dispersal 

70 of the volcanic cloud and the response to sudden aerosol perturbations in the stratosphere. 

71 In section 3, we present the model results and the comparison with observations. 

72 We show that our simulations are in good agreement with observations. 

73 Finally, in section 4 we apply GEOS-5 to the study of the interaction between Mt. 

74 Pinatubo aerosols and the stratospheric circulation, focusing on the mixing between 

75 tropics and midlatitudes. 
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77 

78 All simulations presented in this study are performed with the Goddard Earth Observing 

79 System, Version 5 (GEOS-5) model [Rienecker et al., 2008], a system of component 

80 models integrated using the Earth System Modeling Framework (ESMF). 

81 The GEOS-5 atmospheric general circulation model (AGCM) is able to perform 

82 weather and climate simulations used for atmospheric analyses, weather forecasts and 

83 climate simulations and predictions. GEOS-5 uses a finite-volume dynamical core [Lin, 

84 2004] combined with a physics package that describes moist processes, radiation, 

85 turbulent mixing and surface processes. 

86 The convective parameterization Relaxed Arakawa-Schubert (RAS) is described 

87 by Moorthi and Suarez, [1992], and is combined to a prognostic cloud scheme. The 

88 boundary-layer turbulent mixing is parameterized with the schemes by Louis et al., 

89 [1982] and Lock et al., [2000], for stable and unstable situations, respectively. The land-

90 surface model is composed of a catchment-based hydrological model [Koster et al., 2000] 

91 and by a multi-layer snow model [Stieglitz et aI., 2001]. Coupled chemistry-climate 

92 simulations can be performed using the StratChem module for stratospheric chemistry 

93 [Pawson et ai., 2008]. 

94 The radiative transfer model consists of a solar radiation model [Chou and 

95 Suarez, 1999] and a thermal radiation model [Chou et ai., 2001]. The solar radiation 

96 model includes absorption due to water vapor, 0 3, O2, CO2, clouds and aerosol. The 

97 thermal radiation model includes absorption by water vapor, CO2, 0 3 and most of the 

98 minor trace gases, as well as clouds and aerosol. 
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99 The aerosol optical properties are read from look-up tables previously generated 

100 using the OPAC database [Hess et 01., 1998]. The look-up tables contain the aerosol mass 

101 scattering and extinction coefficients as a function of relative humidity and radiation 

102 wavelength. We apply the Mie theory to calculate of the aerosol optical properties, and 

103 assume that aerosol is log-normally distributed and externally mixed. 

104 GEOS-5 can be run both in climate or data assimilation mode. The simulations 

105 performed in this study are climate mode simulations, i.c. they provide a forecast of the 

106 climate starting from specified initial conditions. We apply GEOS-5 with resolution 2.00 

107 x 2.5 0 latitude by longitude. The model has 72 vertical layers in a hybrid coordinate 

108 system from surface to 0.01 hPa. 

109 The aerosol transport model in the GEOS-5 AGCM is based on the Goddard 

110 Chemistry, Aerosol, Radiation and Transport (GO CART) model [Chin et 01., 2000; 

111 2002]. An online version of GOCART in GEOS-4, a previous version of GEOS-5, has 

112 been validated by Colarco et ai., [2010]. Versions of GOCART in GEOS-5 have been 

113 already used in several recent field campaigns, as TC4 (2007), ARCT AS (2008) and 

114 GloPac (2010). 

115 The aerosol species treated by GOCART as described in Colarco et 0/., [2010] 

116 are dust, sea salt, black carbon, organic carbon and sulfate (S04)' In this study, only the 

117 sulfate component is active. GOCART includes a parameterization of the chemical 

118 production of S04 from oxidation of dimethyl sulfide (DMS) by OH during day and N03 

119 during night, and from oxidation of sulfur dioxide (S02) by OH in the gas phase and by 

120 H20 2 in the aqueous phase. 
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121 GEOS-5 can run with radiatively interactive aerosol, which means that the aerosol 

122 concentrations simulated by GO CART can modify the meteorological fields. The 

123 simulations shown in Section 4 are performed with radiatively interactive aerosol. Some 

124 results from runs with non-interactive aerosol are presented in Section 4. 

