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Abstract: 21 

Forests of North America are thought to constitute a significant long term sink for atmospheric 22 

carbon. The United States Forest Service Forest Inventory and Analysis (FIA) program has 23 

developed a large data base of stock changes derived from consecutive estimates of growing stock 24 

volume in the US.  These data reveal a large and relatively stable increase in forest carbon stocks 25 

over the last two decades or more. The mechanisms underlying this national increase in forest 26 

stocks may include recovery of forests from past disturbances, net increases in forest area, and 27 

growth enhancement driven by climate or fertilization by CO2 and Nitrogen.  Here we estimate 28 

the forest recovery component of the observed stock changes using FIA data on the age structure 29 

of US forests and carbon stocks as a function of age. The latter are used to parameterize forest 30 

disturbance and recovery processes in a carbon cycle model.  We then apply resulting 31 

disturbance/recovery dynamics to landscapes and regions based on the forest age distributions.  32 

The analysis centers on 28 representative climate settings spread about forested regions of the 33 

conterminous US. We estimate carbon fluxes for each region and propagate uncertainties in 34 

calibration data through to the predicted fluxes. The largest recovery-driven carbon sinks are 35 

found in the Southcentral, Pacific Northwest, and Pacific Southwest regions, with spatially 36 

averaged net ecosystem productivity (NEP) of about 100 g C m-2 a-1 driven by forest age 37 

structure.  Carbon sinks from recovery in the Northeast and Northern Lake States remain 38 

moderate to large owing to the legacy of historical clearing and relatively low modern disturbance 39 

rates from harvest and fire.  At the continental scale, we find a conterminous U.S. forest NEP of 40 

only 0.16 Pg C a-1 from age structure in 2005, or only 0.047 Pg C a-1 of forest stock change after 41 

accounting for fire emissions and harvest transfers. Recent estimates of NEP derived from 42 

inventory stock change, harvest, and fire data show twice the NEP sink we derive from forest age 43 
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distributions.  We discuss possible reasons for the discrepancies including modeling errors and 44 

the possibility of climate and/or fertilization (CO2 or N) growth enhancements. 45 

46 
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1.	
  Introduction	
  47 

The global imbalance among ocean, industrial, and land use sources/sinks of CO2 and the 48 

amount accumulating in the atmosphere implies significant net CO2 uptake by the terrestrial 49 

biosphere [e.g. Schimel et al., 2001; Tans et al., 1990].  Despite large uncertainty about 50 

magnitude and process, analyses tend to point to northern temperate and boreal lands as dominant 51 

terrestrial sinks of CO2 but with considerable controversy regarding attribution to specific regions 52 

or continents [e.g. Bousquet et al., 2000; Fan et al., 1998; Gurney et al., 2002; Kaminski et al., 53 

2001; Myneni et al., 2001; Tans et al., 1990]. However, some recent work suggests far smaller 54 

sinks in northern temperate and boreal lands [Ito et al., 2008; Stephens et al., 2007; Yang et al., 55 

2007].  56 

Estimates of the conterminous U. S. forest net carbon uptake from the atmosphere range from 57 

only 10 to over 200 Tg C a-1 [EPA, 2010; Houghton et al., 1999; King et al., 2007; Pacala et al., 58 

2001; Turner et al., 1995] in the last 2 decades.  Note that here we consider the forest stock 59 

change alone rather than the forest sector stock change, where the latter also includes carbon 60 

accumulated in wood products (see State of the Carbon Cycle Report [King et al., 2007]).  61 

Techniques for estimating forest carbon fluxes at regional to national scales include three 62 

approaches. The stock change method is exemplified in the US report to the United Nations 63 

Framework Convention for Climate Change [e.g. EPA, 2008] which uses US Forest Service 64 

Forest Inventory and Analysis (FIA) data on sequential measurement of tree diameters and/or 65 

wood volumes for about 100,000 forest plots at 5-20 year intervals.  Allometric and biomass 66 

expansion factors are used to convert volume into forest carbon stocks.  The rate of carbon uptake 67 
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is then estimated as the difference between sequential measurements divided by the number of 68 

years in the interval. 69 

Another technique for estimating forest carbon sinks combines estimates of the stand age 70 

structure of forests with age-specific carbon accumulation rates, termed the “age-accumulation” 71 

approach in this work.  These carbon accumulation rates are inferred from carbon stocks as a 72 

function of age [e.g. Houghton, 1999], known as yield tables in forestry literature, and may be 73 

derived empirically from inventory estimates of stand volume and age or from a process oriented 74 

dynamic growth model.  Finally, forest carbon sinks have been estimated from process models 75 

that account for the effects of climate variability and CO2 and nitrogen fertilization but not 76 

necessarily for land use and disturbance processes [e.g. Schimel et al., 2000].  These effects are 77 

fully contained in the stock change method because it relies on contemporary changes in stocks, 78 

but the age-accumulation approach relies on a historical characterization of carbon stock 79 

accumulation and thus misses some of the contemporary influences (see Auxiliary 4). 80 

Forest stock changes result from the sum of net ecosystem productivity (NEP), fire losses, and 81 

harvest (see Figure 1).  Significant decreases in harvest and fire have not been observed over the 82 

past few decades so speculation as to the mechanisms underlying the stock increases have focused 83 

more on growth enhancement from either climate change or fertilization with elevated carbon 84 

dioxide or nitrogen [Houghton, 1999; McGuire et al., 2001; Nemani et al., 2002; Pan et al., 2009; 85 

Schimel et al., 2000; Zhou et al., 2003] and on forest growth from post-disturbance recovery or 86 

fire suppression [Caspersen et al., 2000; Hurtt et al., 2002; Pacala et al., 2001].  Though the 87 

growth enhancement hypothesis has been challenged by Casperson et al. [2000] using forest 88 

inventory data, others have argued that plausible rates of growth enhancement cannot be detected 89 

using existing inventories [Joos et al., 2002] and recent work presents observational evidence 90 
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supporting a large climate change or fertilization induced sink [Cole et al., 2010; McMahon et al., 91 

2010; Thomas et al., 2009]. 92 

Disturbed forests, if not converted to another land cover type, have the potential to regrow, 93 

recover, or even surpass pre-disturbance carbon stocks over decades to several hundred years.  94 

The long-standing dogma of the carbon source/sink dynamics for stand-replacing disturbance 95 

involves a rapid pulse emission followed by sizeable net uptake that gradually declines [Koerner, 96 

2003; Odum, 1969].  This pattern is broadly supported by chronosequence observations of carbon 97 

stocks [Bond-Lamberty et al., 2004; Gough et al., 2007; Pregitzer and Euskirchen, 2004; Richter 98 

et al., 1999; Thornton et al., 2002] and forest-atmosphere net CO2 exchange [Amiro et al., 2011; 99 

