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Cluster analysis aids research in many different fields, from business to biology to
aerospace. It consists of using statistical techniques to group objects in large sets of data into
meaningful classes. However, this process of ordering data points presents much uncertainty
because it involves several steps, many of which are subject to researcher judgment as well
as inconsistencies depending on the specific data type and research goals. These steps include
the method used to cluster the data, the variables on which the cluster analysis will be
operating, the number of resulting clusters, and parts of the interpretation process. In most
cases, the number of clusters must be guessed or estimated before employing the clustering
method. Many remedies have been proposed, but none is unassailable and certainly not for
all data types. Thus, the aim of current research for better techniques of determining the
number of clusters is generally confined to demonstrating that the new technique excels
other methods in performance for several disparate data types. Our research makes use of a
new cluster-number-determination technique based on the clustergram: a graph that shows
how the number of objects in the cluster and the cluster mean (the ordinate) change with the
number of clusters (the abscissa). We use the features of the clustergram to make the best
determination of the cluster-number.

I. Introduction
luster analysis is a widely used tool in many fields. It uses statistical techniques to organize data in groups, or
clusters. The objects or observations (individual data points) in each cluster are grouped such that they are more

similar (in general, have less statistical variance), and those in different clusters have maximum variation. Cluster
analysis is different than a clustering method because cluster analysis is a process that includes several steps
resulting in the formation and interpretation of clusters. The clustering method is a specific algorithm that creates
clusters based on the information it is given. According to Milligan, the seven main steps in cluster analysis are: 1)
choosing the data elements for the clustering 2) selecting the variables used in the clustering 3) standardizing the
variables 4) deciding on similarity/dissimilarity measures 5) choosing the clustering method 6) specifying the
number of clusters to be formed 7) interpretation of the results.1
 However, the main problem with cluster analysis is that much of it is imprecise. Ketchen and Shook note that
there is a “stigma” attached to cluster analysis due to the shortage of “underlying theoretical rationale.”2 This
shortcoming of cluster analysis is most clearly demonstrated by the frequent need for research intrusion in the
process. Because several areas of cluster analysis need significant research judgment, the technique can be
considered to lack objective foundation or mathematical basis. These weak points include clustering variable
selection, clustering algorithm selection, clustering number determination, and clustering interpretation and
validation.
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 Determining the number of clusters that will result from the cluster analysis is especially random because the
number is usually selected before employing the clustering method. Having to pre-designate the number of groups
that will result seems unusual because whatever is sorting something generally has no idea of the number of groups
into which to sort the mess until it has tried sorting the given material into different combinations. In many cases,
the number of clusters is chosen blindly or with a simple mathematical formula that may or may not apply. With no
real rationale for its choice, selecting a cluster-number that is very inaccurate becomes likely, and poor choices will
yield terrible results. A number of solutions have been proposed, but all have weaknesses.
 Our research consists of constructing a method that will surpass the previous methods for determining the
optimal number of clusters for a wide range of data. This new method is based on the clustergram.
 Like the popular dendrogram (refer to Figure 1), the clustergram is a tree that shows the movement of cluster
observations during the continuous change of groups containing the cluster observations (usually into smaller
groups). However, because the dendrogram is strictly hierarchical – each group is continually split – but the
clustergram is not – a group or set of observations that is split can come back together, and a new group can receive
observations from multiple old groups – it is possible to see how each individual observation moves in a
dendrogram but very difficult with a clustergram. As such, although this can be a disadvantage for the clustergram,
it allows the clustergram to be used with non-hierarchical clustering algorithms, such as the K-means algorithm,
while the dendrogram cannot. Furthermore, the clustergram differs from the dendrogram because, instead of
continuing with the present arrangements after each splitting of the data, the clustergram computes each grouping
independently of the rest before forming the connections.3