125 We introduced a parameterization of the settling of S04 to properly simulate 

126 stratospheric volcanic aerosol. The settling velocity is a function of the particle's wet 

127 radius. The sulfate growth factor /3S04 is calculated as a function of the relative humidity 

128 RH following Petters and Kreidenweis, [2007] as 

129 
RH(I- k) -1 

RH-l 

13 0 where the hygroscopic parameter k is equal to 1.19 and rdry the dry effective radius, 

131 which is a tuning parameter. 

132 Assuming a lognormal distribution, the modal radius rm and the effective radius re 

133 are related through the equation 

134 

135 where a is the standard deviation of the distribution. 

13 6 We performed several sensitivity tests varying the value of the sulfate dry radius. 

13 7 In this work we assume that aerosol is lognormal distributed with median diameter radius 

138 to 0.35 !lm and standard deviation 1.25. This corresponds to an effective dry radius equal 

139 to 0.40 !lm. This modal radius is within the range of observed values for sulfate aerosol 

140 from Mt. Pinatubo (e.g. Bingen et ai., [2004]; Niemeier et ai., [2009]; Russell et al., 
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141 [1996]; Stenchikov et at., [1998]), and result in good agreement with the AOT retrieved 

142 by SAGE-II and AVHRR (Section 3). The simulated e-folding time for sulfate is about 

143 one year (Table 1), as the one calculated from observations [McCormick et al., 1995]. 

144 

145 We simulated the eruption of Mt. Pinatubo by injecting 20 Tg of sulfur dioxide in the 

146 grid box containing Mt. Pinatubo during the day of June 15th
, 1991. The S02 load is 

147 initially distributed between 16 km and 18 km, and is lofted to higher altitudes within the 

148 first weeks due to the model response to radiatively interacting aerosol. 

149 Other model studies, as e.g. [Timmreck et al., 1999b] and [Zhao et at., 1995], 

150 place the injection of S02 at higher altitude. They base their assumption on SAGE-II 

151 observations. At the moment of the eruption, however, SAGE-II was observing at about 

152 70 0 N [Trepte et aI., 1993], and observed at the latitude of Mt. Pinatubo only 15 days after 

153 the eruption. At that stage the absorption of radiation by the volcanic aerosol had already 

154 induce the lofting of the cloud itself. 

155 We tested similar assumptions on the injection height in GEOS-5 by performing 

156 simulations with injection of S02 between 16 km and 25 km, 17 km and 27 km, 20 km 

157 and 27 km, 20 km and 30 km. In all these simulations, the bulk of the volcanic cloud 

158 reached altitudes much higher than observations. Our choice of a lower injection altitude 

159 results in a reasonable simulation of the SAGE-II vertical profile after a couple of weeks 

160 from the day of the eruption (Section 3.2). 

161 We did not include any other aerosol sources in the simulations used for this 

162 work. 
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163 We performed an ensemble of eight transient simulations, each spanning from 

164 January 1991 to December 1997. The initial conditions of the ensemble members are the 

165 meteorological fields of eight different Januaries of a control simulation with no volcanic 

166 perturbation, which was initialized with climatological meteorological fields typical of 

167 the year 2000. 

168 The injected S02 is transformed into S04 by GOCART with an average e-folding 

169 time of 29.8 days, in good agreement with observations by the Total Ozone Mapping 

170 Spectrometer (TOMS) [Bluth et al., 1992; Guo et ai., 2004]. The average of the S04 e-

171 folding times of the eight ensemble members is 347 days with a standard deviation of 

172 57.7 days, also in good agreement with observations [Barnes and Hofmann, 1997; Nagai 

173 et al., 2010]. Table 1 shows the e-folding times of S02 and S04 for each ensemble 

174 member. 

175 Figure 1 shows the temporal evolution of the globally averaged AOT at 550 nm. 

176 The results from our simulations are compared to SAGE II [Thomason et al., 1997] and 

177 A VHRR [Long and Stowe, 1994] observations. We removed background values from the 

178 AVHRR observations, calculated as the monthly mean AOT over the available months 

179 preceeding the eruption (June 1989 to May 1991). 

180 The simulated peak value is in reasonable agreement with AVHRR, but is higher 

181 in magnitude and occur earlier in time than the SAGE-II data. Optical depths of about 

182 0.15 or more, however, saturate the SAGE-II measurement [Russell et ai., 1996]. Hence, 

183 the value of AOT calculated from SAGE-II observations are likely underestimated. 

