The submission of an abstract is an agreement to complete a final paper for publication and attend the meeting to present this information. Complete all information requested in the author and co-author information sections; the first author listed will receive paper acceptance notices and all correspondence. Abstracts must be submitted electronically; submittal instructions are located in the call for papers. The abstract deadline date is June 13, 2011.

ABSTRACT INFORMATION

Title: CFD Study of the Hydrocarbon Boost Low-Pressure Inducer and Kicker in the Presence of a Circumferential Groove

Submitted for consideration to: [] MSS [] LPS [] SPS

For inclusion in Technical Area: [] 1 [] 2 [] 3 [] 4 [] 5 [] 6

Security Classification of Presentation: [] Unclassified

Security Classification of Paper: [] Unclassified

Contract Number(s) Under Which Work was Performed: [] IR&D

Is this paper an update? [] Yes [] No Has it been presented elsewhere? [] Yes [] No Is this a student paper? [] Yes [] No

AUTHOR INFORMATION

Author/Presenter Name: Robert Coker

Affiliation: NASA MSFC

Address: ER-42 MSFC

City: Huntsville

State: AL

Zip: 35812

Telephone: 256-544-4686

e-mail: Robert.F.Coker@nasa.gov

2nd Author:

Affiliation

Address

City

State

Zip

Telephone

e-mail:

3rd Author:

Affiliation

Address

City

State

Zip

Telephone

e-mail:

Additional Author(s):

Affiliation

Address

City

State

Zip

Telephone

e-mail:
<table>
<thead>
<tr>
<th>MANAGEMENT APPROVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>The individual below certifies that the required resources are available to present this paper at the above subject JANNAF meeting.</td>
</tr>
<tr>
<td>Responsible Manager authorizing presentation: Lisa Griffin</td>
</tr>
<tr>
<td>Title/Agency: ER-42 NASA MSFC Branch Chief</td>
</tr>
<tr>
<td>Telephone Number: 256-544-8972</td>
</tr>
<tr>
<td>Date: 10/7/2011</td>
</tr>
</tbody>
</table>
Results are presented of a computational fluid dynamics (CFD) study done in support of Marshall Space Flight Center's (MSFC) sub-scale water flow experiments of the Hydrocarbon Boost (HCB) Oxidizer Turbopump (OTP) being developed by the Air Force Research Laboratory (AFRL) and Aerojet. A circumferential groove may be added to the pump to reduce synchronous cavitation and subsequent bearing loads at a minimal performance cost. However, the energy may reappear as high order cavitation (HOC) that spans a relatively large frequency range. Thus, HOC may have implications for the full-scale OTP inducer in terms of reduced structural margin at higher mode frequencies. Simulations using the LOCI/Stream CFD program were conducted in order to explore the fluid dynamical impact of the groove on the low-pressure inducer and kicker. It was found that the circumferential groove has minimal head performance impact, but causes back-flowing high-swirl fluid to interact with the nearly-axial incoming fluid just above the inducer blades. The high-shear interface between the fluids is Kelvin-Helmholtz unstable, resulting in trains of low pressure regions or 'pearls' forming near the upstream edge of the groove. When the static pressure in these regions becomes low enough and they get cut by the blade leading edge, HOC is thought to occur. Although further work is required, the numerical models indicate that HOC will occur in the runbox of the AFRL/Aerojet HCB OTP. Comparisons to the ongoing water flow experiments will be discussed, as well as possible designs that may mitigate HOC while continuing to reduce synchronous cavitation.