 Specifically, the x-axis of the clustergram is the number of clusters (or some alternate tunable parameter), and
the points above each x-value are determined independently of the points above the other x-values. The most general
set-up of a clustergram plots the cluster means on the y-axis. However, other possibilities exist, including
proportional-to-size, principal components, and weighted means.4 If the grand mean is meaningful, the clustergram
that uses the grand mean displays results that are closest to the actual meaning of the data. As an example of the
clustergram’s layout (using the cluster means as the y-values), the first three x-coordinates could be 1, 2, and 3, and
the selected clustering method would be applied to the data set for these three cluster-numbers; there would be one
resulting cluster mean/point for 1 cluster, two resulting cluster means/points labeled ‘1’,’2’ for 2 clusters, three
resulting cluster means/points labeled ‘1’,’2’,’3’ for 3 clusters, and so on. Whether the chosen cluster algorithm is
run several (or even 20, 30) times for each x-value is optional; clearly, running them many times will ensure that a
reasonable clustering result from the algorithm has been chosen, but repeating the process so many times will take
space and time and may be rendered unnecessary by the advantageous characteristics of the clustergram.
 The main parts of the clustergram are the connecting lines or long parallelograms, which visually display the
movement of data points from one cluster to another as the number of clusters increases. The lines/parallelograms
vary in width according to the number of data points in both clusters that each line/parallelogram segment connects;
these line widths are determined by a proportionality constant that, when multiplied by the number of observations
that move between clusters, creates lines that clearly display width differences while avoiding the appearance of
clutter as much as possible. The thickness of the cluster line therefore indicates the size of the cluster. A thick
clustergram line that remains relativity uniform in its mean (y-axis values) across multiple cluster numbers (x-axis
values) represents a strong cluster.

Figure 1. Dendrogram vs. Clustergram. The dendrogram and clustergram are compared side by side, with a
simple example of a dendrogram on the left, and a simple example of a clustergram on the right.
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 Our research uses the clustergram and the visual information displayed by these connecting line segments/
parallelograms to determine the optimal numbers of clusters into which the clustering algorithm ought to divide the
data. Preliminary tests show that, even if there are several instances of poor clustering in the clustergram or even if
there are a couple of x-values at which the clustering information taken from the clustering algorithm is completely
incorrect, the clustergram still works: because the clustergram measures cluster continuity, even if there are places
where the continuity has been destroyed, the overall continuity remains because of the other clusters that were
measured correctly. Therefore, the underlying premise of our experiment and results is that, even if the clustering is
sub-par, the clustergram will show thick and relatively constant lines sufficiently so that the optimal number of
clusters can be seen by counting the number of these wide and even lines.

II. Methods
We created an implementation in MATLAB of a program creating the clustergram. The function we chose for the

clustergram (to be displayed on the y-axis) was principal component means (PCM) because grand or weighted
means are impractical for many of the multi-dimensional datasets we use, and it is preferable to use some sort of
means as opposed to a function like proportional-to-size because the means has direct correlation to the data. The
PCM simply projects all data onto the line that maximizes variation; the line is pointed in a direction in which the
composite variation among all variables is the greatest.

First, of course, the datasets must be handed to the clustering algorithm, and the clustering algorithm must cluster
for a given range of cluster numbers to be displayed on the clustergram. Our experiment uses a variety of clustering
algorithms. The clustering algorithms we use include: K-means, Expectation-Maximization (EM) for mixtures of
Gaussians, and Density Based Spatial Cluster of Applications with Noise (DBSCAN). K-means was an obvious
choice because of its popularity among researchers, owing to its simplicity. However, K-means has the notable
weakness of creating clusters with approximately equal size, resulting in the creation or splitting of clusters even
when there are none.1 The EM algorithm is another choice because it is also simple, commonly used, and remedies
some of the problems involved with K-means. DBSCAN, as its name suggests, is appropriate for finding clusters
based on the density of points, and is thus appropriate for analyzing complex shapes.5 Like K-means, its popularity
stems from its simplicity when compared to other density-based algorithms.

Furthermore, a variety of datasets is provided to each clustering algorithm. The first dataset, which allowed for
initial testing of the scripts, is titled BigEasyClustering. BigEasyClustering is specifically suited for EM because it is
a mixture of Gaussians having five clear clusters. The clustering plots show the BigEasyClustering points on a two-
dimensional layout. Another artificial test-case dataset, the BigDifficultCluster dataset, is meant for DBSCAN
because it consists of points composing several odd shapes. Additionally, two common benchmark datasets are the
Fisher Iris dataset and the Wisconsin Breast Cancer dataset. Because these datasets are referenced so commonly in
cluster analysis literature and because testing our methods on these datasets provides common ground for
comparison with other methods, they are included in the research. However, our Fisher Iris dataset is different from
the classical one, because ours was enlarged to add 99 points of noise to each original point. This is merely for
future experiments testing the number of clusters at a finer scale. The cluster plot displayed for Fisher Iris is the
most famous one consisting of three species or clusters that clearly shows one Iris species separated from the other
two, but is not as clear on the separation between the other two Iris species. Lastly, a dataset based on E.coli
characteristics was included because it is similar to the Fisher Iris dataset, with a few more complications.6