Barford et al., 2001; Goulden et al., 2011; Law et al., 2003; Schwalm et al., 2007], but the precise 100 

post-disturbance carbon dynamics vary by forest type and climate and this detail remains poorly 101 

characterized. 102 

The analysis reported here attempts comprehensive assessment of the carbon consequences of 103 

past and present forest disturbance and recovery across the conterminous United States.  We ask 104 

if the forest age structure of the conterminous US forests accounts for the stock changes reported 105 

by the FIA.  Our approach utilizes the national forest inventory data (and uncertainties) to 106 

constrain the forest disturbance and recovery processes represented in an ecosystem carbon cycle 107 

model to obtain regional and national estimates of carbon consequences.  The basic method can 108 

be described as having two main steps.  First, we derive forest type and climate specific post-109 

disturbance NEP trajectories by fitting a first-order terrestrial carbon cycle model (CASA, [Potter 110 

et al., 1993; Randerson et al., 1996]) to grow wood stocks consistent with FIA data.  Second, 111 

these characteristic trajectories are applied to landscapes with forest age maps obtained from FIA 112 

age distributions to derive maps of NEP and biomass.  As such, our approach corresponds to the 113 
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age-accumulation method for estimating forest carbon sinks as described above.  Results 114 

represent carbon dynamics of forested ecoregions across the conterminous US to provide a 115 

continental-scale view of forest recovery from past disturbances.  In addition, we formally 116 

propagate the uncertainty in FIA age-biomass trends using a Monte Carlo approach, as well as 117 

examine to what degree results are sensitive to uncertainty in the model's parameterization of 118 

carbon turnover time, and dependence on light, moisture, and temperature.  Discrepancies 119 

between FIA estimates of stock changes and those from our age-accumulation modeling are 120 

assessed in terms of modeling errors and potential growth enhancements above and beyond 121 

recovery, similar to Houghton [2003]. 122 

 123 

2.	
  Methods	
  124 

2.1 Overview 125 

The core of our approach is to estimate the frequency (F) of land area in a region (Areg), as 126 

well as the flux or stock of carbon (Q) each within strata of stand age, forest type (e.g. Aspen-127 

Birch), and site productivity (high or low) (denoted with a, f, p subscripts).  Regions are defined 128 

according to the Resource Planning Act Assessment by the US Forest Service.  From this we 129 

calculate the regional mass flux or stock (Qreg,s) for a particular climate setting (subscript s) within 130 

each region, as well as its uncertainty (δ, described further below), according to  131 

 132 

      133 

(1), 134 

 135 

∑∑∑=
a f p
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where F is the frequency of forest area adjusted to sum to unity over the three strata and obtained 136 

from the regional FIA samples of the area of forest land as described in Section 2.2, Areg is the 137 

total forested area in the region, and subscripts are: a for stand age, f for forest type group, and p 138 

for productivity class.  The work reported here is part of a larger project to incorporate stand age 139 

derived from Landsat time series data.  In this parallel effort, specific scenes for Landsat time 140 

series were obtained from a statistically rigorous sampling procedure of forest type spatially 141 

dispersed within Eastern and Western regions [Goward et al., 2008].  Here we use the climate 142 

(temperature, precipitation, incident solar radiation) and phenology for each scene (Figure 2) to 143 

simulate fluxes and stocks for each forest type and productivity class within the scene. The scenes 144 

within a region are generally good representations of the region except for the Pacific Southwest 145 

where coastal forests are not well represented. The scene level fluxes are then aggregated to 146 

regional forest fluxes and stocks by averaging across the number of climate settings (scenes, Ns) 147 

in a region as 148 

 149 

     (2), 150 

 151 

and conterminous US estimates (subscript nat) are obtained from the sum over regions 152 

 153 

     (3). 154 

 155 
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We note that our estimates do not account for possible changes in forest carbon due to changes in 156 

forest area, though in the Discussion section we explain why this is unlikely to contribute a large 157 

carbon source or sink given the rates of current-day net land conversion. 158 

The relationship between fluxes and stocks can be diagramed as shown in Figure 1.  The so-159 

called forest sector sources/sinks refer to the net flux between the atmosphere and forest stocks 160 

plus wood products stocks.  The inventory approach to calculating the net forest-atmosphere flux 161 

involves a measured change in carbon stocks over a specified period.  A change in forest carbon 162 

stocks can occur because of changes in the physiological fluxes of photosynthesis and ecosystem 163 

respiration (balanced as NEP), as well as changes in disturbance for example by fire or harvest.  164 

NEP can then be inferred as the difference between ΔCstocks and removals from fire and harvest.  165 

The net forest sector flux to the atmosphere is the sum of ΔCstocks and ΔCwood products.  This 166 

approach, used in national reports to United Nations Framework Convention on Climate Change, 167 

derives ΔCwood products from independent harvest records and empirical decay constants for wood 168 

products and landfills. 169 

Our approach is to calibrate our modeled biomass as a function of age using forest inventory 170 

data.  We then apply the biomass and associated NEP from forest disturbance and recovery to the 171 

landscape based on the forest area reported by the FIA within strata of age, forest types and 172 

productivity classes within each region.  In our modeling framework an important driver of 173 

ΔCstocks is net primary production (NPP), and the turnover times of wood and detrital pools.  NPP 174 

allocated to leaves and fine roots is quickly decomposed and cannot represent a persistent (>  175 

decadal) sink. The turnover rates of wood and its immediate detrital pool, coarse woody debris, 176 

are much slower, on the order of decades, and thus able to account for long-term net carbon fluxes 177 

(on the order of a century).  Fluxes from large stocks of slowly overturning soil pools are also 178 
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slow to respond to disturbance.  By the time these large soil pools are affected by disturbance, 179 

recovery may have already occurred. This phenomenon is expressed as a low sensitivity of NEP 180 

to the slow turnover pools in recovering forests (see Auxiliary Material, Auxiliary 1).  Of course 181 

the slow soil pools are a significant source or sink in conditions where changes in fluxes into the 182 

slow pools are large and longer term such as in permanent conversion from or to forest.  This 183 

approach allows us to map NEP from recovery, one of the key atmospheric flux components 184 

needed to understand source/sink processes.  NEP is a purely biological flux dependent on 185 

photosynthesis and respiration alone.  Fluxes out of the forest arising from harvest or fire combine 186 

with NEP to produce net biome productivity (NBP) which is equivalent to ΔCstocks.  Note that we 187 

have neglected the generally smaller fluxes that contribute to NBP such as lateral fluxes of 188 

carbonate and organic matter in liquid form as well as volatile organic carbon emissions (see 189 

Chapin III et al. [2006]). 190 

 191 

2.2 Data Sources and Modeling 192 

Flux trajectories are derived by fitting forest growth, mortality and shedding, and allocation 193 

parameters within the Carnegie-Ames-Stanford Approach (CASA) carbon-cycle process model 194 

[Potter et al., 1993; Randerson et al., 1996] to accumulate carbon in aboveground wood biomass 195 

consistent with forest inventory data.  Productivity in CASA is represented with a light use 196 

efficiency approach in which NPP is proportional to the fractional absorption of 197 

photosynthetically active radiation (fPAR) times an efficiency term modulated by environmental 198 

conditions.  NPP is allocated to leaves, roots, and wood which have specific turnover rates that 199 

reflect the delivery of carbon to nine detrital pools on the surface and in the soil.  These pools 200 

decompose at specific turnover rates that are also modulated by environmental conditions. 201 
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Disturbance causes NPP to initially decrease, and removes or transfers carbon between live and 202 

detrital pools, the atmosphere, and forest harvest.  In this implementation, we adjust the default 203 

rate of productivity to match carbon accumulation observed in age-accumulation trajectories from 204 

forest inventory data. 205 

Inventory data were obtained from the FIA field plots (FIA Database Version 4), providing 206 

means and sampling errors for two attributes: 1) all live, oven-dry aboveground wood biomass, 207 

and 2) area of forest land.  The quotient of these attributes provides biomass per unit area.  Each 208 

attribute was sampled within strata of forest type group (28 classes), age (20 year age classes to 209 

