Evaluation of JPL Version-5.9.12
Temperature Profiles, Ocean Skin Temperature, Surface Emissivity, and Cloud Cleared Radiances

Joel Susskind, John Blaisdell, Lena Iredell
NASA GSFC Sounder Research Team

AIRS Science Team Meeting
November 10, 2011
Outline

• Modifications to JPL 5.9.12 compared to V5.9.1 (July 28, 2011 Net Meeting)
• Some results showing that V5.9.12 O, with original water vapor sounding channels, is preferable to V5.9.12 N with Antonia Gambacorta’s new water vapor channels
 More comparisons are shown in back-up material
• Comparison of V5.9.12, V5.9.12 AO, V5.9.1, and V5.0
 More comparisons of V5.9.12 with V5.9.12 AO are shown in back-up material
• Accuracy and yield of channel by channel Quality Controlled clear-column radiances \hat{R}_i
• Plans for Version-7
Changes Since Version 5.9.1 (July 2011)

Updates to neural net first guess (Manning and Milstein)
 Improved interpolation near surface
 Better handling of sea ice
Modification to emissivity first guess and retrieval (Manning, Hulley, Blaisdell)
Changes to RTA for large solar zenith angles (Maddy)
Changes to cloud parameter retrievals (Manning, Blaisdell, Susskind)
 Neural net T_{skin} is used over ocean when retrieval is thought to be bad
Updated channel lists to remove channels bad by 2010 (Manning, Blaisdell)
Error estimates (Susskind, Iredell)
 Separate error coefficients are generated for polar cases
New coefficients generated consistent with V5.9.12, V5.9.12 AO

Joel Susskind, John Blaisdell, Lena Iredell
Comparison of Results Obtained Using V5.9.12 O and V5.9.12 N

Version-5.9.12 O and V5.9.12 N are otherwise identical in every way except for use of a new set of water vapor sounding channels in V5.9.12 N as suggested by Antonia Gambacorta and co-workers.

Use of new channels in current system improves some products but significantly degrades the accuracy of the water vapor profiles, especially for harder (cloudier) cases.

In the absence of time for further optimization, we recommend use of the old channel set in Version-6. Further optimization should be done in Version-7.

The next two charts show results related to water vapor profiles. Other comparisons are shown in the back-up material.

All further comparisons are V5.9.12 O, called V5.9.12.
Global 1 Km Layer Precipitable Water 7-Day

Percent Yield

% Difference from ECMWF RMS

% Difference from ECMWF BIAS
7-Day Total Precipitable Water (cm) 7-Days 1:30 PM
New Water Channels vs Old Water Channels

V5.9.12 N
ECMWF Collocated to AIRS
V5.9.12 O

V5.9.12 N minus ECMWF
V5.9.12 N minus V5.9.12 O
V5.9.12 O minus ECMWF

Global Mean = 2.82 Standard Dev = 1.46
Global Mean = 2.44 Standard Dev = 1.40
Global Mean = 2.34 Standard Dev = 1.36

GM = 0.18 STD = 0.17 CORR = 1.00
GM = 0.28 STD = 0.24 CORR = 0.99
GM = -0.10 STD = 0.22 CORR = 0.99

Joel Susskind, John Blaisdell, Lena Iredell
Global Temperature 7-Day Statistics use their own QC

Percent of All Cases Accepted

Layer Mean RMS (°K) Differences from ECMWF

Layer Mean BIAS (°K) Differences from ECMWF
50° North to 50° South Land Temperature 7-Day Statistics use their own QC

Percent of All Cases Accepted

Layer Mean RMS (°K) Differences from ECMWF

Layer Mean BIAS (°K) Differences from ECMWF
Global Temperature Statistics for two Identical Ensembles 7-Day

Percent of All Cases Accepted

Layer Mean RMS (°K) Differences from ECMWF
50° North to 50° South Land Temperature Statistics for two Identical Ensembles 7-Day Percent of All Cases Accepted