184 Additionally, the sampling of SAGE-II observations is relatively sparse and can hardly 
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185 register rapid changes in the AOT. After January 1992 both SAGE-II and AVHRR 

186 observations are within the variability of the ensemble. 

187 

188 Shortly after the eruption, the volcanic cloud is transported northward out of the tropics 

189 and southward toward the equator. 

190 Figure 2 shows the zonal mean of the AOT as a funetion of time in our 

191 simulations and in the satellite observations. The model reproduces reasonably well the 

192 spreading of the cloud into the two hemispheres observed by SAGE-II and AVHRR. 

193 GEOS-5 simulates well the timing and the intensity of the tropical peak compared to 

194 A VHRR. As expected from the profiles in Figure 1, the magnitude of the simulated 

195 aerosol optical thickness is larger than the one observed by SAGE-II. 

196 GEOS-5 simulates also the seeond peak in February, 1992 at 45°N, as well as the 

197 secondary peak detected by AVHRR at about looN in September, 1991. The high AOT 

198 values observed at 600 S in November 1991 might be due to the eruption of the Cerro 

199 Hudson volcano (n.9rW, 45.900 S) between August and October 1991, which is not 

200 included in our simulations. 

201 GEOS-5 transports a large fraction of the cloud southward shortly after the 

202 eruption, but slightly underestimates the transport across the equator with respect to the 

203 observations. While the simulated peak is located on the equator, both SAGE-U and 

204 AVHRR deteeted the peak at about 50 S. The results by [Timmreck et al., 1999a] also 

205 underestimated the cross-equatorial transport. They suggested that the missing transport 
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206 might be due to the specific synoptic situation in June 1991, when a strong high over 

207 Tibet induced a southward transport of the cloud. 

208 We tested the importance of the specific meteorological situation by performing a 

209 simulation with specified initial conditions from the Modem Era Retrospective Analyses 

210 (MERRA, Rienecker et at., [2011]). The results (not shown) are similar to the one of the 

211 reference simulations, with a peak of the AOT on the equator. This suggest that the 

212 particular meteorological situation at the moment of the eruption is not responsible for 

213 the additional southward transport. 

214 The tests performed with different injection heights (Section 3) showed a very 

215 similar horizontal distribution of the AOT, even if the volcanic clouds reached altitudes 

216 higher than observed. 

217 The small initial underestimation of the southward transport might be due to the 

218 lack of a radiatively interactive S02 in the version of GEOS-5 used in this work. Lary et 

219 at., [1994] estimated that the S02 heating rate can be up to 1 KJday and could therefore 

220 be significant in the early stages of the cloud's evolution. 

221 

222 We compare our results with S02 profiles taken with a microwave limb sounder (MLS) 

223 by Read et at., [1993] between 100S and the equator on September 21 St, 1991 (Figure 3). 

224 The simulated profiles correspond to the September 1991 monthly mean of the S02 

225 vertical profiles, averaged over the latitudinal band between lOOS and lOON. We averaged 

226 over a latitudinal band larger than the MLS observations to take into account the different 

pattern between UH'.HWCAVl10 and 
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228 The agreement with [Read et al., 1993] is good: both S02 profiles have a peak at 

229 about 20 hPa of similar magnitude. The sensitivity tests that we performed varying the 

230 injection altitude of S02 showed differences in the vertical profile of the volcanic cloud 

231 during the first months, but the equilibrium level where the bulk of the cloud settles was 

232 in all tests at about 20 hPa. 

233 Figure 4 shows the vertical distribution of the zonally averaged S04 concentration 

234 on July 15 th
, September 15\ November 1 st and December 31 S\ 1991. The bulk of the cloud 

235 is between 50 hPa and 10 hPa in July 1991. 

236 The model results are in agreement with SAGE-II observational satellite data, 

237 which detected the cloud top at altitudes up to 29 km (about 10 hPa) during June, July 

238 and August 1991 [McCormick and Veiga, 1992]. 

239 Trepte et al., [1993] showed the latitude-altitude cross-section of the SAGE-III 

240 !-tm extinction ratio. Data were first collected in the tropical region between July 1 st and 

241 July 20th
, and show values higher than the background between the tropopause and 30 km 

242 altitude, in reasonable agreement with the first panel of Figure 4. 

