Simulating Exoplanet Transit and Eclipse observations with JWST

Tom Greene (NASA ARC)
IPAC & JPL visits
Sep. 28/29, 2011
Scope of Talk

• Exoplanet Time Domain Spectroscopy
• Outstanding Science Issues
• How Can JWST Help?
• Optimum Targets
• Planet Models
• Simulated Spectra and Potential Science
 - Biggest likely limitations
• Takeaways
Exoplanet Spectroscopy Status

Figure courtesy of M. Swain

Swain et al. 2008
HD 189733b Transmission

Grillmair et al. 2008
HD 189733b Emission
Exoplanet Spectroscopy: The Ground

• The ground is trying. Enough aperture but control of systematic noise is difficult.

Broadband Transmission Spectrum of GJ 1214b

- Croll et al. 2011 photometry (black), Bean et al. (blue), Mearth+KPNO (red)
- Swain and others doing spectroscopy - lots of work with IRTF and Keck
Some Outstanding Issues

• Are observed strengths of spectral features due to abundances or temperature profiles?
 – Distinguish temperatures, T profiles, compositions
 – Are Ice giants overabundant in carbon like Neptune?

• How is energy absorbed and transported in highly irradiated planets?
 – Measure & determine causes of temperature inversions
 – Study transport via day / night side differences

• Is there non-equilibrium chemistry at work?
 – Hydrocarbons like C₂H₂ (acetylene), C₂H₆ (ethane) indicate photo-chemical production

• What is the composition of mini-Neptune atmospheres?
• Can we detect any features in Super-Earth atmospheres?
Unidentified features in high insolation

• Excess Spitzer IRAC Band 3 emission seen in exoplanets with hot stratospheres / high altitude inversions like HD 209458 b

• Common to several planets, most highly insolated

• Is it enhanced continuum or an unknown spectral feature
 – Current models can't fit it with continuum or a species (TiO / VO tried & non-equilibrium processes suggested)
 – Useful in understanding energy transport in atmosphere and compositions of planets

Machalek et al. 2008
JWST in a nutshell

- 6.5-m primary mirror; 18 segments.
 - T~40K, bkg. limited
- $\lambda < 1 - 28 \mu m$
 - zodi-limited to 10\(\mu m\)
- Instruments:
 - NIRCam 1 – 5 \(\mu m\)
 - NIRSpec 1 – 5 um
 - MIRI 5 – 28 um (cam + spec)
 - FGS w/slitless spectrograph 1 – 5 um
- 201X launch
 - Arianne V to L2
 - 5 yr req life
 - 10 yr goal
 - No cryogens
Focal Plane Layout

- Instruments view different parts of JWST focal plane
- Little parallel operation currently planned
How Can JWST Help?

- JWST has 6.5 m aperture vs. 2.4 m for HST and 0.85 m for Spitzer
 - Photon-noise limited SNR goes as aperture size, so JWST should be capable of SNR ~ 3 – 8 times present values

JWST has great spectroscopic capabilities, particularly:

- $\lambda = 0.7 - 5 \, \mu m$, $R \sim 100$ mode with NIRSpec prism
- $\lambda = 0.7 - 2.5 \, \mu m$, $R \sim 700$ mode with NIRISS grism+prism (slitless)
- $\lambda = 2.5 - 5 \, \mu m$, $R \sim 1700$ mode with NIRCam grisms (slitless)
- $\lambda = 5 - 12+ \, \mu m$, $R \sim 70$ mode with MIRI LRS prisms (slitless)

- JWST is being designed and will be operated to maximize exoplanet spectroscopy SNR
 - Wide NIRSpec slit (1400 mas) and slitless mid-IR spectroscopy
 - Testing spectrophotometric precision and simulating operations
 - Systematic noise due to pixel size and observatory parameters are being modeled (P. Deroo PASP submitted), mitigation possible
JWST Observational Constraints

• JWST instantaneous field of regard is limited
 - Sun angles between 85 and 135 degrees (35% of sky)
 - Two 50-day visibility windows per year near ecliptic

• JWST is optimized for long exposures of faint objects but subarrays do provide reasonable bright limits:
 - K ~ 5-8.5 mag for R=700 NIRISS grism (0.7/0.9 – 2.5 μm)
 - K ~ 5 mag for R=1700 NIRCam grism (2.4 – 5 μm)
 - K ~ 7 mag for NIRSpec R ~ 33 – 315 prism (0.7 – 5 μm)
 - Low overhead for long sequence of identical integrations if not too bright

• Ground bright limits are similar for R ~ 20,000 Keck
 - Narrow-band imaging could have similar limits if subarrays used
What are the optimum JWST targets?