200+ years), and lumped into high and low productivity classes, defined as 120 to >225 cubic feet 210 

acre-1 annum-1 and 20 to <120 cubic feet acre-1 annum-1 respectively.  Inventory samples were 211 

drawn for regions defined by the Resource Planning Act Assessment by the US Forest Service 212 

that divides the conterminous U.S. into the Northeast (NE), Southeast (SE), Northern Lakes States 213 

(NLS), South Central (SC), Northern Prairie States (NPS), Rocky Mountain North (RMN), Rocky 214 

Mountain South (RMS), Pacific Southwest (PSW), and Pacific Northwest (PNW) region (Figure 215 

2).  FIA data on forest carbon and area that are available via World Wide Web download include 216 

variances for each.  However these variances cannot be exactly combined to estimate uncertainty 217 

because of unknown covariance between carbon stock and area [Bechtold and Patterson, 2005]. 218 

Statisticians from the FIA (Charles Scott and colleagues, USFS National Inventory and 219 

Monitoring Applications Center) processed the national plot data to provide our study with 220 

custom products that we employed in this analysis, namely the aboveground live wood biomass 221 

per unit area and its variance for each major forest type, age cohort, productivity class, for each 222 

region shown in Figure 2.  We confirmed that the data in this custom delivery were nearly 223 
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identical to those obtained from other web-based data servers maintained and made available by 224 

the FIA. 225 

For this implementation we drive the CASA model with the fPAR from a smoothed version of 226 

the MODIS MOD15A2 product [Nightingale et al., 2009] for each forest type group as well as 227 

climatological seasonality of monthly weather using NASA Goddard Institute of Space Sciences 228 

(GISS) air temperature anomalies [Hansen et al., 1999] added to a temperature climatology 229 

[Leemans and Cramer, 1991], GISS solar radiation [Zhang et al., 2004], and Global Precipitation 230 

Climatology Project (GPCP) precipitation [Adler et al., 2003].  These meteorological driver data 231 

were sampled at the 1-degree scale while fPAR was provided at 1 km resolution then averaged for 232 

each forest type within each of the 28 simulation climate domains.  As such, we obtain carbon 233 

flux trajectories for each combination of simulation domains (n = 28), forest-type group (n = 3 to 234 

10), and productivity class (n = 2).  Forest type group is specified at a 0.01 degree resolution 235 

obtained from Zhu and Evans [1994] (http://www.fia.fs.fed.us/library/maps/).  Grid cell-level 236 

fractions of forest land in high and low productivity classes for each forest type and stand age 237 

within each region are specified from county level FIA data.   238 

We modified CASA to capture disturbance impacts on the carbon cycle as follows.  The post-239 

disturbance decline and ensuing recovery of NPP and fractional allocation to wood (τ) are 240 

modeled as: 241 

 242 

NPP(t) = NPPmax(1-ce-kt)     (4), 243 

 244 

τ = min[1, (t – 1) / 8 years)] / 3    (5), 245 

 246 



 13 

where t is years since disturbance, NPPmax is the climatologically averaged net primary 247 

productivity independent of a disturbance legacy, c (=1.5) determines the magnitude of 248 

disturbance-induced reduction in NPP, k (=0.8) determines the rate of NPP recovery, and min is 249 

the minimum operator.  We introduced this dynamic recovery of NPP after disturbance based on 250 

the well documented recovery of NPP [e.g. Amiro et al., 2000; Hicke et al., 2003]. The dynamics 251 

of allocation were intended to capture initial investment of NPP into herbaceous biomass with 252 

increasing allocation to woody vegetation with age [e.g. Jokela et al., 2004; Law et al., 2002].  253 

In order to parameterize the amount of biomass killed by a disturbance we adopt the following 254 

treatment.  Regardless of the pre-disturbance biomass, we set the post-disturbance biomass to 255 

50% of the aboveground live wood biomass reported in the 0-20 year age class.  This constrains 256 

early regrowth to pass through the youngest age-class in the FIA sample.  We then estimate the 257 

corresponding fraction of live wood, leaves, and roots killed based on the ratio of their abundance 258 

prior to disturbance relative to those immediately after disturbance.  Eighty percent of the 259 

disturbance-killed aboveground wood and all of the disturbance-killed leaves are assumed to be 260 

taken off site and entrained into wood products or promptly combusted and are collectively 261 

accounted for as “removals” (fire and harvest), akin to the treatment by Turner et al. [1995].  The 262 

remaining 20% of disturbance-killed aboveground wood is subject to on-site post-disturbance 263 

decomposition as it enters the coarse woody debris pool, also consistent with Turner et al. [1995].  264 

Disturbance-killed roots decompose on-site, for which 30% of dead coarse roots are assumed to 265 

enter a belowground coarse woody debris pool, and 70% of dead coarse roots and all dead fine 266 

roots enter the soil metabolic and structural pools, broadly consistent with results presented in 267 

[Gough et al., 2007; Meigs et al., 2007]. We note that these and other prescriptions are uncertain, 268 

likely vary among disturbance and forest types, and are the subject of ongoing research.  In 269 
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summary, biomass killed in a disturbance event is the difference between pre-disturbance biomass 270 

and 50% of the 0-20 year biomass reported by the FIA data.  Of the killed biomass, 80% of 271 

aboveground wood and all leaves are removed (via harvest or fire) and 20% of the killed 272 

aboveground wood enters the coarse woody debris pool. The belowground wood and roots killed 273 

by disturbance remain on site to decompose. Figure 3 offers an example, in which aboveground 274 

biomass is reduced to 2.5/30 kg C m-2, or <10%, and 80% of this 90% reduction in biomass is 275 

assumed to be removed (harvest or fire) while the other 20% is left to decompose on site.  276 

With this approach it is then possible to estimate biomass removals as: 277 

! = !!!!"# 1− !!"#$      (6), 278 

where A1 is the area of forested land assigned a stand age of one year based on the FIA age 279 

histogram, Bpre is the pre-disturbance aboveground biomass, and fleft (=0.8) is the fraction of 280 

biomass left to decompose on-site.  Each of these varies by forest type, region, and productivity 281 

class.  This estimate is subject to errors in the area of forest assigned to this young age class, the 282 

age of forests prior to disturbance and correspondingly the biomass pre-disturbance, and 283 

uncertainty in the fraction of biomass in disturbed forests that is taken off-site as wood products.  284 

Removals from non-stand replacing harvests are not considered in this approach but later in the 285 

Discussion section we attempt to quantify the impacts of this assumption. 286 

The next step in our model parameterization involves calculating the wood production – wood 287 

age pair that allows the best match to the inventory data of aboveground stock recovery, with the 288 

following multi-step procedure.  First, we calculate a target aboveground live wood biomass (B*, 289 

in g C m-2) from the mean in the 100 to 200 year old age classes, including successively younger 290 

age classes in 20 year increments to ensure a minimum of two samples.  The target age (A*, in 291 

years) is obtained from the average of old classes sampled to derive B*.  Second, we approximate 292 
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the rate of annual aboveground live wood biomass production (Pw, in g C m-2 a-1), which is a 293 

function of NPP and wood allocation, that would be required to obtain B* by A* for a range of 294 

possible wood turnover times (Aw) spanning 30 to 300 years in increments of 10 years by solving 295 

a simplified integral form of the differential equation for biomass with time (dB/dt = Pw – B/Aw) to 296 

yield: 297 

 298 

     (7). 299 

 300 

Thus, we obtain an array of possible Pw-Aw pairs that would grow the target biomass by the target 301 

age.  In a few particular cases this approach yielded implausible wood ages, but with negligible 302 

consequence for the scales of analyses presented in this study.  The third step is to select the pair 303 

that provides a biomass recovery curve most like the inventory sample assessed as that which 304 

minimizes the sum of squared error between modeled and sampled aboveground live wood 305 

biomass.  Modeled biomass is calculated at the sample ages (t, in years) according to: 306 

 307 

 ! !,!! =   !!!
!!
!! + !!!!(1− !