243 The simulated vertical profiles for December (Figure 4, lower-right panel) also 

244 agrees with SAGE-II data, as analyzed by Vernier et al., [2011]. They detected the 

245 volcanic cloud at altitudes higher than 35 km, with its bulk between 26 and 27 km. 

246 

247 The volcanic cloud moves to mid- and high latitudes through two main transport 

248 pathways, as shown in Figure 4. Already one week after the eruption, part of the cloud is 
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249 advected northward through the lower stratosphere at about 100 hPa. A portion of the 

250 cloud, instead, later reaches southern higher latitudes through the middle stratosphere 

251 between 5 and 50 hPa and arrives at 90'S in the middle of November (Figure 4, lower 

252 panels). 

253 The volcanic cloud crosses the equator during the first two weeks after the 

254 eruption, but the transport from the tropics to southern midlatitudes does not start until 

255 the middle of July and becomes significant in September (Figure 4, upper right panel). 

256 The middle stratospheric transport regime is illustrated in Figure 5. In our 

257 simulations the volcanic cloud reaches 30 hPa about one week after the eruption (not 

258 shown) and is by then still located in the northern hemisphere. At the same time part of 

259 the cloud has already reached 400N and 30'S latitude through the lower stratospheric 

260 pathway. At the beginning of July (Figure 5, upper panel) the volcanic cloud has 

261 dispersed longitudinally over nearly the whole globe, but is still confined in the tropical 

262 area, with a sharp gradient at 20'S. The same configuration was observed in SAGE-II 

263 data [McCormick and Veiga, 1992; Trepte et al., 1993]. 

264 About one month after the eruption we observe the first intrusion of volcanic 

265 material from the southern tropics to midlatitudes through tongue-like structures that 

266 appear in the middle stratosphere (Figure 5, lower panel). Such tongues of air have been 

267 identified by Randel et al., [1993] as the path of mixing from the tropics to midlatitudes. 

268 Trepte et al., [1993] detected in the SAGE-II observations similar intrusions detaching 

269 from the tropical cloud at 200 S between July 11 th
, 1991 and July 18t

\ 1991. 

270 Our transport simulation of the volcanic cloud from the Mt. Pinatubo eruption is 

271 in agreement the observations. the vertical and horizontal distribution 

13 



272 the timing of the mixing to mid- and high latitudes are reasonably well comparable to 

273 SAGE-II and AVHRR observations. 

274 

275 We investigate how the interaction between volcanic aerosol from Mt. Pinatubo and 

276 radiation changed the background mixing within the tropics and from the tropics to 

277 midlatitudes. We performed an ensemble of simulations with no interactive aerosol, and 

278 compared them to the reference simulation of the dispersal of the volcanic cloud 

279 evaluated in Section 3. We performed one additional ensemble of eight members without 

280 coupling between aerosol and radiation. Each ensemble member has exactly the same 

281 setup of the reference simulations. 

282 Figure 6 (upper panel) shows the temporal evolution of the zonally averaged AOT 

283 at 550 nm, to be compared to the upper panel of Figure 2. In the non-interactive 

284 ensemble, most of the volcanic cloud is directed toward the northern hemisphere, faster 

285 than in the reference simulation. This is due to the different vertical distribution of the 

286 volcanic cloud: in the non-interactive case the volcanic cloud stays at much lower 

287 altitudes (Figure 7, middle panel) than in the interactive case (Figure 7, left panel). 

288 Hence, the non-interactive cloud does not rise enough to enter the middle stratosphere, 

289 and the advection of the cloud to midlatitudes takes place only through the lower 

290 stratosphere. The e-folding time of S04 is much lower in the ensemble with non-

291 interactive aerosol than in the reference case (74 days against 346 days). 

292 We also performed an ensemble of three non-interactive simulations directly 

293 injecting S02 between 17 - 27 km (Figure 6, lower Also this case the cross-
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294 equatorial transport is not as intense as in the reference simulation, and the volcanic cloud 

295 looks even more confined to the tropics than in Figure 6a. Even if the S04 cloud reaches 

296 the middle stratosphere (Figure 7, right panel) and part of the cloud crosses the equator, it 

297 remains confined within the tropics. 

298 The additional transport to the southern hemisphere is therefore due to the 

299 radiative interaction of volcanic aerosol, and is essential for a good simulation of the 

300 dispersal of the volcanic cloud, as observed by Timmreck et al., [1999a]. 