• Ideally we need planets transiting / eclipsing IR bright nearby but small stars
 – Star SNR $\sim \sqrt{\text{Signal}}$ and transit depth $\sim (\frac{R_p}{R^*})^2$
 – M stars are ideal if stable
 – Kepler planets are too faint / distant for spectroscopy

• Planets with large atmospheric scale heights $kT/(\mu g)$ will have relatively high SNR spectra
 – Gas giants, ice giants, mini-Neptunes will be good

• Impossible to detect atmospheric features in true Earth / Sun analog

• We need an all-sky transit survey mission to find good planets: ELEKTRA (or TESS) Explorer
Planet Models (J. Fortney & Collaborators)

- “Hot Jupiters”, “Neptunes”, “mini-Neptunes”
- Absorption and Emission models
- Variations for re-radiation geometry (2 π / 4 π), abundances, chemistry

<table>
<thead>
<tr>
<th>Planet</th>
<th>Star SpT</th>
<th>V* (mag)</th>
<th>R* (Rsun)</th>
<th>R_pl (Rj)</th>
<th>t_trans (m)</th>
<th>t_ecl(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD 189733b</td>
<td>K1.5</td>
<td>7.7</td>
<td>0.79</td>
<td>1.15</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>HD 209458b</td>
<td>G0V</td>
<td>7.7</td>
<td>1.15</td>
<td>1.38</td>
<td>144</td>
<td>144</td>
</tr>
<tr>
<td>HD8606b</td>
<td>G5</td>
<td>8.9</td>
<td>0.98</td>
<td>0.92</td>
<td>728</td>
<td>101</td>
</tr>
<tr>
<td>TrES-3</td>
<td>G</td>
<td>12.4</td>
<td>0.81</td>
<td>1.31</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>WASP-12b</td>
<td>G0V</td>
<td>11.7</td>
<td>1.57</td>
<td>1.79</td>
<td>162</td>
<td>162</td>
</tr>
<tr>
<td>WASP-17b</td>
<td>F6</td>
<td>11.6</td>
<td>1.38</td>
<td>1.74</td>
<td>262</td>
<td>262</td>
</tr>
<tr>
<td>WASP-18b</td>
<td>F9</td>
<td>9.3</td>
<td>1.23</td>
<td>1.17</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>GJ 436b</td>
<td>M2.5V</td>
<td>10.7</td>
<td>0.46</td>
<td>0.37</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>GJ1214b</td>
<td>M4.5V</td>
<td>14.7</td>
<td>0.21</td>
<td>0.24</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>
JWST Simulations

• Semi-realistic model of telescope and instrument wavelength-dependent resolution and throughput
• Photon noise and systematic noise added
• Systematic noise is difficult to predict but starting to model it
 – May have large wavelength dependencies (Deroo sub. PASP)
• Compare simulations of model variants to determine what science issues can be addressed with JWST data
JWST Systematic Noise Estimates

- A variable PSF and image jitter will induce spectrophotometric errors due to non-uniform intra-pixel detector response and residual flat field errors.
- These effects were noted in the Spitzer IRAC InSb detectors and calibrated out to about 1E-4 precision.
- Use of slitless spectrographs and JWST NIRSpec wide slit (1600 mas) will eliminate any systematic noise due to jitter-induced slit losses.