!!∗

!! )    (8), 308 

 309 

where B0 is an assumed initial biomass of 200 g C m-2.  Lastly, we linearly rescale the model’s 310 

default monthly NPP values to provide an annual total NPPmax inferred from the fitted rate of Pw, 311 

as: 312 

 !""!"# =   
!!
!"

      (9), 313 
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*
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where τ (=1/3) is the allocation of NPP to wood and α (=0.75) is the fraction of this that is 314 

allocated to the aboveground wood pool (stems and branches) instead of belowground (coarse 315 

roots). 316 

Following determination of Pw and Aw parameters, characteristic carbon flux trajectories 317 

(Qafp) are developed from, first, a 1000 year spin-up to steady-state carbon pools.  This is followed 318 

by a disturbance prior to the disturbance of interest with 75 years of regrowth for all forest types 319 

except loblolly pine and longleaf / slash pine (30 years) and Douglas-fir (200 years).  The age of 320 

trees at harvest is set to be just older than the typical peak in age histograms reported by the FIA 321 

(see Auxiliary 2, Figure A2.3), except where harvest rotations are known to be short (SE and SC 322 

pines), or where harvest over previous decades tended to target old growth forests with high 323 

economic value (Douglas-fir [Cohen et al., 2002]). This ‘pre-disturbance’ is important in that it 324 

establishes the amount of live carbon subject to disturbance-induced disposition, meaning taken 325 

off-site as removals or decomposing on-site.  Finally, we simulate the most recent disturbance 326 

after which we allow 200 years of regrowth to characterize carbon dynamics with stand 327 

development.  These procedures result in a group of carbon stock age trajectories analogous to 328 

yield tables. 329 

We have not modified CASA’s default treatment of heterotrophic respiration emerging from 330 

microbial decomposition of soil and litter carbon and associated transfers among carbon pools.  331 

The general equation for the rate of heterotropic respiration from a specific carbon pool is: 332 

 333 

,    (10), 334 

 335 

MTWkCRh respresppoolpoolpool =
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where Cpool is the amount of carbon in a pool, kpool is the pool-specific decay rate constant, Wresp 336 

and Tresp control how respiration depends on soil moisture and temperature states, and M is the 337 

carbon assimilation efficiency of the microbes.  Total heterotrophic respiration is the sum of that 338 

from each of the nine detrital pools. 339 

 340 

2.3 Uncertainty Analysis 341 

A formal propagation of uncertainty from sampling errors (coefficient of variation, CV) for 342 

forested area (±10 to 100%) and total aboveground live biomass (±10 to 100%), and volume to 343 

carbon conversion (±7%) are all included.  The uncertainty in inventory aboveground live 344 

biomass per unit area is propagated to the predicted fluxes and aboveground live biomass with a 345 

Monte Carlo procedure analogous to Tier 2 uncertainty estimation in the IPCC Good Practice 346 

Guide [IPCC, 2000].  The model was fit to 25 different biomass regrowth trajectories, where each 347 

trajectory was generated from random samples of the normally distributed aboveground live 348 

wood biomass for each age class (25 draws of biomass per unit area from each of 10, 20-year age 349 

classes).  Forcing the fitted trajectory to conform to the assumption that biomass increases 350 

monotonically and saturates with age strongly constrains the resultant age-accumulation curves 351 

and their variances (Figure 3).  An additional 7% uncertainty is used to account for tree volume to 352 

carbon conversion [Smith and Heath, 2001].  Put together this method involved over 130,000 353 

simulations of age-dependent dynamics of forest carbon fluxes and stocks.  The uncertainty of 354 

forest area and aboveground live biomass per unit area is obtained from the FIA data.  355 

As shown in Equations 1-3 above, independent uncertainties in the product of flux or stock 356 

with area are combined as  [Taylor, 1997].  We adopt a conservative 357 

assumption of non-random error propagation for which uncertainty is additive over forest types, 358 

2/1
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productivity classes, and ages, and also additive spatially for a simulation domain, a region, or the 359 

nation. This uncertainty aggregation is analogous to a Tier 1 uncertainty described in the IPCC 360 

Good Practice Guidance [IPCC, 2000].  361 

Uncertainty in NEP also derives from model structure (not analyzed) as well as model 362 

parameterization of light, moisture, and temperature sensitivity of heterotrophic respiration and/or 363 

NPP expressed in the CASA model.  As described in Auxiliary Material, Auxiliary 1 Section 1, 364 

we analyzed NEP responses to a 2% increase of six representative parameters including the 365 

maximum light use efficiency, moisture dependence of NPP, optimal temperature for NPP, 366 

turnover time of the slow soil carbon pool, and both the Q10 and moisture dependence of 367 

heterotrophic decomposition of soil carbon.  We use a 2% change in parameter value in order to 368 

obtain a detectable response in NEP but for ease of discussion the sensitivities are divided by two 369 

and expressed as % change in NEP for a 1% change in parameter value (see Auxiliary Material, 370 

Auxiliary 1).  371 

 372 

3.	
  Results	
  373 

3.1 Carbon Trajectories 374 

Using CASA as a controlled growth model accurately reproduces the accumulation of 375 

aboveground forest carbon stocks with time since a stand replacing disturbance as informed by 376 

FIA data (Figure 3), imposing a powerful, albeit partial, observational constraint on net ecosystem 377 

carbon flux trajectories with stand age.  Additional data on litter, woody debris and soil carbon 378 

dynamics would provide much needed additional constraints on estimated ecosystem C dynamics.  379 

More rapid regrowth of aboveground stocks in the high productivity class causes higher 380 

amplitude trajectories for carbon stocks and fluxes (Figure A2.1, A2.2, Auxiliary 2) with larger 381 
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post-disturbance sources that give way to stronger sinks with ensuing forest regrowth. The Monte 382 

Carlo simulation approach provides an envelope of trajectories (Figure 3) that enables formal 383 

uncertainty propagation through all scales of the analysis (regional forest types to conterminous 384 