301 L 

302 In Figure 8 we show the perturbation of the horizontal wind fields induced by the 

303 interaction between radiation and volcanic aerosol. We show the difference of the 

304 horizontal winds between the interactive and the non-interactive ensembles on June 16th
, 

305 1991 at 70 hPa and on July 1st
, 1991, together with the aerosol heating rates due to 

306 longwave radiation. To reduce noise effects, the results for July 1 sl in Figure 8 and Figure 

307 10 are from an eight-member ensemble of non-interactive simulations starting on the 

308 midnight of July 1 S\ with initial conditions from July 1 sl of the interactive mn. 

309 The sudden warming generates a divergent motion from the location of the 

. 310 volcanic cloud already one day after the eruption (Figure 8, upper panel). The simulated 

311 volcanic cloud is still at the same latitude as Mt. Pinatubo, and has not risen yet to 

312 altitudes higher than 50 hPa. On July lSI (Figure 8, lower panel) the cloud has circled 

313 nearly around the whole globe, but, in the middle stratosphere, is still confined between 

314 200S and 200N. 



315 The perturbation of the horizontal winds diffuses the sulfate northward and 

316 southward from the center of the clouds, increasing the spreading of the clouds towards 

317 the tropics, due to the heating induced by the S04 absorption of longwave radiation. The 

318 winds are no longer significantly perturbed at 30 hPa by December 1991, when the 

319 concentration of S04 becomes meridionally homogeneous. At 50 hPa, where the S04 

320 concentration decreases (Figure 4), the winds converge towards the center of the cloud. 

321 At altitudes lower than 50 hPa no consistent perturbation is simulated. 

322 GEOS-5 simulates the formation of two vortices at the location of the volcanic 

323 cloud during the second week after the eruption, north and south of the equator, 

324 respectively (Figure 9). This feature is similar to the response to a tropical tropospheric 

325 heating source calculated by [Gill, 1980], with a high pressure system at the top of the 

326 perturbation and a low pressure one at the bottom. A comparison with observation could 

327 identify if such a response was indeed observed. 

328 The divergent winds are strongly related to an increased upwelling. Figure 10 

329 shows the perturbation of the wind's vertical velocity on the same days and levels 

330 depicted in Figure 8, and the contours of the S04 distribution. The increase of the vertical 

331 velocity is significant: in the non-interactive case the values of the vertical velocity are up 

332 to 0.5 mm/s, while in the perturbed case they reach up to 4 mm/s, in the regions with 

333 highest concentration of sulfate. In some regions the perturbation even changes the sign 

334 of the vertical wind. 

335 The absorption of longwave radiation by volcanic S04 is responsible for the "self-

336 lofting" of the volcanic clouds and for the divergent motion from the areas with highest 

337 S04 concentration. already mentioned in Section 3.1, the introduction of radiative 
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338 interactive S02 could possibly increase the lofting and spreading of the cloud during the 

339 first months from the eruption. 

340 The first stage of the volcanic cloud's transport to the southern hemisphere is 

341 driven by the absorption of longwave radiation and comprises the transport from the 

342 latitude of the eruption across the equator and to the tropics. 

343 Afterwards, the cloud is transported from the tropics to southern mid- and high 

344 latitudes through the structures depicted in Figure 5. We investigated if the volcanic 

345 perturbation from Mt. Pinatubo enhanced such structures, and hence the mixing between 

346 tropics and midlatitudes, by analyzing the distribution ofNzO (not shown). 

347 Climatologically, the concentration of N20 is highest in the tropics and presents a 

348 strong summer gradient between the tropics and midlatitudes. The sources of N20 are 

349 located at surface and its concentration decreases with altitude. 

350 Compared to the unperturbed case, GEOS-5 simulates decreased N20 at about 30 

351 hPa and increased N20 at 10 hPa in the tropical region starting from September 1991, 

352 compatible with the lofting of air induced by the volcanic perturbation. The effect of the 

353 lofting weakens starting from January 1992 and no significant change in the N20 

354 concentration can be detected after September 1992. 

355 There is no sign of increased N20 transport from the tropics to midlatitudes. 

356 The analysis of the age of air at 30 hPa leads to similar conclusion (not shown). 

357 The air in the interactive runs is younger in the tropical area between July and December 

358 1991, implying a faster upwelling, but there is no significant difference in the following 

359 months, neither in the tropics nor at midlatitudes. 
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362 We perfonned two interactive cxperiments lowering the amount of injected S02 to 5 Tg. 