Layer Mean RMS (°K) Differences from ECMWF

Joel Susskind, John Blaisdell, Lena Iredell
Poleward of 50°
Temperature Statistics for two Identical Ensembles 7-Day

Percent of All Cases
Accepted

Layer Mean RMS (°K)
Differences from ECMWF
7-Day Mean Statistics Tropospheric Temperature Metric (TTM) and Boundary Layer Metric (BLM)

Cases in Common Using the Version-5 Tight Ensemble

<table>
<thead>
<tr>
<th></th>
<th>Global TTM</th>
<th>Global BLM</th>
<th>Land ±50° TTM</th>
<th>Land ±50° BLM</th>
<th>Ocean ±50° TTM</th>
<th>Ocean ±50° BLM</th>
<th>Poleward of 50°N TTM</th>
<th>Poleward of 50°N BLM</th>
<th>Poleward of 50°S TTM</th>
<th>Poleward of 50°S BLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version-5</td>
<td>1.10</td>
<td>1.29</td>
<td>1.19</td>
<td>1.71</td>
<td>1.04</td>
<td>1.13</td>
<td>1.14</td>
<td>1.50</td>
<td>1.31</td>
<td>1.76</td>
</tr>
<tr>
<td>V5.9.1</td>
<td>0.92</td>
<td>1.17</td>
<td>0.95</td>
<td>1.50</td>
<td>0.86</td>
<td>0.99</td>
<td>0.98</td>
<td>1.53</td>
<td>1.21</td>
<td>1.72</td>
</tr>
<tr>
<td>V5.9.12</td>
<td>0.92</td>
<td>1.16</td>
<td>0.94</td>
<td>1.49</td>
<td>0.86</td>
<td>0.98</td>
<td>0.96</td>
<td>1.47</td>
<td>1.20</td>
<td>1.69</td>
</tr>
<tr>
<td>V5.9.12 AO</td>
<td>0.94</td>
<td>1.30</td>
<td>0.98</td>
<td>1.63</td>
<td>0.88</td>
<td>1.13</td>
<td>0.98</td>
<td>1.64</td>
<td>1.22</td>
<td>1.82</td>
</tr>
</tbody>
</table>

Cases in Common Using the 5.9.12 Climate Ensemble

<table>
<thead>
<tr>
<th></th>
<th>Global TTM</th>
<th>Global BLM</th>
<th>Land ±50° TTM</th>
<th>Land ±50° BLM</th>
<th>Ocean ±50° TTM</th>
<th>Ocean ±50° BLM</th>
<th>Poleward of 50°N TTM</th>
<th>Poleward of 50°N BLM</th>
<th>Poleward of 50°S TTM</th>
<th>Poleward of 50°S BLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version-5</td>
<td>1.66</td>
<td>2.53</td>
<td>1.82</td>
<td>2.75</td>
<td>1.64</td>
<td>2.43</td>
<td>1.52</td>
<td>2.35</td>
<td>1.71</td>
<td>2.70</td>
</tr>
<tr>
<td>V5.9.1</td>
<td>1.12</td>
<td>1.88</td>
<td>1.06</td>
<td>1.92</td>
<td>1.03</td>
<td>1.44</td>
<td>1.14</td>
<td>2.24</td>
<td>1.33</td>
<td>2.33</td>
</tr>
<tr>
<td>V5.9.12</td>
<td>1.11</td>
<td>1.85</td>
<td>1.06</td>
<td>1.90</td>
<td>1.02</td>
<td>1.40</td>
<td>1.12</td>
<td>2.15</td>
<td>1.32</td>
<td>2.28</td>
</tr>
<tr>
<td>V5.9.12 AO</td>
<td>1.18</td>
<td>2.10</td>
<td>1.14</td>
<td>2.10</td>
<td>1.08</td>
<td>1.64</td>
<td>1.18</td>
<td>2.45</td>
<td>1.43</td>
<td>2.63</td>
</tr>
</tbody>
</table>
Comparison Summary