U.S. forestlands).  Absolute uncertainty surrounding NEP tends to peak where forest uptake is 385 

maximum (peak NEP) and then diminishes with forest age (Figure 3).  An important exception, 386 

not shown in Figure 3, is the often large uncertainty in carbon emission in the years immediately 387 

following disturbance; large because of variation in the pre-disturbance carbon stocks and the 388 

amount of dead wood that decomposes on-site.  The timing of NEP crossover from source to sink 389 

is surprisingly insensitive to variability in biomass accumulation (not shown), and generally 390 

occurs at ages <20 years (e.g. Figure 3 and Figure A2.1, A2.2, Auxiliary 2) consistent with many 391 

reported chronosequence fluxes [e.g. Bond-Lamberty et al., 2004; Gough et al., 2007; Goulden et 392 

al., 2011; Law et al., 2004; Litvak et al., 2003; Noormets et al., 2007; Pregitzer and Euskirchen, 393 

2004]. Patterns of post-disturbance uptake of carbon in regrowing forests vary widely across 394 

regions of the conterminous U.S. as well as by forest type group and productivity class (Figure 395 

A2.1, A2.2, Auxiliary 2). Forest inventory data describing the recovery of aboveground live wood 396 

biomass carbon with stand development act as a strong constraint on the modeled carbon cycle 397 

including the rates of litter and soil carbon turnover and decay.   398 

Our analysis of the sensitivity of the model to parameters revealed that nearly all of the 399 

sensitivities are less than 1% indicating general dampening of parameter perturbations and 400 

suggesting that uncertainties in these parameterizations do not expand as they propagate through 401 

to modeled NEP (see Auxiliary 1, Table A1.1).  Model structure and parameter uncertainties are 402 

not included in our analysis but are expected to add about ±10% based partly on a sensitivity 403 

analysis presented in Auxiliary Material 1. 404 
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 405 

3.2 Continental Patterns 406 

Regional variations in disturbance rates and NEP across the conterminous U.S. reflect 407 

harvesting practices and regional climates (Tables 1 and Table A2.1, Figures A2.1, A2.2, A2.3).  408 

Forests growing in relatively dry settings (e.g. Rocky Mountain South (RMS)) have low NEP, 409 

contrasted by high carbon sequestration rates in the Pacific Southwest and Northwest, as well as 410 

Southeastern and South Central regions (Table A2.1).  The largest rates of disturbance, and the 411 

largest sinks of carbon stimulated by forest recovery from recent disturbance (“regrowth sinks”), 412 

are in Southeastern (SE), South Central (SC), and Pacific Northwest (PNW) regions.  These 413 

regional biologically driven sinks do not reflect net biome productivity because recovery 414 

trajectories do not include the fate of disturbance-induced carbon removals such as carbon taken 415 

offsite to lumber, pulp and paper mills or released promptly on-site by natural and anthropogenic 416 

fires (see schematic in Figure 1).  This is addressed further in the discussion where we present the 417 

forest-to-atmosphere carbon exchange. 418 

At the continental scale, the biological recovery sink (NEP) is estimated to be 164±28 Tg C a-1 419 

(Table 1), or about 71 g C m-2 a-1 averaged for the 230 million hectares of forestland represented 420 

here.  Nearly all (84%) of this NEP sink results from net growth of live carbon stocks with only a 421 

small fraction shared among soil carbon (6%), litter carbon (2%), and coarse woody debris (8%) 422 

stocks (Table 2).  Our sample includes 93% of the conterminous U.S. forestland, reported to be 423 

250 million hectares [EPA, 2008].  Our analysis did not include the Northern Prairie States region 424 

(~6% of total area and ~5% of total carbon) because the effort was originally connected to a 425 

Landsat remote sensing analysis whose random sample did not draw Landsat scenes for this 426 

region.  As verification, our stand-age histograms by region generally correspond well with a 427 
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similar presentation of the same basic data as recently published by Pan et al. [2011].  Comparing 428 

to regional statistics of forest area and live biomass reported in EPA [2008] we find good 429 

correspondence overall (Table 1). 430 

The estimated uncertainty arising from forest area, aboveground wood biomass, and 431 

conversion of diameter measurements to volume and carbon produced relatively small uncertainty 432 

estimates in our biomass and fluxes.  This is partly due to the continuous, monotonically 433 

increasing, and saturating growth form imposed by the process-model approach.  This functional 434 

form is more plausible than one that would allow abrupt increases and decreases in aboveground 435 

live wood biomass with stand development (i.e. stand age) as are commonly found in the 436 

inventory data when arrayed as a chronosequence (e.g. Figure 3, 110- 150 year biomass).  437 

Imposing the model’s growth form has the effect of filtering out some of the variance inherent in 438 

chronosequence trajectories of biomass with stand age. Other uncertainties arising from model 439 

structure and assumptions about disturbance severity/type, age, partial cutting, natural wood 440 

turnover, and a possible age-related decline in productivity are evaluated by judging the impacts 441 

of these factors on model output through sensitivity analyses (see Auxiliary 1, Section 2). 442 

We used the 1km forest type map to produce a gridded map of NEP and its uncertainty (from 443 

variances in FIA data) for the conterminous US (Figure 4).  Within each region each forest type 444 

considered was assigned the regional estimate of NEP for that forest type and region.  Regional 445 

forest NEP sinks range from >25 to 200 g C m-2 a-1 with eastern and western forests generally 446 

ranging from 75 to 100 g C m-2 a-1. The RMS region is predicted to be uniformly <50 g C m-2 a-1.  447 

The discontinuities conforming to state borders between West Virginia and Virginia and between 448 

Washington and Idaho occur because the same forest types in each neighboring region have 449 

regionally specific and different growth and disturbance rates.  450 
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As an independent evaluation of our predicted stocks and fluxes we compared our results with 451 

five available studies on chronosequences for forest types in the conterminous US.  These studies 452 

sometimes do not include estimates of both fluxes and stocks for different aged forests and 453 

estimates used various biometric and flux measurement approaches.  The small number of sites 454 

with available data, variability in the data, and issues of extrapolating fine scale measurements to 455 

regional responses do not justify quantitative comparisons and demonstrate the need for more of 456 

these types of measurements and for finer scale modeling.  The results of these comparisons are 457 

shown in Auxiliary 3, Figure A3.1.  Agreement varies widely between the comparisons at the 458 

different sites/regions.   459 

 460 

4.	
  Discussion	
  461 

Comparing estimates of the conterminous U.S. forest NEP sink from multiple studies (Table 462 

3) reveals a general separation between age-accumulation and stock-change methods.  This 463 

comparison spans estimates for the 1980s to more recent years (e.g. 2005-2006), but this may be 464 

justified  because atmospheric inversions seem to indicate a long term mean sink in North 465 

America during the ’80’s and ’90’s but with large interannual variability [Baker et al., 2006].  466 

Four of the six age dependent analyses that seek to represent carbon emissions and sequestration 467 

with post-disturbance recovery provide lower estimates of the forest NEP sink when compared to 468 

the four stock-change analyses, with 82 g C m-2 a-1 versus 154 g C m-2 a-1 averaged across their 469 

respective studies, or 189 Tg C a-1 versus 354 Tg C a-1 when integrated across US forest area.  470 