363 In the first experiment we injected S02 between 16 km and 18 km, in the second between 

364 17 km and 27 km. The set up of the simulations is otherwise identical to the reference 

365 simulation. Figure 11 shows the vertical profiles of the zonal mean of S04 in the two 

366 experiments. 

367 In the experiment with low injection height (Figure lla) the volcanic cloud is 

368 mainly confined to the lower stratosphere, showing that 5 Tg of S02 do not produce a 

369 strong enough perturbation to raise the cloud to the middle stratosphere. 

370 In the second experiment (Figure lIb) the cloud is injected already in the middle 

371 stratosphere and is advected to the southern hemisphere through the same middle 

372 stratospheric pathway as in the reference simulation. However, the peak of S04 is north 

373 of the equator, while in the reference simulation it's partly in the southern hemisphere 

374 already on July 15th (Figure 4). 

375 The cross-equatorial transport is slower in the experiment with low burden. The 

376 outer edges of the cloud cross the equator in August 1991 and diffuse outside the tropical 

377 area starting from October 1991, compared to the end of June 1991 and August 1991, 

378 respectively, of the reference simulation. 

379 A lower injected sulfate burden generates a less intense perturbation, which, 

380 however, eventually produces the same transport pattern as in the reference case, when 

381 the S02 is injected at a higher altitude. the perturbation induced by the injection 
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382 of 5 Tg of sulfate is not strong enough to bring the cloud to the middle stratosphere but, if 

383 directly injected at that altitude, such perturbation is sufficient to push the cloud south of 

384 the equator and to midlatitudes. 

385 

386 The cross-equatorial transport is related to the season of the eruption. We performed two 

387 experiments injecting 20 Tg of S02 in winter (January 15th
) and in spring (April 4th, day 

388 of the 1982 eruption of EI Chich6n). The setup of the experiments was otherwise 

389 identical to the reference simulation. 

390 In the first experiment the volcanic cloud stays mainly in the northern 

391 hemisphere, even if reaches the same altitude as in the reference experiment. The peak of 

392 S04 concentration is in the northern hemisphere between looN and 30 a N in February, and 

393 during the following four months the cloud extends across the equator. The middle 

394 stratospheric pathway is present also in this simulation, but is directed towards northern 

395 high latitudes. It is not until June that a small amount of sulfate crosses 30 0 S and reaches 

396 the southern midlatitudes through the same middle stratospheric pathway. 

397 In the springtime injection experiment the peak of sulfate aerosol also stays in the 

398 northern hemisphere, between 0 and looN. The edge of the cloud crosses the equator 

399 already during the first month, and start spreading to midlatitudes in June. As in the 

400 reference simulation, a considerable fraction of the cloud is directed to southern 

401 midlatitudes through the middle stratospheric pathway. The seasonality of the mixing 

402 alone, therefore, does not appear to be responsible for the different transport pattern of 

403 the El Chi chOn and Mt. Pinatubo volcanic cloud. 
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404 

405 Our GEOS-5 simulations of the transport of the voleanie cloud from the Mt. Pinatubo's 

406 eruption are in good agreement with observations. Our simulations show that including 

407 interaetion between radiation and voleanie S04 is essential to properly simulate the 

408 impact ofvoleanoes on the atmospheric circulation, as initially suggested by Young et aI., 

409 [1994] and Fairlie, [1995]. 

410 The aerosol voleanic cloud diffuses across the globe through two main pathways: 

411 one pathway is centered in the lower stratosphere, at about 100 hPa, while the other is 

412 centered in the middle stratosphere. The voleanic cloud of Mt. Pinatubo diffuses to the 

413 northern hemisphere mainly in the lower stratosphere and to the southern hemisphere in 

414 the middle stratosphere. 

415 We can divide the transport problem of the Pinatubo aerosol to the southern 

416 hemisphere in two stages: During the first stage, the absorption of longwave radiation 

417 from the cloud induces a lofting and a divergent motion from the center of the cloud. The 

418 self-induced transport of the cloud pushes the aerosol northward and southwards across 

419 the equator and to the tropics. The magnitude of the perturbation of the vertical velocity 

420 is closely related to the distribution of voleanic S04 and causes signifieant perturbations 

421 of the tropical circulation until December 1991. 