Deming et al. 2009 PASP

Fig. 8—Intrapixel sensitivity variation for a representative NIRSpec detector pixel, from engineering measurements of the flight detector. The upper traces show the average variation in the dispersion direction (solid line), and the spatial direction (dashed line). The lower traces divide the pixel into 10 strips parallel to the spectral dispersion, and they show the difference from a parabolic fit of response vs. distance from pixel center. The differences have been amplified by a factor of 4, and offset by 0.3, for clarity of presentation.
Impact of Pointing Oscillations

- Spiter IRAC transit photometry before (Left) and after (right) de-correlation with image motion (Machalek et al. 2010)
- 3.6 and 4.5 µm bands (top 2) have variations due to pointing

Fig. 3.— (left) Secondary eclipse observations of XO-3 with IRAC on *Spitzer Space Telescope* in 3.0 micron, 4.5 micron, 5.8 micron and 8.0 micron channels (from top to bottom) binned in 3.5-minute intervals and normalized to 1 and offset for clarity. Note, however, that all our analysis is performed on the unbinned data. The overplotted solid lines show the corrections for the detector effects (see text).

Fig. 4.— Secondary eclipse of XO-3b around the star XO-3 observed with IRAC on *Spitzer Space Telescope* in 3.6, 4.5, 5.8, and 8.0 micron channels (top to bottom) corrected for detector effects, normalized and binned in 3.5-minute intervals and offset for clarity. The best-fit eclipse curves are overplotted. Note, however, that all our analysis is performed on the unbinned data.
Systematic Noise Estimate Models

- P. Deroo et al. have modeled the impact of pointing drifts, PSF variations (defocus), and slit-induced losses on spectrophotometric precision
- Pointing drifts are likely the biggest impact for JWST NIRSpec due to its undersampled PSF and estimated ~10 mas (2 axis) pointing errors (NIRISS GR700XD, NIRCam grism, and MIRI LWS all minimal impact)
Systematic Noise Estimate Models

- Even NIRSpec errors can be reduced to better than 1 part in 1E4 with decorrelation. Real-world performance may be better than expected because the NIRSpec PSF is likely to be worse (larger) than the JWST telescope PSF.

![Graph showing instrumental noise floor in ppm per eclipse vs. wavelength in micrometers]

Deroo et al. PASP submitted
HD 189733b Gas Giant

- Only 1 transit (top) or eclipse (bottom) plus time on star for each (1 NIRSpec + 1 MIRI)
- Multiple features of several molecules separate compositions, temperature, and distributions
GJ 436b (warm Neptune) transmission spectra simulations

- Simulated single transit model absorption spectra distinguish between equilibrium 30X solar (black), reduced CH4 & H2O (blue, red) or non-equilibrium chemistries where H2O and CH4 are absent in favor of higher order hydrocarbons HCN, C2H2, and other molecules (purple, cyan and green curves). 1 transit each: 30 min star + 30 min in-transit integration time. See Shabram et al. (2011).
2 R_\text{Earth}, super Earth, a smaller GJ 1214b analog

See radiation from star transmitted through the planet’s atmosphere

4 MIRI eclipses summed

Secondary Eclipse
See thermal radiation and reflected light from planet disappear and reappear

Orbital Phase Variations
See cyclical variations in brightness of planet

Single transit NIRSpec + MIRI
MIRI detection of CO$_2$ in Super-Earths?

- JWST MIRI filters (red boxes, left) can be used to detect deep CO$_2$ absorption in Super-Earth atmospheres in emission observations (Miller-Ricci 2009 model, left).

- Modelling shows that modest S/N detections possible on super-Earth planets around M stars (Deming et al. 2009).

- Could detect this feature in ~50 hr for ~300-400K planet around M star at 10 pc.

Deming et al. (2009) showing Miller-Ricci Super-Earth (2009) and MIRI filters.
Some Takeaways

• Expect exquisite JWST spectra of gas giants
 – Determine abundances, temperature profiles, and energy transport in hot Jupiters with little degeneracy using transit and eclipse spectra over 0.8 – 10+ microns.

• Mid-IR spectra can identify unknown emission in Spitzer IRAC 5.8 μm band of planets with suspected hot stratospheres

• Easily constrain compositions of mini-Neptunes like GJ 1214b (down to 2 Rₖ and smaller)

• Possibly detect CO₂ absorption in Super-Earths

• **We need an all-sky transit survey mission to find good planets:** ELEKTRA (or TESS) Explorer

• Plenty of exoplanet spectroscopy to do: Ideally with both JWST and FINESSE / EChO