Our experiment compares our method for determining the best number of clusters into which to separate the data
during the cluster analysis with the Dunn Validity Index. The Dunn Index has been shown to be a reliable validity
index for determining the effectiveness of a particular clustering, and thus pointing out the correct number of
clusters in a dataset.7 The Dunn Validity Index checks the within-cluster congruence and between-cluster variance,
and assigns a score to that particular clustering based on its measurements (with better clusters receiving higher
scores). Thus the cluster-number of the clustering that obtained the highest Dunn score is chosen as the best number
of clusters. However, especially when the clustering algorithm is run many times for a long list of cluster numbers in
order to apply the Dunn Index, the already innately-space-consuming Dunn Index becomes especially costly.
Nevertheless, the Dunn Validity Index continues to be used because it is a reliable method for determining the
number of clusters.

Our heuristic uses the clustergram by detecting the longer, thicker, and most constant lines in the plot. The
clustergram is useful in this endeavor of determining the optimal number of clusters because it visually shows how
the clustering algorithm creates similar clusters for several consecutive cluster-numbers along the x-axis. Therefore,
even though specifying a large number of clusters may cause the clustering algorithm to split good clusters into less
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well-defined clusters, there will at least exist an interval within the clustergram during which data points were
grouped into the same general cluster. The heuristic makes the lines smoother by eliminating the occasional spike
from relatively constant lines. It then imposes a cutoff width, or minimum average number of points in a
clustergraph line representing a cluster, and calculates the number of these thick and consistent lines as the optimal
number of clusters.

III. Results
The results below are grouped by the dataset employed in the cluster analysis. Here there are two datasets:

BigEasyClustering and FisherIris. Each section analyzes the performance of each clustering algorithm, a third and
final section discusses the results of the Dunn Validity Index for finding the right number of clusters, compared to
our method based on the clustergram.

A. BigEasyClustering (Simple Mixture of Gaussians)
As expected, results of clustering the BigEasyClustering set with EM were excellent. With a correct answer of

five clusters, the EM algorithm created very accurate groupings when 6 and 8 clusters were specified, but the results
were not as accurate when 4 clusters were specified. In other words, once the initial conditions given to the
clustering algorithm reached five clusters, except for an anomaly at 10 clusters, there were consistently five large,
main clusters. It is interesting that the clustering for 12 clusters was more accurate than for 8 or 10 clusters. Also as
expected, the middle cluster was the weakest cluster displayed on the clustergram due to its proximity to the other
clusters, resulting in bits and pieces being shaved off into other clusters. Yet, despite any small errors and the
mistake that EM made at 10 clusters, the clustergram painted a clear picture of five clusters.

DBSCAN was similarly excellent for BigEasyClustering. The lines created by the clustergram working with
DBSCAN are long and wide, and the existence of five clusters is unequivocal from this plot. DBSCAN is distinct
from the other two algorithms because its initial condition is a minimum number of points in a cluster and not a
specific cluster number; as such, DBSCAN has the choice of choosing the number of clusters to create. This meant
that for this artificial dataset with inarguably five very distinct clusters, DBSCAN easily picked out the correct
clusters, and, from one of the initial minimum cluster observation inputs until the last input, DBSCAN refused to
select any number of clusters other than six (five clusters plus a noise cluster). This correct selection for a wide
range of inputs is what makes the DBSCAN algorithm and its resulting clustergram so certain of five clusters.