422 The second stage, starting from about one month after the eruption, includes the 

423 transport from 30 0 S to southern mid- and high latitudes. Such transport takes place 

424 through tongue-like structures, which are the common way of mixing between the tropics 

425 and mid latitudes [Randel et al., 1993]. Analyzing the horizontal distribution ofN20, we 
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426 could not detect any significant enhancement of the mlxmg between tropics and 

427 midlatitudes. 

428 The transport across the equator is strongly dependent on the season and is much 

429 enhanced during the southern hemispheric winter. The seasonal dependence of the 

430 transport, however, does not appear to be responsible for the different transport pattern of 

431 the volcanic cloud from Mt. Pinatubo and El Chich6n. Our simulations suggest that the 

432 different transport might be rather related to the amount of S02 injected in the 

433 atmosphere. An injected burden equal to 5 Tg S02 is not sufficient in our simulation to 

434 take the volcanic cloud to the middle stratosphere. EI Chich6n injected about 7 Tg of S02 

435 in the atmosphere [Bluth et al., 1992], which might as well have not been enough to 

436 induce lofting to the middle stratosphere. 
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594 Figure captions 

595 Figure 1: Global mean of the visible aerosol optical thickness as simulated by 

596 GEOS-5 and as derived by SAGE II and A VHRR data. Background values have been 

597 removed from the AVHRR data. The shaded area shows the variability of the 

598 ensemble. 

599 Figure 2: Zonal mean of the aerosol optical thickness at 550 nm for the Mt. 

600 Pinatubo eruption in the GEOS-5 simulations, SAGE-II and A VHRR observations. 

601 Background values have been removed from the AVHRR observations. 

602 Figure 3: Vertical profile of the monthly average of the S02 mixing ratio in 

603 the latitudinal band between 100 S and looN. The black solid line represents the 

604 ensemble average and the shaded area the variability of the ensemble. The diamonds 

605 are MLS measurements by [Read et al., 1993]. 

606 Figure 4: Zonal mean of the S04 concentration from Mt. Pinatubo on July 

607 15th
, September 1 S\ November 1 st and December 31 S\ 1991. 

608 Figure 5: Horizontal distribution of S04 column mass between 30 hPa and the 

609 top of the atmosphere on July 2nd
, 1991 and on July 16th

, 1991. 

610 Figure 6: Temporal evolution of the zonally averaged aerosol optical 

611 thickness at 550 nm in the ensembles with no radiatively interactive aerosol and S02 

612 injection height between 16 and 18 km (upper panel) and 17 and 27 km (lower 

613 panel). 



614 Figure 7: December 1991 monthly mean of the zonally averaged S04 

615 concentration m the reference simulation (left panel), in the non interactive 

616 simulation with SOz injection height between 16 km and 18 km (middle panel) and in 

617 the non interactive simulation with SOz injection height between 17 km and 27 km 

618 (right panel). 

619 Figure 8: Streamlines of the difference between the horizontal wind field in 

620 the interactive and in the non-interactive simulation on June 16th
, 1991 (upper panel) 

621 and on July 1 st, 1991 (lower panel) at 70 hPa and 30 hPa altitude, respectively. The 

622 shaded areas show the heating rates of sulfate from the eruption of Mt. Pinatubo due 

623 to the interaction with longwave radiation. 

624 Figure 9: Horizontal distribution of the S04 concentration in the reference 

625 simulation and streamlines of the difference of the horizontal wind between the 

626 reference simulation and the simulation without interactive aerosol at 30 hPa (upper 

627 panel) and 100 hPa (lower panel) on June 24th
, 1991. 

628 Figure 10: Difference of the vertical velocity in mmJs between interactive and 

629 non-interactive case at 70 hPa on June 16th
, 1991 and at 30 hPa on July IS

\ 1991 

630 (shaded areas). The contours mark the concentration of S04, in [lg/m3. The average is 

631 calculated over 5 ensemble members, since the needed diagnostic was not available 

632 for all the eight ensemble members. 

633 Figure 11: Zonal mean of the S04 concentration on October 15 t
\ 1991 in the 

634 simulations with low volcanic burden. In these experiments we injected 5 Tg of SOl 

635 between 16 and 18 km (left panel) and between 17 and 27 (right panel), at the 
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636 same time and location of the Mt. Pinatubo eruption. 
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