JPL Version-5.9.12 is significantly improved compared to Version-5 with regard to temperature profiles, ocean skin temperature, and surface emissivities

- $T(p)$ is slightly improved compared to Version-5.9.1
- Land surface emissivity is somewhat improved compared to Version-5.9.1 especially in the shortwave

Version-5.9.12 AO performs only slightly poorer than Version-5.9.12

Comparisons of some Level 3 spatial plots are shown in back-up material
Agreement of all fields shown in backup is very good

Version-5.9.12 retrieval system is ready for use in Version-6
Some work still needed for error estimates and QC for clear column radiances
Clear Column Radiance Error Estimates \(\hat{\partial R_i} \)

\[
\hat{R}_i = \bar{R}_i + \sum_{k=1,9} n_k (R_{i,k} - \bar{R}_i) \quad \text{channel}_i, \text{FOV}_k
\]

\(\hat{R}_i \) has two sources of error: instrument noise \(NE\Delta N_i \) and error due to cloud clearing \(CCE_i \).

The instrument noise \(NE\Delta N_i \) is amplified by taking a linear combination of \(R_{i,k} \) to get \(\hat{R}_i \).

Instrument noise contribution is given by \(A \) times \(NE\Delta N_i \) where \(A \) is the noise amplification factor.

- \(A \) increases with \(\eta_k \) and is typically greater than 1.
- Special case: channel \(i \) does not see clouds in this scene \(A_{i,\text{clear}} = 1/3 \).

We parameterize the cloud clearing error for a given channel and sounding as

\[
CCE_i = \sum_{j=1}^{6} B_{i,j} \partial T_j \quad \text{where} \quad \partial T_j \quad \text{is the error estimate for} \quad T_j
\]

\(B_{ij} \) are error estimate coefficients.

\(\partial \hat{R}_i \) is expressed as \(\partial \hat{R}_i = [(A_i NE\Delta N_i)^2 + CCE_i^2]^{1/2} \).

\(\partial \hat{\Theta}_i \) is the equivalent error estimate in brightness temperature units.
Need for $\partial \hat{R}_i$ and Error Flags

1) \hat{R}_i is a derived product and therefore requires an uncertainty and an error flag

2) Operational agencies currently assimilate AIRS R_i for channels unaffected by clouds

Primarily stratospheric channels in 15μm CO$_2$ band

The spatial coverage is very poor for tropospheric sounding channels

Assimilating Quality Controlled values of \hat{R}_i is potentially a much better approach with better spatial coverage

To do this optimally, $\partial \hat{R}_i$ and QC flags must be taken into account.
QC Flags

Current QC approach at SRT

QC = 0 if \(\hat{\theta}_i < 0.8 \) K
QC = 1 if \(0.8 \) K < \(\hat{\theta}_i \) < \(2.5 \) K
QC = 2 otherwise

We generated coefficients \(B_{i,k} \) based on Version-5.49 at SRT – two regression system.

There are 6 sets of \(B_{i,k} \): non-frozen ocean; land; and sea ice/snow covered land; with separate coefficients for day and night.

John Blaisdell implemented the code to generate \(\hat{R}_i \) and QC flags at JPL using Version-5.49 values of \(B_{i,k} \)

The code is not yet working correctly at JPL

This should not affect any other results of the system

Next set of results shows QC controlled Version-5.49 \(\hat{R}_i \)

Statistics should be even better using Neural-Net because cloud clearing is better with Neural-Net
SRT Plans for Completion of Version-6

Necessary Research

Implement code to generate \hat{R}_i and QC flags correctly at JPL
Generate $B_{i,j}$ coefficients and optimize QC threshold for \hat{R}_i
 based on results run at JPL

Desirable Research

Optimize Version-6 Climate QC thresholds for all parameters based on 1 month runs done at JPL
Fix any possible glitches in the processing system found in JPL Version-6 testing
Implement Neural-Net start-up option at SRT

This is critical for optimal development and testing of further improvements

Improve water vapor retrieval using Neural-Net start-up:

channels, functions, damping parameters

Improve temperature profile retrieval by using tropospheric 15 μm CO$_2$ channels that do not see clouds.