Figure 2. EM with BigEasyClustering. The first five pictures show how the BigEasyClustering dataset was
divided by the EM algorithm for 4, 6, 8, 10, and 12 clusters, respectively, followed by the clustergram.
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However, K-means was not as clear. Because of the “equal-size” issue, which describes K-means’ tendency to
create clusters of equal size even when it requires breaking up a good cluster, the clustergram for K-means was not
as constant as the other two. Figure 4, especially the picture showing the K-means clustering for 10 clusters, clearly
shows the K-means algorithm split certain member of the five clear clusters into nearly equal portions. Nevertheless,
the clustergraph does show a general structure with five main branches, and the existence of five clusters is more
evident at the beginning of the clustergram, as shown by the five initial bold stubs that split into thinner lines.

B. BiggerFisher (Augmented Fisher Iris)
The cluster plots of the way in which the BiggerFisher dataset was divided by K-means were somewhat

inaccurate, but not bad overall. The initial division of BiggerFisher into two clusters by K-means can seem unusual
at first glance because K-means does not separate the two main groups; however, upon closer examination, K-means
is in fact separating two species from another one – the difference is that the two species grouped together are not
the two that are closest together in the picture. Later, the K-means algorithm insists on having the Iris species that is
most separated from the other two split into two clusters and then dividing the other two Iris species by the
remainder of the input. The later plots appear very mottled, with colors scattered all over the diagram. The
clustergram for K-means shows two main groups: a rather thick and consistent line along the bottom that is well
separated from the rest of the clustergram, which is a bold line initially, but soon splits into five different thin lines,
three noticeably thicker than the other two.

Figure 4. K-means with BigEasyClustering. The first five pictures show how the BigEasyClustering dataset
was divided by the K-means algorithm for 2, 4, 6, 8, and 10 clusters, respectively, followed by the clustergram.

Figure 3. DBSCAN with BigEasyClustering. The first two pictures show an instance of 19 and 6 clusters,
respectively, being formed in the BigEasyClustering dataset by DBSCAN when given a minimum number of
cluster objects specification, followed by the clustergram.
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Figure 6. EM with BiggerFisher. The first five pictures show how the BigEasyClustering dataset was divided by
the EM algorithm for 2, 4, 6, 8, and 12 clusters, respectively, followed by the clustergram.

The clustergram from Expectation-Maximization with BiggerFisher is similarly to K-means. However, the
clustering seems to be a little more accurate in the beginning; for example, when four clusters are selected, the plot
contains one cluster that contains the best-separated species of the Fisher Iris dataset. Yet, like K-means, for larger
cluster number values, EM creates a panoply of colors seemingly randomly plastered across the plot with the larger
of the two groups on the plot receiving more of the colors. This results in a clustergram that looks like the K-means
clustergram, including approximately five thinner lines into which the higher group splits.

Figure 5. K-means with BiggerFisher. The first five pictures show how the BiggerFisher dataset was divided by
the K-means algorithm for 2, 4, 6, 8, and 10 clusters, respectively, followed by the clustergram.
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DBSCAN was no different in creating a variety of different clusters scattered across the plot, some overlapping
each other. Unfortunately a large enough minimum number of points for a cluster was not specified, so DBSCAN
did not reach a point where it created fewer than fourteen clusters. DBSCAN was able to separate the one species
most different from the other two rather quickly – by the time 22 clusters had been reached. However, because
DBSCAN is solely density based, DBSCAN separated the larger part of the Fisher Iris plot containing two Iris
species by making the center of that part, which contains the largest density of points, and assigning the outer
portions to other clusters. The DBSCAN clustergram is similar to the clustergrams of the other two clustering
algorithms in terms of the two main divisions, one lower and one higher; however, DBSCAN keeps the upper
portion intact as a thick line for a longer period of time before fanning out instead of separating into five or so thin
and constant lines.

C. Discussion of Dunn Validity Index vs. Clustergram
No pictures are available for the BigDifficultCluster dataset, the Ecoli dataset, or the Wisconsin Breast Cancer