This is even true when process-oriented studies rely on forest inventory data to prescribe the rate 471 

of aboveground carbon stock recovery with time, as well as the area of forest of different ages.  472 
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For example, regarding NEP alone we find general agreement with Turner et al. [1995] who 473 

reported 203 Tg C a-1 compared to our estimate of 164 Tg C a-1.  In contrast, the EPA [2008] 474 

stock-change estimate of forest NEP is twice as large as this study’s age-accumulation result (335 475 

compared to 164 Tg C a-1, Table 2).  The disparity between the stock-change method and these 476 

other, age-accumulation results is likely due to large annual to decadal increases in stocks 477 

measured in the inventory that then implies greater NEP (regrowth).  What causes this general 478 

disagreement remains unclear, though growth enhancement is a plausible explanation of the 479 

difference, consistent with recent publications [Cole et al., 2010; Luyssaert et al., 2010; 480 

McMahon et al., 2010; Thomas et al., 2009].  Effects of growth enhancement are implicit in the 481 

stock-change method but not well incorporated in the age-accumulation methods that emphasize 482 

effects of regrowth dynamics, even when these methods rely on inventory-derived 483 

chronosequences to constrain biomass accumulation as in the present study (see Auxiliary 4 for 484 

an illustration of this).  There is also one study reported in Table 3 including only the effects of 485 

climate and CO2 fertilization based on an ensemble of models for the conterminous US [Schimel 486 

et al., 2000]. If this sink were added to the forest recovery (age-yield table) estimates the results 487 

would be more in line with the stock change approach. 488 

We note that the EPA [2008] estimate of total removals is 38% higher than that estimated with 489 

our modeling approach (=162/117, Table 3).  About half of the difference is due to elevated fire 490 

emissions reported in EPA [2008], however this estimate is much higher than the rate of forest 491 

fire emissions being reported elsewhere (e.g. van der Werf et al.[2010]).  This difference 492 

translates directly into the NEP estimated from the stock change method, and elevates the EPA 493 

[2008] estimate by 20 TgC a-1 relative to the estimate from our approach.  The EPA [2008] report 494 

also estimates 25 TgC a-1 greater removals by harvest.  There are two ways we could adjust our 495 
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methodology to try to match this rate of removal.  We could either, a) increase the amount of 496 

biomass removed by disturbances on average by increasing the age and hence biomass of 497 

disturbed forests, b) increase the amount of biomass removed on average by removing a larger 498 

fraction of pre-disturbance biomass and leaving less to decompose on site, or c) increase the area 499 

of forests disturbed by increasing the young-aged fraction of forests if we believe the stand age 500 

attribute offers a biased representation.  All of these would increase removals but they would have 501 

different effects on NEP.  The first option would decrease NEP because more disturbance-killed 502 

material would be left on-site to decompose and be emitted from forests.  The second approach 503 

would increase NEP because of reduced on-site decomposition.  The third approach would 504 

decrease NEP because a larger fraction of forested area would be concentrated at young stand 505 

ages (<15 year old) where NEP is either a large negative value or near zero (Figures A2.1, A2.2).  506 

And in the extreme case that we simply adjusted our NEP estimate upwards to cover the 507 

difference in removals, the EPA [2008] estimate would still be 126 TgC a-1 higher than the 508 

estimate emerging from our age-accumulation method. 509 

A term-by-term comparison between stock changes reported from inventory methods and 510 

those derived in the current study’s age-accumulation approach indicates that a change in live 511 

carbon stocks makes up a large portion of the difference in NEP estimated with the two methods 512 

(Table 2).  Annual increases in soil carbon, coarse woody debris, and litter pools are also 513 

noticeably lower in the present analysis compared to those reported by the EPA [2008; 2010] 514 

(Table 3).  Because our method, necessarily, produces aboveground live wood biomass and forest 515 

area estimates that are consistent with, or wholly derived from, the inventory itself (Table 1), our 516 

relatively low estimate of annual changes in live stocks (Table 2) does not appear to be caused by 517 

underestimation of a) stocks, or b) forest area.  These differences translate to the full forest sector-518 
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atmosphere net exchange, whereby the stock-change method estimates a much larger forest sector 519 

C sink than obtained with this study’s age-accumulation approach (Table 2). 520 

Our maps of conterminous US forest NEP and its uncertainty (Figure 4) are one of the first of 521 

which we are aware (though see Woodbury et al. [2007]) and will be used in further study of the 522 

impact of the forest disturbance fluxes on atmospheric CO2 as a boundary flux for atmospheric 523 

transport models much as gridded fire, fossil fuel burning, and ocean CO2 fluxes are prescribed in 524 

forward and inverse atmospheric modeling [e.g. Peters et al., 2007].  Complete accounting of 525 

forest sector fluxes would additionally require maps of fire [e.g. van der Werf et al., 2010] and 526 

wood products emissions. These studies will allow assessment of the detection limits for the 527 

magnitude and spatial variability of sinks in top-down studies. 528 

This study’s approach imposed a number of simplifying assumptions that were necessary 529 

given the initial scope of our work.  Below we address some of these and their potential 530 

implications regarding interpretation of our results. 531 

• We assume characteristic regrowth trajectories regardless of disturbance type even though 532 

the nature of post-disturbance carbon dynamics is sure to vary between fire, harvest, 533 

hurricane, and the severity of disturbance.  For instance, around twice as much coarse 534 

woody debris (CWD) may remain on site after a severe fire compared to clear-cut harvest 535 

[Tinker and Knight, 2000].  This remaining detritus provides a source of CO2 for a 536 

prolonged period after disturbance.  Using data reported by Smith et al. [2009] and the 537 

National Interagency Fire Center (to account for Alaskan fires) we estimate that for the year 538 

2004 the ratio of burned area to harvested area in the eastern US was about 0.30 compared 539 

to 0.46 in the west.  In terms of carbon removals though, our forest fire estimates from the 540 

Global Fire Emissions Database v3 (10 Tg C a-1) are much smaller than our estimated 541 
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harvest removals (107 Tg C a-1).  Because the total removals are dominated by harvest, as is 542 

the total area disturbed, accounting for differences caused by fire versus harvest would not 543 

significantly change our results or conclusions.  Furthermore, some but not all of this 544 

variation is captured by the Monte Carlo approach, as well as with stratification by site 545 

productivity and across regions.  Partial disturbances such as defoliation events are not 546 

represented with the current methodology, and discussed further below.  547 

• Our assumption of equivalence between forest age and time since disturbance does not 548 

account for the effects of partial disturbance that allows older aged trees to remain among 549 

regenerating cohorts or the dynamic state of old forests that have reached the age of natural 550 

mortality and reestablishment.  This particular issue has been examined by Bradford et al. 551 

[2008] for a subalpine forest system.  In that study a large part of the age versus years since 552 

disturbance discrepancy arose in stands undisturbed for long periods of time (>200 years), 553 

longer than what we analyze in this work.  From FIA data we estimate that about 3% of 554 

forested land is >200 years old for conterminous US.  555 

• Our analysis is sensitive to biases in the ages associated with the aboveground live wood 556 

biomass trajectories, as explored in an extensive sensitivity analysis described in Auxiliary 557 

1, Section 2.  For instance, if the FIA ages are older (younger) than actual stand ages, our 558 

predicted recovery sink is underestimated (overestimated).  This, of course, is an issue with 559 

any approach proposing to use FIA age structure information to estimate fluxes and stocks 560 

