INTRODUCTION

The physiology of both vertebrates and invertebrates follows internal rhythms coordinated with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated.

Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined:

1. Molecular clock (SCN)
2. Output: circadian effects, gene expression, metabolism, tissue repair and maintenance
3. Input: non-visual photic stimulus

The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis1 (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression.

Neurons with putative local circadian rhythm generation are found among all major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers2. The photoreceptor, however, secretes melatonin which may still serve an important circadian signal.

The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) of retinal ganglion cells (RGC) that express the photoreceptor (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC are aligned in the RGC layer of the retina. However, recently discovered RGC appear to be a target of damage in flight samples, whereas photoreceptors are more affected in vivarium samples. AEM ground controls showed the lowest incidence of oxidative stress.

RESULTS

Our immunofluorescence results are in agreement with the description of the distribution of ipRGC. RGC positive for melanopsin were found uniformly distributed in the RGC layer throughout the retina, with occasional crowding along the periphery. Virtually no immunoreactive cells were found in retina samples from mice aboard STS133 after one day upon return; however several positive cells were seen in samples from mice after flight on R+7. Likewise, both vivarium and AEM ground controls showed evidence of ipRGC.

MATERIALS AND METHODS

The STS-133 flight animal experiment consisted of two albino BALB mice per group (and their ground controls, n=3) whose retinas were collected at R+1, R+5 and R+7. Ground controls consisted in vivarium and animal enclosure module (AEM) animals. All mice were maintained in a 12/12 hour light/darkness cycle; standard illumination in the vivarium is approximately 10-fold the illumination in the AEM. After enucleation, one eye was fixed for paraffin embedding and processed for RNA isolation. The oxidative damage marker 8-hydroxy-deoxyguanosine (8-OHdG), was detected with a rabbit polyclonal antibody that reacts with mouse and rat melanopsin (PA-1-780, Thermo Scientific). Secondary antibody was a goat anti-rabbit IgG conjugated with Alexa 488 (Invitrogen).

Melanopsin was detected with a rabbit polyclonal antibody that reacts with mouse and rat melanopsin (PA-1-780, Thermo Scientific). Secondary antibody was a goat anti-rabbit IgG conjugated with Alexa 488 (Invitrogen). Images were obtained with a Leica confocal microscope.

Real Time qPCR

Total RNA and DNA were isolated from whole retina using the AllPrep DNA/RNA Micro Isolation kit (Qiagen). cDNA was synthesized using the Quantitect Whole Transcriptome kit (Qiagen) and PCR amplifications were performed using specific primers (Quantitect primers, Qiagen) and SYBR Green as a fluorescent probe (IQ SYBR Green Supermix, BioRad).

In addition, we investigated whether RGC loss by apoptosis, measured by activated caspase-3 immunoreactivity could be associated with the decrease in melanopsin expression. Conclusive quantification of apoptosis-positive cells is in progress, however, some differences were seen in the apparent distribution of apoptotic RGC in the different samples, being more prevalent in the ONL in vivarium samples and in the INL and RGC in flight samples. Therefore we infer that cell death may be one of the causes in the decrease of melanopsin expression, besides a downregulation in melanopsin expression itself. In vivarium samples, where cell death was observed in the photoreceptor layer, there is no decrease in melanopsin expression.

CONCLUSIONS

In conclusion, the number of melanopsin-immunoreactive RGC as well as melanopsin gene expression were decreased in flight samples immediately after flight but this change was attenuated in flight sample 7 days after return. Retinal ganglion cells are a target of the effects of oxidative stress induced by spaceflight, based on immunohistochemistry of 8OHdG in eye samples. We propose that oxidative stress can lead to a decrease in melanopsin expression, likely via ipRGC loss or impairment, and thus, it can be a contributing factor to circadian disruption during spaceflight.

Countermeasures contemplated the use of light should therefore be complemented with melanopsin expression maintenance and/or reduction in oxidative stress.

There is previous published evidence suggesting that the central clock is susceptible to oxidative stress3, often associated with aging, and that DNA repair mechanisms and circadian clocks share regulatory pathways. Future questions to be answer include: a) is the decrease in melanopsin expression observed after spaceflight due to RGC loss or to RGC impaired gene expression?; b) are other clock genes also affected?; c) is the local retinal clock output affected?; d) does the decrease in melanopsin translate into a significant alterations in the signaling to the SCN to contribute to circadian rhythm disruption?; e) which retina-specific cellular rhythms might be affected by a local circadian clock disruption?

ACKNOWLEDGEMENTS

This work was funded by NASA HPRP (MTL707). We thank the assistance of Audrey Nguyen, JSC SLSD Intern, Clear Lake High School, in the preparation of immunostained slides and image analysis, and James Fiedler, PhD, for help with graphing the gene expression data.