datset, but the Dunn Index and clustergram values from the experiment are available, along with the results with the
dataset discussed above. They are depicted in Table 1 below. First, for the datasets for which pictures are available
and displayed above, the Dunn Index seems to have a slight edge. They were nearly tied for BigEasyClustering, the
Gaussian dataset, except for a small mistake by the clustergram when working with K-means. This calls for an
improvement in the clustergram program because, even though the K-means clustergram was the most ambiguous of
all the clustergrams working with BigEasyClustering, five main clusters for the K-means clustergram are still fairly
obvious. The results of the clustering methods with the BiggerFisher dataset were wide and varied. The Dunn Index
working with Expectation-Maximization for mixture of Gaussians is obviously the only algorithm that obtained the
right answer of 3. However, the Dunn Validity Index was slightly off for K-means and completely off for DBSCAN.
The clustergram program was a bit off for all the algorithms working with the augmented Fisher dataset, with EM
being the worst by giving an answer (6) that was off the correct answer by 3. It is interesting then, that for the
BigDifficultCluster dataset, Dunn Index and clustergram program switch roles when using EM. This time the correct
answer was 6 clusters, which the clustergram obtained, but the Dunn Index gave an answer of 3. The other answers
from both methods were randomly incorrect. The Ecoli dataset was the one for which no correct answers were
attained. Seemingly randomly, the clustergram program working with K-means got the closest to the actual number
of clusters: 8. Nevertheless, all results were somewhat distant. With the Wisconsin Breast Cancer data, the Dunn
Index performed very well, obtaining the correct answer for all clustering algorithms. While the clustergram
program got the right answer in one case, it was off by one in the others.

Figure 6. DBSCAN with BiggerFisher. The first five pictures show instances of 30, 22, 20, 18, and 14 clusters,
respectively, being formed in the BiggerFisher dataset by DBSCAN when given a minimum number of cluster
objects specification, followed by the clustergram.
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Dataset (Number Clusters) Dunn Index Clustergram
Gaussian Dataset (5)

K-means 5 6
EM 5 5

DBSCAN 5 5
Augmented Fisher (3)

K-means 2 4
EM 3 6

DBSCAN 14 1
Big and Difficult (6 +)

K-means 2 4
EM 3 6

DBSCAN 14 1
UCI E.coli (8)

K-means 2 5
EM 2 2

DBSCAN 2 1
UCI Wisconsin Cancer (2)

K-means 2 2
EM 2 3

DBSCAN 2 1
Table 1. Dunn Index Values vs. Clustergram Program Values. This table compares the results that the Dunn

Validity Index and the Clustergram program obtain for all the datasets and clustering algorithms. The correct
results are highlighted.

IV. Conclusion
The method based on the clustergram has been shown to have some advantages over the Dunn Validity Index.

There were a couple of cases in which it obtained results for the correct number of clusters that were closer to the
real answers than the Dunn Index. The results demonstrate that the clustergram has an easier time dealing with
larger and more complicated datasets where, even if it does not obtain the right answer, it more closely approaches
the correct answer than the Dunn Index. The clustergram program at this point needs improvement, but has
potential. That the clustergram program would greatly benefit from improvement is evident in at least one example,
when the clustergram produced displays the correct number of clusters, and yet the clustergram program
determining the optimal number of clusters outputs a result different than what the clustergram shows. With several
tweaks, this problem can be remedied. Indeed, the clustergram program has a great deal of potential, not only
because it was able to obtain better results than the Dunn Index in a few cases or because it saves space and time,
but because the visual evidence is compelling: the clustergram is capable of showing continuity of the main clusters
across a range of inputs that points to the optimal number of clusters, even if there are a few poor clusterings, and
with some changes, the clustergram program will be able to capitalize on these unique advantages.

There are a few interesting datasets and several other clustering algorithms and cluster-number determination
methods that will be used in future work. An image dataset with points corresponding to an image containing well-
defined clusters will be a unique dataset that would make for interesting experiments using our method.
Furthermore, a very complicated dataset involving university data with a very large number of diverse variables will
further test the cluster-number determination method. An additional clustering algorithm is the Fuzzy Clustering
algorithm. This clustering method may prove to be useful because of its ability to find clusters even if the “edges” of
the clusters are not well-defined. A few additional cluster-number determination methods with which to compare
ours include: Calinski and Harabasz, the silhouette method, and the Davies-Boudlin method.8,9 Calinski and
Harabasz’s technique has been described as the best-performing index by Milligan and Cooper in their broad survey
on the efficacy of various cluster-number determination procedures.10 The silhouette method calculates a silhouette
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coefficient for each point, and the goal of the calculation is for the result to be positive and near zero, while the
Davies-Bouldin validation method is another measure of the similarity within cluster to differences between clusters.
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