[e.g. Pan et al., 2011].  Despite this sensitivity, we note that bias in stand age is not likely to 561 

be large enough to explain the major differences between the stock-change and age-562 

accumulation methods (Table A1.2). 563 
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• The FIA data we used to construct aboveground live wood biomass trajectories include the 564 

effects of partial cuts, which are a significant component of disturbance in US forests 565 

contributing >50% of the total harvested area [Smith et al., 2009].  Reported stand ages 566 

reflect the trees not cut while the plot level biomass will be lower in these cases producing 567 

lower regional aboveground live wood biomass for mid and older aged stands.  These partial 568 

cutting practices (e.g. salvage logging, selective logging, thinning), which remove biomass 569 

from forested plots without resetting the FIA-recorded stand age, could have a substantial 570 

influence on the forest NEP estimate.  The implicit inclusion of plots that experienced 571 

partial cutting (not fully stocked) likely results in correct biomass estimates but lowers the 572 

slope of regrowth trajectories resulting in some underestimation of NEP.  In an extensive 573 

sensitivity analysis (Auxiliary 1, Section 2) we find strong sensitivity to such biases, with a 574 

10% elevation of biomass leading to a 14% elevation of conterminous US forest NEP.  This 575 

is equivalent to a 2.3 Tg C a-1 increase in NEP for each 1% increase in biomass.  Despite 576 

this large sensitivity to biomass trajectories, to account for the approximately 160 Tg C a-1 577 

difference, the reported biomass would need to have been underestimated by 70% (=160 Tg 578 

C a-1 / 2.3 Tg C a-1 per 1% increase in biomass).  Additional sensitivity analyses examining 579 

effects of natural, partial disturbances that lead to wood turnover and on site decomposition 580 

(e.g. ice storms, blowdowns, insect damage) indicate that they are also unlikely to present a 581 

large error/bias in our estimate.   582 

• We do not take into account annual changes in forest area which could contribute to the 583 

discrepancy between recovery and stock change approaches.  The EPA [2008] reports 584 

indicate that forest area has been increasing at a rate of 0.24% a-1 since 1990.   If we assume 585 

that new forests would range between 1 to 5 kg C m-2 over an age range of 0 to 20 years 586 
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(e.g. see Figure 3) then the average accumulation rate for these forest would be about 250 g 587 

C m-2 a-1.  Correcting this for the increase in forest area produces an added 1.7 Tg C a-1 sink, 588 

indistinguishable within the uncertainties of our method. 589 

• It has been proposed that forest carbon sinks may be driven by long term trends in 590 

temperature, precipitation, nitrogen deposition, and atmospheric CO2.  Responses to these 591 

trends are embedded in the biomass-age trajectories from the inventories in complex ways 592 

and more recent increases in growth may not be accounted for in our approach (see 593 

Auxiliary 4 for a thorough examination of this).  Others have addressed this and concluded 594 

that forests are not responding in a systematic way to these trends [Caspersen et al., 2000], 595 

that forest inventory data are not precise enough to resolve expected responses to trends 596 

[Joos et al., 2002], and that a smaller number of inventory measurements on forests of 597 

known disturbance history do indeed show strong trends in growth enhancement correlated 598 

with trends in temperature and atmospheric CO2 [McMahon et al., 2010; Thomas et al., 599 

2009].  In a study of global terrestrial carbon sinks using CASA, Thompson et al. [1996] 600 

showed that in order to obtain a terrestrial carbon sink of ~2 Pg C/yr broadly consistent with 601 

top-down sink estimates, NPP has to undergo a sustained increase of 0.18% per annum.  602 

Similar estimates have been reported by others [e.g. Joos et al., 2002].  Our own sensitivity 603 

analysis (not shown) showed that a sustained increase in NPP of 0.2% per annum would 604 

increase live biomass in a typical 60 year old forest by approximately 5% and is thus a weak 605 

or undetectable signal in a biomass chronosequence.  A 0.2% annual increase in NPP is 606 

implausibly large sensitivity of photosynthesis to CO2 (dNPP/NPP x CO2/dCO2 of ~0.96, or 607 

near proportional response) and would require other positive feedback mechanisms such as 608 

nitrogen fertilization and/or climate trends to operate in parallel.  We conclude that plausible 609 
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responses of forest sinks to climate and CO2 or N cannot be resolved with FIA biomass-age 610 

trajectories alone such as those we utilize here and that have been proposed by others [e.g. 611 

Pan et al., 2011].  612 

The approach described here is also sensitive to uncertain parameters including rates of wood 613 

mortality and coarse woody debris decomposition, as well as the amount of dead aboveground 614 

and belowground biomass left to decompose onsite following disturbance.  It lacks a standing 615 

dead wood pool that may be important because it decomposes much more slowly than dead wood 616 

in contact with the forest floor [e.g. Harmon and Hua, 1991; Harmon et al., 2004; Janisch et al., 617 

2005].  In our ongoing efforts, literature is being exhaustively explored to better constrain these 618 

and other parameters and processes.  Additional effort is being invested in attributing disturbances 619 

to particular drivers based on spatial and geospatial records of fire and insect outbreaks.  While 620 

valuable, it is unlikely that such refinements and constraints will reconcile the large differences 621 

between the age-accumulation and stock-change approaches, something that may benefit from a 622 

close collaboration with inventory experts to clarify differences of approach and accounting, as 623 

well as more comprehensive assessment of possible growth enhancement effects.  Future efforts 624 

at improving this study’s approach will include more detailed prescriptions of type and severity of 625 

disturbances, further comparisons with site observations as they become available, and analyses 626 

of top-down atmospheric constraints on source/sink magnitude and distributions.   Estimates 627 

would also be better constrained if additional data on litter, dead wood and soil organic carbon 628 

dynamics were available from field studies. 629 

5.	
  Conclusions	
  630 

Forest Inventory and Analysis data provide unique and valuable information about 631 

disturbance history and associated carbon stocks and fluxes with forest recovery.  By using these 632 
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data to constrain forest growth rates in a carbon cycle model, this study provides a more detailed 633 

estimate of carbon sources and sinks from recent forest disturbance and recovery across regions 634 

and forest types of the US.  One of our key findings is a much smaller net sink of carbon in 635 

conterminous US forests than previously estimated with the stock-change approach as used in 636 

UNFCCC reporting [EPA, 2008].  The source of across study inconsistencies among national 637 

estimates of stocks and fluxes remains largely unexplained.  The paucity of observed net 638 

ecosystem productivity and biomass chronosequences limits our ability to evaluate modeled 639 

responses.  These types of observations are critically needed in order to adequately test models 640 

representing disturbance and subsequent recovery. 641 
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Figure Captions. 831 

Figure 1. Schematic diagram illustrating stock and flux (italicized) relationships between the 832 

forest sector and atmosphere. The entire forest sector net flux (sink) as defined by the stock-833 

change approach is: Net Flux = ∆ Cstocks + ∆ Cwood products.  Alternatively, using our model driven 834 

estimates of NEP it is: Net Flux = NEP – Wood Products Emissions – Fire. 835 

Figure 2. Conterminous U.S. distribution of forest type groups shown with thick state boundaries 836 

that trace regions from the Resource Planning Act Assessment by the US Forest Service.  Colors 837 

differentiate FIA forest type groups. The rectangles represent areas where gridded climate and 838 

phenology were used in the simulation of fluxes and stocks for each forest type within each 839 

rectangle. 840 

Figure 3. Characteristic trajectories of aboveground live wood biomass regrowth and associated 841 

carbon sources / sinks (expressed as net ecosystem productivity, NEP) following a stand-842 

replacing disturbance in high productivity Douglas-fir stands of the Pacific Northwest.  Results 843 

are from the CASA model fit to regrow stocks consistent with 25 independent samples from the 844 

forest inventory data (red circles).  Net releases in the year following disturbance are as low as -845 