Theory says that 15 μm CO$_2$ channels that see clouds should not be used in T(p) retrieval. Version-6 assures this by using only stratospheric sounding CO$_2$ channels

Many tropospheric 15 μm do not see clouds depending on the scene

Joel Susskind, John Blaisdell, Lena Iredell
Longer term SRT Plans for Version-7

Implement 1 (cross track) x 3 (along track) FOV retrieval system
This triples the spatial resolution of the AIRS soundings
Approach was attempted for Version-6, but dropped because soundings degraded in harder cloud cases
Version-6 Neural-Net start-up allows for much better sounding at cloudier cases

Attempt to include absorption by dust in the retrieval process
This should improve retrievals in dusty scenes rather than (hopefully) rejecting them as done now

Any other ideas that come up by us or other team members
Back-up Material
New Water Vapor Channels

• $T(p)$ results using new and old water vapor channels are comparable

• SST is degraded somewhat using new water vapor channels

• Day/night differences of total methane are smaller (better?) over Northern Hemisphere land using new water vapor channels
• Comparison of 7-day mean V5.9.12 Level 3 products with V5.9.12 AO

• All results are extremely close with each other

• V5.9.12 AO total precipitable water is slightly poorer over ocean as a result of loss of AMSU-A2 23.8 GHz and 31.4 GHz channels
Outgoing Longwave Radiation (Watts/m²) 7-Days
VS. 9.12 Old Water Channels
AIRS/AMSU vs AIRS Only

GM= 247.31 STD= 34.26 %FILL 96.79

GM= 247.31 STD= 34.24 %FILL 96.79

GM= 240.73 STD= 29.67 %FILL 99.99

GM= 240.63 STD= 29.73 %FILL 99.99

Joel Susskind, John Blaisdell, Lena Iredell
Clear Sky OLR (Watts/m²) 7-Days
V5.9.12 Old Water Channels
AIRS/AMSU vs AIRS Only

AIRS 1:30 PM
AIRS/AMSU

90 130 170 210 250 290 330 370
GM= 271.89 STD= 28.06 %FILL 96.75

AIRS 1:30 PM
AIRS Only

90 130 170 210 250 290 330 370
GM= 272.37 STD= 27.89 %FILL 96.76

AIRS 1:30 AM
AIRS/AMSU

90 130 170 210 250 290 330 370
GM= 264.98 STD= 25.03 %FILL 99.97

AIRS 1:30 AM
AIRS Only

90 130 170 210 250 290 330 370
GM= 265.18 STD= 24.91 %FILL 99.96

AIRS/AMSU minus AIRS Only

90 130 170 210 250 290 330 370
GM= -0.48 STD= 2.08 CORR= 1.00

GM= -0.21 STD= 1.70 CORR= 1.00

Joel Susskind, John Blaisdell, Lena Iredell
Trace Gases CO vs. 9.12 Old Water Channels
AIRS/AMSU vs AIRS Only

AIRS CO
1:30 PM
AIRS/AMSU

AIRS CO
1:30 PM
AIRS Only

AIRS/AMSU minus AIRS Only

AIRS CO
1:30 AM
AIRS/AMSU

AIRS CO
1:30 AM
AIRS Only

AIRS/AMSU minus AIRS Only

GM = 0.082 STD = 0.015 %FILL 96.788

GM = 0.082 STD = 0.015 %FILL 96.788

GM = 0.000 STD = 0.001 CORR = 0.998

GM = 0.000 STD = 0.001 CORR = 0.999

Joel Susskind, John Blaisdell, Lena Iredell