3000 g C m-2 a-1 (see Auxiliary Material 2, Figure A2.2) rising to above -500 g C m-2 a-1 in the 846 

second year of regrowth. 847 

Figure 4a,b.  Map of average net ecosystem productivity (top, a) and uncertainty expressed as 848 

one standard deviation (bottom, b) (NEP in g C m-2 a-1) for forests of the conterminous US.  849 

  850 

  851 
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Table 1. Regional distribution of forest area, live biomass (Live B), ratio of EPA [2008] to this 852 
study’s forest area (fEPA08 Area), ratio of EPA [2008] to this study’s live biomass (fEPA08 Live B), 853 
net ecosystem productivity (NEP), fraction of forest that is less than 25 years old (<25y), less than 854 
5 years old (<5y).   855 
Region Area Live B fEPA08 fEPA08 NEP <25y <5y 
-- [109 m2] [Tg C] Area [--] Live B [--] [Tg C a-1] [%] [%] 
NE 339 3,253 1.11 1.01 32±5.5 10 2 
NLS 212 1,236 0.99 1.11 12±1.3 16 3 
SE 355 2,621 1.00 0.94 30±3.5 39 8 
SC 384 3,220 1.27 1.00 40±4.2 37 8 
RMN 192 1,189 0.98 1.10 7±1.8 21 5 
RMS 493 1,815 0.81 0.97 11±5.5 1 0 
PSW 127 1,522 1.06 0.95 13±2.8 11 2 
PNW 202 2,162 1.05 1.13 18±3.0 19 4 
Total/Mean 2,303 17,017 1.03 1.08 164±27.7 17 4 
 856 
  857 
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Table 2. Changes in carbon stocks [Tg C a-1] in the year 2005 reported in different studies.  858 
Italicized values are inferred from mass balance. 859 
 This Study EPA [2008] 
∆Total Soil C 3 9 
∆Litter C 1 15 
∆Coarse Woody Debris (CWD) 4 16 
∆CWD Below 0 -- 
∆Live C 39 133 
Total Stock Change 47 173 
Removalsg 117 162 
Harvesta 107 132 
Wildfire Emissionsb 10 30 
NEPc 164 335 
Wood Products Emissionsd 102 102 
Wood Products Storagee 5 30 
Forest Sector - Atmosphere Exchangef 52 203 
athis study inferred as: Harvest = Removals – Wildfire Emissions; 860 
bthis study estimated wildfire emissions from the Global Fire Emissions Database v3 (GFED3) 861 
[van der Werf et al., 2010]; 862 
cfor the purposes of this table calculated as: 863 
   NEP = ∆Total Soil C + ∆Litter C + ∆CWD + ∆CWD Below + ∆Live C + Removals; values 864 
differ from those in Table 1 due to differences in the method of aggregation and associated 865 
averaging of terms; 866 
dthis study adopted values reported in EPA [2008]; 867 
ethis study calculated as: 868 
   Wood Products Storage = Removals – Wood Products Emissions – Wildfire Emissions; 869 
fthis study calculated as: 870 
   Forest Sector-Atmosphere Exchange = NEP – Wood Products Emissions – Wildfire Emissions; 871 
gfor EPA [2008] calculated as: Removals = Wildfire Emissions + Harvest.872 
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Table 3. Forest carbon NEP and stock change for the conterminous US [Tg C a-1] from this and a 873 
sample of previously published estimates. Estimates are classified according to approach: age 874 
structure–C accumulation (A&A), stock change (Δ Cstocks=NBP), or process model (P), where P is 875 
a process model ensemble result that accounts for CO2 and climate effects [Schimel et al., 2000], 876 
and Pacala et al. [2001] combines approaches for an overall estimate and range.  Low and High 877 
refers to 1 standard deviation about the mean estimate. 878 

Source Approach 
Mean 
NEP Low High Δ Cstocks Harvest Fire 

Schimel et al. [2000]a P 80      
This Studyb A&A  164 136 192 47 107 10 
Houghton et al. [1999]c A&A 182   10 92 80 
Turner [1995]e A&A 203   79 124 0 
Houghton [2003]d A&A 207   35 92 80 
Woodbury et al. [2007]f Δ Cstocks 270 256 293 108 132 30 
EPA [2008]g Δ Cstocks 335   173 132 30 
Birdsey & Heath [1995]h Δ Cstocks 368   211 127 30 
Hurtt et al. [2002]i A&A 372 282 442 230 92 50 
Pacala et al. [2001]j synthesis 392 312 472 220 92 80 
King et al. [2007]k Δ Cstocks 411 383 439 236 145 30 

a) for 1980-1993 879 
b) for 2005, C stock change =  NEP – Harvest – Fire, see Table 2, our total removals are 117 880 

Tg C a-1 that includes fire and harvest, assume fire at 10 Tg C a-1 (see GFED3 of van der 881 
Werf et al.[2010] and Zheng et al. [2011]) 882 

c) 1980s 883 
d) for 1990’s, harvest and fire from Houghton et al. [1999] 884 
e) for ~1990,  885 
f) for 2005 886 
g) for 2005 887 
h) for 1992 888 
i) for 1980s 889 
j) for 1980’s 890 
k) for 1980s 891 

  892 
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Figure 1. Schematic diagram illustrating stock and flux (italicized) relationships between the 893 
forest sector and atmosphere. The entire forest sector net flux (sink) as defined by the stock-894 
change approach is: Net Flux = Δ Cstocks + Δ Cwood products.  Alternatively, using our model driven 895 
estimates of NEP it is: Net Flux = NEP – Wood Products Emissions – Fire Emissions. 896 
 897 

 898 
 899 
  900 
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Figure 2. Conterminous U.S. Forest Type Groups shown with thick state boundaries that trace 901 
regions from the Resource Planning Act Assessment by the US Forest Service.  Colors 902 
differentiate FIA forest type groups. The rectangles represent areas where gridded climate and 903 
phenology were used in the simulation of fluxes and stocks for each forest type within each 904 
rectangle. 905 
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Figure 3. Characteristic trajectories of aboveground live wood biomass regrowth and associated 912 
carbon sources / sinks (expressed as net ecosystem productivity, NEP) following a stand-913 
replacing disturbance in high productivity Douglas-fir stands of the Pacific Northwest.  Results 914 
are from the CASA model fit to regrow stocks consistent with 25 independent samples from the 915 
forest inventory data (red circles).  Net releases in the year following disturbance are as low as -916 
3000 g C m-2 a-1 (see Auxiliary Material 2, Figure A2.2) rising to above -500 g C m-2 a-1 in the 917 
second year of regrowth. 918 
 919 

920 
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Figure 4a,b.  Map of average net ecosystem productivity (top, a) and uncertainty expressed as one 
standard deviation (bottom, b) (NEP in g C m-2 a-1) for forests of the conterminous US.  
 

 
 

 
 
 


